Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10,000 individual subject ECG records

Arrhythmia constitute a common clinical problem in cardiology. The diagnosis is often made using electrocardiographic (ECG) signals but manual ECG interpretation by experts is expensive and time-consuming. In this work, we developed and validated an arrhythmia classification model based on handcraft...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 575; pp. 323 - 337
Main Authors Baygin, Mehmet, Tuncer, Turker, Dogan, Sengul, Tan, Ru-San, Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arrhythmia constitute a common clinical problem in cardiology. The diagnosis is often made using electrocardiographic (ECG) signals but manual ECG interpretation by experts is expensive and time-consuming. In this work, we developed and validated an arrhythmia classification model based on handcrafted features, which was more computationally efficient than traditional deep learning models. The classification model comprised (i) a specific feature extraction function based on the homeomorphically irreducible tree (HIT) graph pattern, (ii) multilevel feature generation based on maximum absolute pooling, (iii) Chi2 feature selector, and (iv) standard support vector machine classifier. We trained and validated the model on a large dataset comprising 12-leads ECGs acquired from more than 10,000 subjects. Performance metrics were reported for seven- (Case 1) and four-class (Case 2) arrhythmia diagnosis. High classification accuracy rates of 92.95% and 97.18% were attained for Case 1 and Case 2, respectively, that were comparable with those of deep learning on the same ECG dataset. The model achieved excellent classification results at low computational cost, which underscores the potential for real world application of the proposed HIT-based ECG classification model.
AbstractList Arrhythmia constitute a common clinical problem in cardiology. The diagnosis is often made using electrocardiographic (ECG) signals but manual ECG interpretation by experts is expensive and time-consuming. In this work, we developed and validated an arrhythmia classification model based on handcrafted features, which was more computationally efficient than traditional deep learning models. The classification model comprised (i) a specific feature extraction function based on the homeomorphically irreducible tree (HIT) graph pattern, (ii) multilevel feature generation based on maximum absolute pooling, (iii) Chi2 feature selector, and (iv) standard support vector machine classifier. We trained and validated the model on a large dataset comprising 12-leads ECGs acquired from more than 10,000 subjects. Performance metrics were reported for seven- (Case 1) and four-class (Case 2) arrhythmia diagnosis. High classification accuracy rates of 92.95% and 97.18% were attained for Case 1 and Case 2, respectively, that were comparable with those of deep learning on the same ECG dataset. The model achieved excellent classification results at low computational cost, which underscores the potential for real world application of the proposed HIT-based ECG classification model.
Author Acharya, U. Rajendra
Dogan, Sengul
Baygin, Mehmet
Tan, Ru-San
Tuncer, Turker
Author_xml – sequence: 1
  givenname: Mehmet
  orcidid: 0000-0002-5258-754X
  surname: Baygin
  fullname: Baygin, Mehmet
  email: mehmetbaygin@ardahan.edu.tr
  organization: Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan, Turkey
– sequence: 2
  givenname: Turker
  surname: Tuncer
  fullname: Tuncer, Turker
  email: turkertuncer@firat.edu.tr
  organization: Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
– sequence: 3
  givenname: Sengul
  surname: Dogan
  fullname: Dogan, Sengul
  email: sdogan@firat.edu.tr
  organization: Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
– sequence: 4
  givenname: Ru-San
  orcidid: 0000-0003-2086-6517
  surname: Tan
  fullname: Tan, Ru-San
  email: tan.ru.san@singhealth.com.sg
  organization: Department of Cardiology, National Heart Centre Singapore, Singapore
– sequence: 5
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  email: aru@np.edu.sg
  organization: Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, 599489, Singapore
BookMark eNp9kM9uFDEMhyNUJLaFB-CWB2AGJ52_4lStSkGq1Es5RxnHy3g1k5QkU7QPwHuTVTlx6MWWrN9ny9-luPDBkxAfFdQKVPf5WLNPtQatauhq0PqN2Kmh11WnR3UhdgAaKtBt-05cpnQEgKbvup34c7PlsNpMTtoY51OeV7bSUSbMHLz8zXmWc1gprCE-zYx2WU6SYyS3IU8LyRypFMLZ86-N5JbY_5QlXIaz9VLBp3JMsnf8zG6zi0zbdCzb5e3-TkbCEF16L94e7JLow79-JX58vX3cf6vuH-6-72_uK9S6z1U7tOOArru2GrGdxkZrPFgaenVANY09Np1SjbKtmsBSA9jARG4oMUIcSV1fCfWyF2NIKdLBPEVebTwZBebs0RxN8WjOHg10pngsTP8fg5ztWU6OlpdXyS8vJJWXnpmiScjkkRyXv7NxgV-h_wLOepJl
CitedBy_id crossref_primary_10_1109_JSEN_2024_3354113
crossref_primary_10_1109_TIM_2024_3428593
crossref_primary_10_1109_TIM_2022_3186355
crossref_primary_10_1136_openhrt_2022_002228
crossref_primary_10_3233_JIFS_230359
crossref_primary_10_1016_j_engappai_2023_107599
crossref_primary_10_1016_j_bspc_2024_106013
crossref_primary_10_1016_j_ins_2023_118978
crossref_primary_10_2478_jaiscr_2023_0014
crossref_primary_10_1016_j_bspc_2023_104849
crossref_primary_10_1016_j_bspc_2024_106703
crossref_primary_10_1016_j_cmpb_2025_108606
crossref_primary_10_1016_j_eswa_2021_116447
crossref_primary_10_1007_s13042_022_01718_0
crossref_primary_10_1016_j_ins_2022_01_030
crossref_primary_10_1038_s41598_022_25284_1
crossref_primary_10_3390_jpm13020373
crossref_primary_10_1007_s10489_023_04522_7
crossref_primary_10_1109_TIM_2022_3232646
crossref_primary_10_1016_j_knosys_2024_111696
crossref_primary_10_1109_JBHI_2023_3308856
crossref_primary_10_1016_j_engappai_2022_105722
crossref_primary_10_3390_diagnostics13101732
crossref_primary_10_3390_diagnostics13061099
crossref_primary_10_1016_j_bbe_2022_02_006
crossref_primary_10_1007_s11042_022_14304_x
crossref_primary_10_1016_j_bspc_2022_104067
crossref_primary_10_1371_journal_pone_0284791
crossref_primary_10_1016_j_asoc_2024_112056
crossref_primary_10_1016_j_cmpb_2025_108652
crossref_primary_10_1016_j_eswa_2023_119561
crossref_primary_10_1016_j_knosys_2021_107473
crossref_primary_10_1016_j_cmpbup_2023_100096
crossref_primary_10_1016_j_compbiomed_2022_105599
crossref_primary_10_1109_TIM_2024_3420364
crossref_primary_10_1007_s11042_022_14227_7
crossref_primary_10_1016_j_compbiomed_2021_104841
crossref_primary_10_1016_j_engappai_2024_108123
crossref_primary_10_1016_j_cmpbup_2023_100093
crossref_primary_10_1016_j_compbiomed_2022_106465
crossref_primary_10_1016_j_ins_2023_04_011
crossref_primary_10_3389_fphys_2023_1079503
crossref_primary_10_3390_sym13101914
crossref_primary_10_1080_10255842_2023_2299697
crossref_primary_10_1016_j_isatra_2023_07_033
crossref_primary_10_1109_TCBB_2022_3198998
crossref_primary_10_1016_j_heliyon_2023_e17974
crossref_primary_10_1186_s12911_021_01667_8
Cites_doi 10.1007/s00500-020-05465-8
10.1016/j.bspc.2020.102326
10.1007/s10916-019-1343-0
10.1016/j.ins.2017.06.027
10.1016/j.ins.2021.01.088
10.1016/j.jelectrocard.2019.08.004
10.1016/j.bspc.2020.102194
10.1016/j.ins.2020.05.026
10.1016/j.eswa.2019.113075
10.1016/j.cmpb.2020.105740
10.1016/j.cmpb.2021.105948
10.1007/s13246-018-0669-0
10.1016/j.knosys.2019.104923
10.1016/j.compbiomed.2020.103753
10.1016/j.compbiomed.2020.103866
10.1016/j.hrthm.2020.02.023
10.1161/01.CIR.101.23.e215
10.1016/j.neucom.2014.04.026
10.1016/j.chaos.2021.110671
10.1007/s13246-020-00965-1
10.1016/j.cjca.2018.05.003
10.1016/j.bspc.2019.101662
10.1038/s41597-020-0386-x
10.1016/S0735-1097(86)80478-8
10.1016/j.ins.2019.10.069
10.1007/BF02559543
10.1016/j.bspc.2019.101819
10.1109/TBME.2011.2163157
10.1007/s41060-020-00239-9
10.1109/TIM.2020.3033072
10.1016/j.cmpb.2020.105607
10.1016/j.compbiomed.2018.03.016
10.1109/51.932724
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.06.022
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 337
ExternalDocumentID 10_1016_j_ins_2021_06_022
S0020025521006137
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c227t-58598cd63a2cc5b9422cfae871fc1b97c461141a51b0ae40c40bed8422ecc9e13
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Thu Apr 24 23:04:25 EDT 2025
Tue Jul 01 01:26:47 EDT 2025
Fri Feb 23 02:44:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ECG
Automated arrhythmia detection
Chi2 feature selection
Maximum absolute pooling
Homeomorphically irreducible tree pattern
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c227t-58598cd63a2cc5b9422cfae871fc1b97c461141a51b0ae40c40bed8422ecc9e13
ORCID 0000-0003-2086-6517
0000-0002-5258-754X
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_ins_2021_06_022
crossref_citationtrail_10_1016_j_ins_2021_06_022
elsevier_sciencedirect_doi_10_1016_j_ins_2021_06_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zheng, Chu, Struppa, Zhang, Yacoub, El-Askary, Chang, Ehwerhemuepha, Abudayyeh, Barrett, Fu, Yao, Li, Guo, Rakovski (b0215) 2020; 10
Qiu, Liang, Meng, Zhang, Liu (b0135) 2021; 11
Dagher, Shi, Zhao, Marrouche (b0020) 2020; 17
Pandey, Janghel (b0105) 2021; 44
Tuncer, Dogan, Subasi (b0230) 2021; 144
Tuncer, Dogan, Pławiak, Acharya (b0080) 2019; 186
Gradl, Kugler, Lohmüller, Eskofier (b0010) 2012
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b0090) 2000; 101
Augustyniak, Tadeusiewicz (b0045) 2009
Wang, Wang, Wang (b0130) 2020; 55
Romdhane, Pr (b0145) 2020; 123
Krizhevsky, Sutskever, Hinton (b0190) 2012; 25
Moody (b0095) 1983
Zheng, Zhang, Danioko, Yao, Guo, Rakovski (b0210) 2020; 7
Zeng, Yuan, Yuan, Wang, Liu, Wang (b0065) 2021; 25
Jeon, Moon (b0160) 2020; 535
Sumaiya Thaseen, Aswani Kumar (b0205) 2017; 29
Scully, Lee, Meyer, Gorbach, Granquist-Fraser, Mendelson, Chon (b0015) 2011; 59
Yildirim, Talo, Ciaccio, San Tan, Acharya (b0245) 2020; 197
Sharma, Garg, Patidar, San Tan, Acharya (b0115) 2020; 120
Hassan, Gumaei, Alsanad, Alrubaian, Fortino (b0155) 2020; 513
S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, arXiv preprint arXiv:1710.09829, (2017).
Arora, Barak (b0240) 2009
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (b0165) 2017; 415
Bondy, Murty (b0220) 1976
Chen, Hua, Zhang, Liu, Wen (b0075) 2020; 57
Vapnik (b0235) 1998
Eltrass, Tayel, Ammar (b0120) 2021; 65
Tuncer, Dogan, Tan, Acharya (b0185) 2021; 565
He, Zhang, Ren, Sun (b0195) 2016
El Maachi, Bilodeau, Bouachir (b0175) 2020; 143
Moody, Mark (b0070) 2001; 20
Kaya, Ertuğrul (b0225) 2018; 41
Tadeusiewicz, Augustyniak (b0040) 2007; 27
Petmezas, Haris, Stefanopoulos, Kilintzis, Tzavelis, Rogers, Katsaggelos, Maglaveras (b0085) 2021; 63
Hammad, Iliyasu, Subasi, Ho, Abd El-Latif (b0140) 2020; 70
Cheung, Krahn, Andrade (b0025) 2018; 34
Hammad, Pławiak, Wang, Acharya (b0035) 2020
Parvaneh, Rubin, Babaeizadeh, Xu-Wilson (b0055) 2019; 57
Harary, Prins (b0060) 1959; 101
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, (2014).
Abdar, Wijayaningrum, Hussain, Alizadehsani, Plawiak, Acharya, Makarenkov (b0030) 2019; 43
P. Rajpurkar, A.Y. Hannun, M. Haghpanahi, C. Bourn, A.Y. Ng, Cardiologist-level arrhythmia detection with convolutional neural networks, arXiv preprint arXiv:1707.01836, (2017).
Baim, Colucci, Monrad, Smith, Wright, Lanoue, Gauthier, Ransil, Grossman, Braunwald (b0125) 1986; 7
Yildirim (b0110) 2018; 96
Pławiak (b0050) 2014; 144
Dias, Monteiro, Cabral, Naji, Kuehni, Luz (b0100) 2021; 202
Atal, Singh (b0150) 2020; 196
Kerkech, Hafiane, Canals, Ros (b0170) 2020
Krizhevsky (10.1016/j.ins.2021.06.022_b0190) 2012; 25
10.1016/j.ins.2021.06.022_b0005
Zheng (10.1016/j.ins.2021.06.022_b0215) 2020; 10
Tuncer (10.1016/j.ins.2021.06.022_b0230) 2021; 144
Scully (10.1016/j.ins.2021.06.022_b0015) 2011; 59
Yildirim (10.1016/j.ins.2021.06.022_b0245) 2020; 197
Tadeusiewicz (10.1016/j.ins.2021.06.022_b0040) 2007; 27
Acharya (10.1016/j.ins.2021.06.022_b0165) 2017; 415
Dias (10.1016/j.ins.2021.06.022_b0100) 2021; 202
Tuncer (10.1016/j.ins.2021.06.022_b0080) 2019; 186
Parvaneh (10.1016/j.ins.2021.06.022_b0055) 2019; 57
Zeng (10.1016/j.ins.2021.06.022_b0065) 2021; 25
Hammad (10.1016/j.ins.2021.06.022_b0140) 2020; 70
Arora (10.1016/j.ins.2021.06.022_b0240) 2009
Jeon (10.1016/j.ins.2021.06.022_b0160) 2020; 535
Pławiak (10.1016/j.ins.2021.06.022_b0050) 2014; 144
Eltrass (10.1016/j.ins.2021.06.022_b0120) 2021; 65
Dagher (10.1016/j.ins.2021.06.022_b0020) 2020; 17
Kerkech (10.1016/j.ins.2021.06.022_b0170) 2020
He (10.1016/j.ins.2021.06.022_b0195) 2016
Gradl (10.1016/j.ins.2021.06.022_b0010) 2012
Petmezas (10.1016/j.ins.2021.06.022_b0085) 2021; 63
10.1016/j.ins.2021.06.022_b0200
Bondy (10.1016/j.ins.2021.06.022_b0220) 1976
Wang (10.1016/j.ins.2021.06.022_b0130) 2020; 55
Hassan (10.1016/j.ins.2021.06.022_b0155) 2020; 513
Abdar (10.1016/j.ins.2021.06.022_b0030) 2019; 43
Vapnik (10.1016/j.ins.2021.06.022_b0235) 1998
Moody (10.1016/j.ins.2021.06.022_b0070) 2001; 20
Hammad (10.1016/j.ins.2021.06.022_b0035) 2020
Augustyniak (10.1016/j.ins.2021.06.022_b0045) 2009
Sumaiya Thaseen (10.1016/j.ins.2021.06.022_b0205) 2017; 29
Kaya (10.1016/j.ins.2021.06.022_b0225) 2018; 41
Moody (10.1016/j.ins.2021.06.022_b0095) 1983
Chen (10.1016/j.ins.2021.06.022_b0075) 2020; 57
Atal (10.1016/j.ins.2021.06.022_b0150) 2020; 196
Harary (10.1016/j.ins.2021.06.022_b0060) 1959; 101
Tuncer (10.1016/j.ins.2021.06.022_b0185) 2021; 565
Romdhane (10.1016/j.ins.2021.06.022_b0145) 2020; 123
El Maachi (10.1016/j.ins.2021.06.022_b0175) 2020; 143
Zheng (10.1016/j.ins.2021.06.022_b0210) 2020; 7
Pandey (10.1016/j.ins.2021.06.022_b0105) 2021; 44
Sharma (10.1016/j.ins.2021.06.022_b0115) 2020; 120
Goldberger (10.1016/j.ins.2021.06.022_b0090) 2000; 101
Cheung (10.1016/j.ins.2021.06.022_b0025) 2018; 34
Yildirim (10.1016/j.ins.2021.06.022_b0110) 2018; 96
Baim (10.1016/j.ins.2021.06.022_b0125) 1986; 7
10.1016/j.ins.2021.06.022_b0180
Qiu (10.1016/j.ins.2021.06.022_b0135) 2021; 11
References_xml – volume: 63
  year: 2021
  ident: b0085
  article-title: Automated atrial fibrillation detection using a Hybrid CNN-LSTM network on imbalanced ECG datasets
  publication-title: Biomed. Signal Process. Control
– volume: 70
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0140
  article-title: A multitier deep learning model for arrhythmia detection
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 29
  start-page: 462
  year: 2017
  end-page: 472
  ident: b0205
  article-title: Intrusion detection model using fusion of chi-square feature selection and multi class SVM
  publication-title: J. King Saud Univ. –Comput. Inf. Sci.
– volume: 186
  year: 2019
  ident: b0080
  article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: b0035
  article-title: ResNet-Attention model for human authentication using ECG signals
  publication-title: Expert Syst.
– year: 2009
  ident: b0240
  article-title: Computational Complexity: A Modern Approach
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0195
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 7
  start-page: 1
  year: 2020
  end-page: 8
  ident: b0210
  article-title: A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients
  publication-title: Sci. Data
– volume: 197
  year: 2020
  ident: b0245
  article-title: Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records
  publication-title: Comput. Methods Programs Biomed.
– volume: 101
  start-page: 141
  year: 1959
  end-page: 162
  ident: b0060
  article-title: The number of homeomorphically irreducible trees, and other species
  publication-title: Acta Math.
– volume: 25
  start-page: 4571
  year: 2021
  end-page: 4595
  ident: b0065
  article-title: A novel technique for the detection of myocardial dysfunction using ECG signals based on hybrid signal processing and neural networks
  publication-title: Soft. Comput.
– volume: 143
  year: 2020
  ident: b0175
  article-title: Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait
  publication-title: Expert Syst. Appl.
– volume: 57
  year: 2020
  ident: b0075
  article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM
  publication-title: Biomed. Signal Process. Control
– volume: 202
  year: 2021
  ident: b0100
  article-title: Arrhythmia classification from single-lead ECG signals using the inter-patient paradigm
  publication-title: Comput. Methods Programs Biomed.
– volume: 57
  start-page: S70
  year: 2019
  end-page: S74
  ident: b0055
  article-title: Cardiac arrhythmia detection using deep learning: a review
  publication-title: J. Electrocardiol.
– volume: 41
  start-page: 721
  year: 2018
  end-page: 730
  ident: b0225
  article-title: A stable feature extraction method in classification epileptic EEG signals
  publication-title: Australas. Phys. Eng. Sci. Med.
– volume: 55
  year: 2020
  ident: b0130
  article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process
  publication-title: Biomed. Signal Process. Control
– volume: 144
  start-page: 471
  year: 2014
  end-page: 483
  ident: b0050
  article-title: An estimation of the state of consumption of a positive displacement pump based on dynamic pressure or vibrations using neural networks
  publication-title: Neurocomputing
– start-page: 11
  year: 2009
  end-page: 71
  ident: b0045
  article-title: Background 1: ECG Interpretation
  publication-title: Ubiquitous Cardiology: Emerging Wireless Telemedical Applications
– volume: 34
  start-page: 1083
  year: 2018
  end-page: 1087
  ident: b0025
  article-title: The emerging role of wearable technologies in detection of arrhythmia
  publication-title: Can. J. Cardiol.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0190
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 59
  start-page: 303
  year: 2011
  end-page: 306
  ident: b0015
  article-title: Physiological parameter monitoring from optical recordings with a mobile phone
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 44
  start-page: 173
  year: 2021
  end-page: 182
  ident: b0105
  article-title: Automated detection of arrhythmia from electrocardiogram signal based on new convolutional encoded features with bidirectional long short-term memory network classifier
  publication-title: Phys. Eng. Sci. Med.
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, (2014).
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b0090
  article-title: PhysioBankPhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– reference: P. Rajpurkar, A.Y. Hannun, M. Haghpanahi, C. Bourn, A.Y. Ng, Cardiologist-level arrhythmia detection with convolutional neural networks, arXiv preprint arXiv:1707.01836, (2017).
– volume: 120
  year: 2020
  ident: b0115
  article-title: Automated pre-screening of arrhythmia using hybrid combination of Fourier-Bessel expansion and LSTM
  publication-title: Comput. Biol. Med.
– volume: 17
  start-page: 889
  year: 2020
  end-page: 895
  ident: b0020
  article-title: Wearables in cardiology: Here to stay
  publication-title: Heart Rhythm
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: b0110
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput. Biol. Med.
– volume: 10
  year: 2020
  ident: b0215
  article-title: Optimal multi-stage arrhythmia classification approach
  publication-title: Sci. Rep.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b0070
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 43
  start-page: 1
  year: 2019
  end-page: 23
  ident: b0030
  article-title: IAPSO-AIRS: a novel improved machine learning-based system for wart disease treatment
  publication-title: J. Med. Syst.
– volume: 415
  start-page: 190
  year: 2017
  end-page: 198
  ident: b0165
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
– volume: 513
  start-page: 386
  year: 2020
  end-page: 396
  ident: b0155
  article-title: A hybrid deep learning model for efficient intrusion detection in big data environment
  publication-title: Inf. Sci.
– volume: 27
  start-page: 169
  year: 2007
  ident: b0040
  article-title: Analysis of human eye movements during the plot inspection as a tool of assessment of local informative value of the 12-lead ECG
  publication-title: Biocybern. Biomed. Eng.
– start-page: 2452
  year: 2012
  end-page: 2455
  ident: b0010
  article-title: Real-time ECG monitoring and arrhythmia detection using Android-based mobile device
  publication-title: 2012 annual international conference of the IEEE engineering in medicine and biology society
– start-page: 55
  year: 1998
  end-page: 85
  ident: b0235
  article-title: The support vector method of function estimation
  publication-title: Nonlinear Modeling
– start-page: 82
  year: 2020
  end-page: 90
  ident: b0170
  article-title: Vine disease detection by deep learning method combined with 3D depth information
  publication-title: International Conference on Image and Signal Processing
– volume: 535
  start-page: 1
  year: 2020
  end-page: 15
  ident: b0160
  article-title: Malware-detection method with a convolutional recurrent neural network using opcode sequences
  publication-title: Inf. Sci.
– volume: 65
  year: 2021
  ident: b0120
  article-title: A new automated CNN deep learning approach for identification of ECG congestive heart failure and arrhythmia using constant-Q non-stationary Gabor transform
  publication-title: Biomed. Signal Process. Control
– volume: 196
  year: 2020
  ident: b0150
  article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network
  publication-title: Comput. Methods Programs Biomed.
– volume: 565
  start-page: 91
  year: 2021
  end-page: 104
  ident: b0185
  article-title: Application of Petersen graph pattern technique for automated detection of heart valve diseases with PCG signals
  publication-title: Inf. Sci.
– volume: 144
  year: 2021
  ident: b0230
  article-title: A new fractal pattern feature generation function based emotion recognition method using EEG
  publication-title: Chaos, Solitons Fractals
– volume: 123
  year: 2020
  ident: b0145
  article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss
  publication-title: Comput. Biol. Med.
– volume: 7
  start-page: 661
  year: 1986
  end-page: 670
  ident: b0125
  article-title: Survival of patients with severe congestive heart failure treated with oral milrinone
  publication-title: J. Am. Coll. Cardiol.
– year: 1976
  ident: b0220
  article-title: Graph Theory with Applications
– reference: S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, arXiv preprint arXiv:1710.09829, (2017).
– volume: 11
  start-page: 181
  year: 2021
  end-page: 193
  ident: b0135
  article-title: Exploiting feature fusion and long-term context dependencies for simultaneous ECG heartbeat segmentation and classification
  publication-title: Int. J. Data Sci. Anal.
– start-page: 227
  year: 1983
  end-page: 230
  ident: b0095
  article-title: A new method for detecting atrial fibrillation using RR intervals
  publication-title: Comput. Cardiol.
– volume: 25
  start-page: 4571
  issue: 6
  year: 2021
  ident: 10.1016/j.ins.2021.06.022_b0065
  article-title: A novel technique for the detection of myocardial dysfunction using ECG signals based on hybrid signal processing and neural networks
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-020-05465-8
– volume: 65
  year: 2021
  ident: 10.1016/j.ins.2021.06.022_b0120
  article-title: A new automated CNN deep learning approach for identification of ECG congestive heart failure and arrhythmia using constant-Q non-stationary Gabor transform
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102326
– volume: 29
  start-page: 462
  issue: 4
  year: 2017
  ident: 10.1016/j.ins.2021.06.022_b0205
  article-title: Intrusion detection model using fusion of chi-square feature selection and multi class SVM
  publication-title: J. King Saud Univ. –Comput. Inf. Sci.
– volume: 43
  start-page: 1
  year: 2019
  ident: 10.1016/j.ins.2021.06.022_b0030
  article-title: IAPSO-AIRS: a novel improved machine learning-based system for wart disease treatment
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1343-0
– volume: 415
  start-page: 190
  year: 2017
  ident: 10.1016/j.ins.2021.06.022_b0165
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.06.027
– year: 2009
  ident: 10.1016/j.ins.2021.06.022_b0240
– start-page: 55
  year: 1998
  ident: 10.1016/j.ins.2021.06.022_b0235
  article-title: The support vector method of function estimation
– start-page: 770
  year: 2016
  ident: 10.1016/j.ins.2021.06.022_b0195
  article-title: Deep residual learning for image recognition
– volume: 565
  start-page: 91
  year: 2021
  ident: 10.1016/j.ins.2021.06.022_b0185
  article-title: Application of Petersen graph pattern technique for automated detection of heart valve diseases with PCG signals
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.088
– volume: 57
  start-page: S70
  year: 2019
  ident: 10.1016/j.ins.2021.06.022_b0055
  article-title: Cardiac arrhythmia detection using deep learning: a review
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2019.08.004
– ident: 10.1016/j.ins.2021.06.022_b0200
– ident: 10.1016/j.ins.2021.06.022_b0005
– volume: 63
  year: 2021
  ident: 10.1016/j.ins.2021.06.022_b0085
  article-title: Automated atrial fibrillation detection using a Hybrid CNN-LSTM network on imbalanced ECG datasets
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102194
– volume: 535
  start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0160
  article-title: Malware-detection method with a convolutional recurrent neural network using opcode sequences
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.05.026
– volume: 143
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0175
  article-title: Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113075
– volume: 197
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0245
  article-title: Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105740
– volume: 202
  year: 2021
  ident: 10.1016/j.ins.2021.06.022_b0100
  article-title: Arrhythmia classification from single-lead ECG signals using the inter-patient paradigm
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.105948
– volume: 41
  start-page: 721
  issue: 3
  year: 2018
  ident: 10.1016/j.ins.2021.06.022_b0225
  article-title: A stable feature extraction method in classification epileptic EEG signals
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-018-0669-0
– volume: 186
  year: 2019
  ident: 10.1016/j.ins.2021.06.022_b0080
  article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104923
– volume: 120
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0115
  article-title: Automated pre-screening of arrhythmia using hybrid combination of Fourier-Bessel expansion and LSTM
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103753
– volume: 123
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0145
  article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103866
– volume: 17
  start-page: 889
  issue: 5
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0020
  article-title: Wearables in cardiology: Here to stay
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2020.02.023
– volume: 101
  start-page: e215
  year: 2000
  ident: 10.1016/j.ins.2021.06.022_b0090
  article-title: PhysioBankPhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 144
  start-page: 471
  year: 2014
  ident: 10.1016/j.ins.2021.06.022_b0050
  article-title: An estimation of the state of consumption of a positive displacement pump based on dynamic pressure or vibrations using neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.04.026
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.ins.2021.06.022_b0190
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 227
  year: 1983
  ident: 10.1016/j.ins.2021.06.022_b0095
  article-title: A new method for detecting atrial fibrillation using RR intervals
  publication-title: Comput. Cardiol.
– volume: 144
  year: 2021
  ident: 10.1016/j.ins.2021.06.022_b0230
  article-title: A new fractal pattern feature generation function based emotion recognition method using EEG
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2021.110671
– start-page: 82
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0170
  article-title: Vine disease detection by deep learning method combined with 3D depth information
– year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0035
  article-title: ResNet-Attention model for human authentication using ECG signals
  publication-title: Expert Syst.
– volume: 44
  start-page: 173
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2021.06.022_b0105
  article-title: Automated detection of arrhythmia from electrocardiogram signal based on new convolutional encoded features with bidirectional long short-term memory network classifier
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00965-1
– volume: 34
  start-page: 1083
  year: 2018
  ident: 10.1016/j.ins.2021.06.022_b0025
  article-title: The emerging role of wearable technologies in detection of arrhythmia
  publication-title: Can. J. Cardiol.
  doi: 10.1016/j.cjca.2018.05.003
– ident: 10.1016/j.ins.2021.06.022_b0180
– volume: 55
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0130
  article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101662
– volume: 7
  start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0210
  article-title: A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0386-x
– volume: 7
  start-page: 661
  issue: 3
  year: 1986
  ident: 10.1016/j.ins.2021.06.022_b0125
  article-title: Survival of patients with severe congestive heart failure treated with oral milrinone
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(86)80478-8
– volume: 513
  start-page: 386
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0155
  article-title: A hybrid deep learning model for efficient intrusion detection in big data environment
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.10.069
– start-page: 2452
  year: 2012
  ident: 10.1016/j.ins.2021.06.022_b0010
  article-title: Real-time ECG monitoring and arrhythmia detection using Android-based mobile device
– volume: 27
  start-page: 169
  year: 2007
  ident: 10.1016/j.ins.2021.06.022_b0040
  article-title: Analysis of human eye movements during the plot inspection as a tool of assessment of local informative value of the 12-lead ECG
  publication-title: Biocybern. Biomed. Eng.
– volume: 101
  start-page: 141
  year: 1959
  ident: 10.1016/j.ins.2021.06.022_b0060
  article-title: The number of homeomorphically irreducible trees, and other species
  publication-title: Acta Math.
  doi: 10.1007/BF02559543
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0215
  article-title: Optimal multi-stage arrhythmia classification approach
  publication-title: Sci. Rep.
– volume: 57
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0075
  article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101819
– volume: 59
  start-page: 303
  year: 2011
  ident: 10.1016/j.ins.2021.06.022_b0015
  article-title: Physiological parameter monitoring from optical recordings with a mobile phone
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2163157
– volume: 11
  start-page: 181
  issue: 3
  year: 2021
  ident: 10.1016/j.ins.2021.06.022_b0135
  article-title: Exploiting feature fusion and long-term context dependencies for simultaneous ECG heartbeat segmentation and classification
  publication-title: Int. J. Data Sci. Anal.
  doi: 10.1007/s41060-020-00239-9
– start-page: 11
  year: 2009
  ident: 10.1016/j.ins.2021.06.022_b0045
  article-title: Background 1: ECG Interpretation
– volume: 70
  start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0140
  article-title: A multitier deep learning model for arrhythmia detection
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3033072
– volume: 196
  year: 2020
  ident: 10.1016/j.ins.2021.06.022_b0150
  article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105607
– year: 1976
  ident: 10.1016/j.ins.2021.06.022_b0220
– volume: 96
  start-page: 189
  year: 2018
  ident: 10.1016/j.ins.2021.06.022_b0110
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.016
– volume: 20
  start-page: 45
  year: 2001
  ident: 10.1016/j.ins.2021.06.022_b0070
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
SSID ssj0004766
Score 2.5457194
Snippet Arrhythmia constitute a common clinical problem in cardiology. The diagnosis is often made using electrocardiographic (ECG) signals but manual ECG...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 323
SubjectTerms Automated arrhythmia detection
Chi2 feature selection
ECG
Homeomorphically irreducible tree pattern
Maximum absolute pooling
Title Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10,000 individual subject ECG records
URI https://dx.doi.org/10.1016/j.ins.2021.06.022
Volume 575
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuKtGxADIuC4TpOMVQUUEEwgsUWx49CgNqlCOrCw8b-5S5wCEjCwRIplS8nd2ec7f_eZsUOpeRp7QcdJOr7nSIOPMEx9J069TqoSoqSi2uHbu-7gQV4_eo9zrN_WwhCs0q79zZper9a25cxK82ySZVTjK-odMQYt5JSoolxKn6z89O0T5oEt3QbmwR3q3Z5s1hivLCfGbuHWFJ5C_OybvvibixW2bDeK0Gu-ZZXNmXyNLX2hD1xj-7boAI7AVhWRlMFO13X23ptWBTaaBOKyHL5Ww3EWQ2KqGn6VA-VgYViMTTEuUNykrtErZGVJdK6ZGhmgI2uY0bwCgeSfgKC5QBl3cPkJ_jtks6IueJkqSuzAef8SmvzPywZ7uDi_7w8ce-2Co4XwKwcDiDDQCSpJaO2pUAqh09hgZJVqV4W-ll0MotzYcxWPjeRacmWSALuhOYTG7Wyy-bzIzRaDBPVuVDfhSmqZBl6A0bifSi6Vio0r_W3GW4FH2nKS09UYo6gFnz1HqKOIdBQRAE-IbXY8GzJpCDn-6ixbLUbfrCpCh_H7sJ3_Ddtli_TWQP322HxVTs0-blkqdVDb5AFb6F3dDO4-AFdx7SY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCAqohT7mUDggQhOvs0kOHKo-2D5PrdRbiB2HDdpNqmxWaC_c-ov6BzuTONsilR6QesnBsSPbM5mXvxkDbErtZokf9py0F_iONPSIoixwkszvZSrlklScO3xy2h-cy8ML_2IBrrtcGIZVWtnfyvRGWtuWLbubW5d5zjm-orGIyWlhpRRYZOWRmf0mv23y7WCXiPxRiP29s52BY68WcLQQQe2QkRyFOqWJCK19FUkhdJYY8h4y7ako0LJPjoKX-J5yEyNdLV1l0pC60ZIj4_Xou0_gqSRxwdcmfP1ziyuRQXtAyn4ZT687Sm1AZXnBJcKF19QMFeJ-ZXhHwe2_gpfWMsXtdvGvYcEUS_DiTr3CJVizWQ74CW0aE5MVrXx4A1fb07qkRpNiUlXDWT0c5wmmpm7wXgVy0BeH5diU45Loy_wxmmFeVVw_Nlcjg3xGjvO6ssio_J_IWGDkED967hdaO-bzLDKcTBVHknBv5zu2AafJWzh_FGK8g8WiLMwyYEqMZlQ_dZXUMgv9kNz_IJOuVCoxngxWwO02PNa2CDrfxTGKO7Tbr5hoFDONYkb8CbECn-dDLtsKIA91lh0V47_YOCYN9e9h7_9v2AY8G5ydHMfHB6dHH-A5v2lxhquwWFdTs0b2Uq3WG_5E-PHYP8QNSaQpMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+arrhythmia+detection+with+homeomorphically+irreducible+tree+technique+using+more+than+10%2C000+individual+subject+ECG+records&rft.jtitle=Information+sciences&rft.au=Baygin%2C+Mehmet&rft.au=Tuncer%2C+Turker&rft.au=Dogan%2C+Sengul&rft.au=Tan%2C+Ru-San&rft.date=2021-10-01&rft.issn=0020-0255&rft.volume=575&rft.spage=323&rft.epage=337&rft_id=info:doi/10.1016%2Fj.ins.2021.06.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_06_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon