Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10,000 individual subject ECG records
Arrhythmia constitute a common clinical problem in cardiology. The diagnosis is often made using electrocardiographic (ECG) signals but manual ECG interpretation by experts is expensive and time-consuming. In this work, we developed and validated an arrhythmia classification model based on handcraft...
Saved in:
Published in | Information sciences Vol. 575; pp. 323 - 337 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arrhythmia constitute a common clinical problem in cardiology. The diagnosis is often made using electrocardiographic (ECG) signals but manual ECG interpretation by experts is expensive and time-consuming. In this work, we developed and validated an arrhythmia classification model based on handcrafted features, which was more computationally efficient than traditional deep learning models.
The classification model comprised (i) a specific feature extraction function based on the homeomorphically irreducible tree (HIT) graph pattern, (ii) multilevel feature generation based on maximum absolute pooling, (iii) Chi2 feature selector, and (iv) standard support vector machine classifier. We trained and validated the model on a large dataset comprising 12-leads ECGs acquired from more than 10,000 subjects. Performance metrics were reported for seven- (Case 1) and four-class (Case 2) arrhythmia diagnosis.
High classification accuracy rates of 92.95% and 97.18% were attained for Case 1 and Case 2, respectively, that were comparable with those of deep learning on the same ECG dataset.
The model achieved excellent classification results at low computational cost, which underscores the potential for real world application of the proposed HIT-based ECG classification model. |
---|---|
AbstractList | Arrhythmia constitute a common clinical problem in cardiology. The diagnosis is often made using electrocardiographic (ECG) signals but manual ECG interpretation by experts is expensive and time-consuming. In this work, we developed and validated an arrhythmia classification model based on handcrafted features, which was more computationally efficient than traditional deep learning models.
The classification model comprised (i) a specific feature extraction function based on the homeomorphically irreducible tree (HIT) graph pattern, (ii) multilevel feature generation based on maximum absolute pooling, (iii) Chi2 feature selector, and (iv) standard support vector machine classifier. We trained and validated the model on a large dataset comprising 12-leads ECGs acquired from more than 10,000 subjects. Performance metrics were reported for seven- (Case 1) and four-class (Case 2) arrhythmia diagnosis.
High classification accuracy rates of 92.95% and 97.18% were attained for Case 1 and Case 2, respectively, that were comparable with those of deep learning on the same ECG dataset.
The model achieved excellent classification results at low computational cost, which underscores the potential for real world application of the proposed HIT-based ECG classification model. |
Author | Acharya, U. Rajendra Dogan, Sengul Baygin, Mehmet Tan, Ru-San Tuncer, Turker |
Author_xml | – sequence: 1 givenname: Mehmet orcidid: 0000-0002-5258-754X surname: Baygin fullname: Baygin, Mehmet email: mehmetbaygin@ardahan.edu.tr organization: Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan, Turkey – sequence: 2 givenname: Turker surname: Tuncer fullname: Tuncer, Turker email: turkertuncer@firat.edu.tr organization: Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey – sequence: 3 givenname: Sengul surname: Dogan fullname: Dogan, Sengul email: sdogan@firat.edu.tr organization: Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey – sequence: 4 givenname: Ru-San orcidid: 0000-0003-2086-6517 surname: Tan fullname: Tan, Ru-San email: tan.ru.san@singhealth.com.sg organization: Department of Cardiology, National Heart Centre Singapore, Singapore – sequence: 5 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra email: aru@np.edu.sg organization: Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, 599489, Singapore |
BookMark | eNp9kM9uFDEMhyNUJLaFB-CWB2AGJ52_4lStSkGq1Es5RxnHy3g1k5QkU7QPwHuTVTlx6MWWrN9ny9-luPDBkxAfFdQKVPf5WLNPtQatauhq0PqN2Kmh11WnR3UhdgAaKtBt-05cpnQEgKbvup34c7PlsNpMTtoY51OeV7bSUSbMHLz8zXmWc1gprCE-zYx2WU6SYyS3IU8LyRypFMLZ86-N5JbY_5QlXIaz9VLBp3JMsnf8zG6zi0zbdCzb5e3-TkbCEF16L94e7JLow79-JX58vX3cf6vuH-6-72_uK9S6z1U7tOOArru2GrGdxkZrPFgaenVANY09Np1SjbKtmsBSA9jARG4oMUIcSV1fCfWyF2NIKdLBPEVebTwZBebs0RxN8WjOHg10pngsTP8fg5ztWU6OlpdXyS8vJJWXnpmiScjkkRyXv7NxgV-h_wLOepJl |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3354113 crossref_primary_10_1109_TIM_2024_3428593 crossref_primary_10_1109_TIM_2022_3186355 crossref_primary_10_1136_openhrt_2022_002228 crossref_primary_10_3233_JIFS_230359 crossref_primary_10_1016_j_engappai_2023_107599 crossref_primary_10_1016_j_bspc_2024_106013 crossref_primary_10_1016_j_ins_2023_118978 crossref_primary_10_2478_jaiscr_2023_0014 crossref_primary_10_1016_j_bspc_2023_104849 crossref_primary_10_1016_j_bspc_2024_106703 crossref_primary_10_1016_j_cmpb_2025_108606 crossref_primary_10_1016_j_eswa_2021_116447 crossref_primary_10_1007_s13042_022_01718_0 crossref_primary_10_1016_j_ins_2022_01_030 crossref_primary_10_1038_s41598_022_25284_1 crossref_primary_10_3390_jpm13020373 crossref_primary_10_1007_s10489_023_04522_7 crossref_primary_10_1109_TIM_2022_3232646 crossref_primary_10_1016_j_knosys_2024_111696 crossref_primary_10_1109_JBHI_2023_3308856 crossref_primary_10_1016_j_engappai_2022_105722 crossref_primary_10_3390_diagnostics13101732 crossref_primary_10_3390_diagnostics13061099 crossref_primary_10_1016_j_bbe_2022_02_006 crossref_primary_10_1007_s11042_022_14304_x crossref_primary_10_1016_j_bspc_2022_104067 crossref_primary_10_1371_journal_pone_0284791 crossref_primary_10_1016_j_asoc_2024_112056 crossref_primary_10_1016_j_cmpb_2025_108652 crossref_primary_10_1016_j_eswa_2023_119561 crossref_primary_10_1016_j_knosys_2021_107473 crossref_primary_10_1016_j_cmpbup_2023_100096 crossref_primary_10_1016_j_compbiomed_2022_105599 crossref_primary_10_1109_TIM_2024_3420364 crossref_primary_10_1007_s11042_022_14227_7 crossref_primary_10_1016_j_compbiomed_2021_104841 crossref_primary_10_1016_j_engappai_2024_108123 crossref_primary_10_1016_j_cmpbup_2023_100093 crossref_primary_10_1016_j_compbiomed_2022_106465 crossref_primary_10_1016_j_ins_2023_04_011 crossref_primary_10_3389_fphys_2023_1079503 crossref_primary_10_3390_sym13101914 crossref_primary_10_1080_10255842_2023_2299697 crossref_primary_10_1016_j_isatra_2023_07_033 crossref_primary_10_1109_TCBB_2022_3198998 crossref_primary_10_1016_j_heliyon_2023_e17974 crossref_primary_10_1186_s12911_021_01667_8 |
Cites_doi | 10.1007/s00500-020-05465-8 10.1016/j.bspc.2020.102326 10.1007/s10916-019-1343-0 10.1016/j.ins.2017.06.027 10.1016/j.ins.2021.01.088 10.1016/j.jelectrocard.2019.08.004 10.1016/j.bspc.2020.102194 10.1016/j.ins.2020.05.026 10.1016/j.eswa.2019.113075 10.1016/j.cmpb.2020.105740 10.1016/j.cmpb.2021.105948 10.1007/s13246-018-0669-0 10.1016/j.knosys.2019.104923 10.1016/j.compbiomed.2020.103753 10.1016/j.compbiomed.2020.103866 10.1016/j.hrthm.2020.02.023 10.1161/01.CIR.101.23.e215 10.1016/j.neucom.2014.04.026 10.1016/j.chaos.2021.110671 10.1007/s13246-020-00965-1 10.1016/j.cjca.2018.05.003 10.1016/j.bspc.2019.101662 10.1038/s41597-020-0386-x 10.1016/S0735-1097(86)80478-8 10.1016/j.ins.2019.10.069 10.1007/BF02559543 10.1016/j.bspc.2019.101819 10.1109/TBME.2011.2163157 10.1007/s41060-020-00239-9 10.1109/TIM.2020.3033072 10.1016/j.cmpb.2020.105607 10.1016/j.compbiomed.2018.03.016 10.1109/51.932724 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2021.06.022 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 337 |
ExternalDocumentID | 10_1016_j_ins_2021_06_022 S0020025521006137 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c227t-58598cd63a2cc5b9422cfae871fc1b97c461141a51b0ae40c40bed8422ecc9e13 |
IEDL.DBID | .~1 |
ISSN | 0020-0255 |
IngestDate | Thu Apr 24 23:04:25 EDT 2025 Tue Jul 01 01:26:47 EDT 2025 Fri Feb 23 02:44:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ECG Automated arrhythmia detection Chi2 feature selection Maximum absolute pooling Homeomorphically irreducible tree pattern |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c227t-58598cd63a2cc5b9422cfae871fc1b97c461141a51b0ae40c40bed8422ecc9e13 |
ORCID | 0000-0003-2086-6517 0000-0002-5258-754X |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_ins_2021_06_022 crossref_citationtrail_10_1016_j_ins_2021_06_022 elsevier_sciencedirect_doi_10_1016_j_ins_2021_06_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Information sciences |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zheng, Chu, Struppa, Zhang, Yacoub, El-Askary, Chang, Ehwerhemuepha, Abudayyeh, Barrett, Fu, Yao, Li, Guo, Rakovski (b0215) 2020; 10 Qiu, Liang, Meng, Zhang, Liu (b0135) 2021; 11 Dagher, Shi, Zhao, Marrouche (b0020) 2020; 17 Pandey, Janghel (b0105) 2021; 44 Tuncer, Dogan, Subasi (b0230) 2021; 144 Tuncer, Dogan, Pławiak, Acharya (b0080) 2019; 186 Gradl, Kugler, Lohmüller, Eskofier (b0010) 2012 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b0090) 2000; 101 Augustyniak, Tadeusiewicz (b0045) 2009 Wang, Wang, Wang (b0130) 2020; 55 Romdhane, Pr (b0145) 2020; 123 Krizhevsky, Sutskever, Hinton (b0190) 2012; 25 Moody (b0095) 1983 Zheng, Zhang, Danioko, Yao, Guo, Rakovski (b0210) 2020; 7 Zeng, Yuan, Yuan, Wang, Liu, Wang (b0065) 2021; 25 Jeon, Moon (b0160) 2020; 535 Sumaiya Thaseen, Aswani Kumar (b0205) 2017; 29 Scully, Lee, Meyer, Gorbach, Granquist-Fraser, Mendelson, Chon (b0015) 2011; 59 Yildirim, Talo, Ciaccio, San Tan, Acharya (b0245) 2020; 197 Sharma, Garg, Patidar, San Tan, Acharya (b0115) 2020; 120 Hassan, Gumaei, Alsanad, Alrubaian, Fortino (b0155) 2020; 513 S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, arXiv preprint arXiv:1710.09829, (2017). Arora, Barak (b0240) 2009 Acharya, Fujita, Oh, Hagiwara, Tan, Adam (b0165) 2017; 415 Bondy, Murty (b0220) 1976 Chen, Hua, Zhang, Liu, Wen (b0075) 2020; 57 Vapnik (b0235) 1998 Eltrass, Tayel, Ammar (b0120) 2021; 65 Tuncer, Dogan, Tan, Acharya (b0185) 2021; 565 He, Zhang, Ren, Sun (b0195) 2016 El Maachi, Bilodeau, Bouachir (b0175) 2020; 143 Moody, Mark (b0070) 2001; 20 Kaya, Ertuğrul (b0225) 2018; 41 Tadeusiewicz, Augustyniak (b0040) 2007; 27 Petmezas, Haris, Stefanopoulos, Kilintzis, Tzavelis, Rogers, Katsaggelos, Maglaveras (b0085) 2021; 63 Hammad, Iliyasu, Subasi, Ho, Abd El-Latif (b0140) 2020; 70 Cheung, Krahn, Andrade (b0025) 2018; 34 Hammad, Pławiak, Wang, Acharya (b0035) 2020 Parvaneh, Rubin, Babaeizadeh, Xu-Wilson (b0055) 2019; 57 Harary, Prins (b0060) 1959; 101 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, (2014). Abdar, Wijayaningrum, Hussain, Alizadehsani, Plawiak, Acharya, Makarenkov (b0030) 2019; 43 P. Rajpurkar, A.Y. Hannun, M. Haghpanahi, C. Bourn, A.Y. Ng, Cardiologist-level arrhythmia detection with convolutional neural networks, arXiv preprint arXiv:1707.01836, (2017). Baim, Colucci, Monrad, Smith, Wright, Lanoue, Gauthier, Ransil, Grossman, Braunwald (b0125) 1986; 7 Yildirim (b0110) 2018; 96 Pławiak (b0050) 2014; 144 Dias, Monteiro, Cabral, Naji, Kuehni, Luz (b0100) 2021; 202 Atal, Singh (b0150) 2020; 196 Kerkech, Hafiane, Canals, Ros (b0170) 2020 Krizhevsky (10.1016/j.ins.2021.06.022_b0190) 2012; 25 10.1016/j.ins.2021.06.022_b0005 Zheng (10.1016/j.ins.2021.06.022_b0215) 2020; 10 Tuncer (10.1016/j.ins.2021.06.022_b0230) 2021; 144 Scully (10.1016/j.ins.2021.06.022_b0015) 2011; 59 Yildirim (10.1016/j.ins.2021.06.022_b0245) 2020; 197 Tadeusiewicz (10.1016/j.ins.2021.06.022_b0040) 2007; 27 Acharya (10.1016/j.ins.2021.06.022_b0165) 2017; 415 Dias (10.1016/j.ins.2021.06.022_b0100) 2021; 202 Tuncer (10.1016/j.ins.2021.06.022_b0080) 2019; 186 Parvaneh (10.1016/j.ins.2021.06.022_b0055) 2019; 57 Zeng (10.1016/j.ins.2021.06.022_b0065) 2021; 25 Hammad (10.1016/j.ins.2021.06.022_b0140) 2020; 70 Arora (10.1016/j.ins.2021.06.022_b0240) 2009 Jeon (10.1016/j.ins.2021.06.022_b0160) 2020; 535 Pławiak (10.1016/j.ins.2021.06.022_b0050) 2014; 144 Eltrass (10.1016/j.ins.2021.06.022_b0120) 2021; 65 Dagher (10.1016/j.ins.2021.06.022_b0020) 2020; 17 Kerkech (10.1016/j.ins.2021.06.022_b0170) 2020 He (10.1016/j.ins.2021.06.022_b0195) 2016 Gradl (10.1016/j.ins.2021.06.022_b0010) 2012 Petmezas (10.1016/j.ins.2021.06.022_b0085) 2021; 63 10.1016/j.ins.2021.06.022_b0200 Bondy (10.1016/j.ins.2021.06.022_b0220) 1976 Wang (10.1016/j.ins.2021.06.022_b0130) 2020; 55 Hassan (10.1016/j.ins.2021.06.022_b0155) 2020; 513 Abdar (10.1016/j.ins.2021.06.022_b0030) 2019; 43 Vapnik (10.1016/j.ins.2021.06.022_b0235) 1998 Moody (10.1016/j.ins.2021.06.022_b0070) 2001; 20 Hammad (10.1016/j.ins.2021.06.022_b0035) 2020 Augustyniak (10.1016/j.ins.2021.06.022_b0045) 2009 Sumaiya Thaseen (10.1016/j.ins.2021.06.022_b0205) 2017; 29 Kaya (10.1016/j.ins.2021.06.022_b0225) 2018; 41 Moody (10.1016/j.ins.2021.06.022_b0095) 1983 Chen (10.1016/j.ins.2021.06.022_b0075) 2020; 57 Atal (10.1016/j.ins.2021.06.022_b0150) 2020; 196 Harary (10.1016/j.ins.2021.06.022_b0060) 1959; 101 Tuncer (10.1016/j.ins.2021.06.022_b0185) 2021; 565 Romdhane (10.1016/j.ins.2021.06.022_b0145) 2020; 123 El Maachi (10.1016/j.ins.2021.06.022_b0175) 2020; 143 Zheng (10.1016/j.ins.2021.06.022_b0210) 2020; 7 Pandey (10.1016/j.ins.2021.06.022_b0105) 2021; 44 Sharma (10.1016/j.ins.2021.06.022_b0115) 2020; 120 Goldberger (10.1016/j.ins.2021.06.022_b0090) 2000; 101 Cheung (10.1016/j.ins.2021.06.022_b0025) 2018; 34 Yildirim (10.1016/j.ins.2021.06.022_b0110) 2018; 96 Baim (10.1016/j.ins.2021.06.022_b0125) 1986; 7 10.1016/j.ins.2021.06.022_b0180 Qiu (10.1016/j.ins.2021.06.022_b0135) 2021; 11 |
References_xml | – volume: 63 year: 2021 ident: b0085 article-title: Automated atrial fibrillation detection using a Hybrid CNN-LSTM network on imbalanced ECG datasets publication-title: Biomed. Signal Process. Control – volume: 70 start-page: 1 year: 2020 end-page: 9 ident: b0140 article-title: A multitier deep learning model for arrhythmia detection publication-title: IEEE Trans. Instrum. Meas. – volume: 29 start-page: 462 year: 2017 end-page: 472 ident: b0205 article-title: Intrusion detection model using fusion of chi-square feature selection and multi class SVM publication-title: J. King Saud Univ. –Comput. Inf. Sci. – volume: 186 year: 2019 ident: b0080 article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals publication-title: Knowl.-Based Syst. – year: 2020 ident: b0035 article-title: ResNet-Attention model for human authentication using ECG signals publication-title: Expert Syst. – year: 2009 ident: b0240 article-title: Computational Complexity: A Modern Approach – start-page: 770 year: 2016 end-page: 778 ident: b0195 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 7 start-page: 1 year: 2020 end-page: 8 ident: b0210 article-title: A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients publication-title: Sci. Data – volume: 197 year: 2020 ident: b0245 article-title: Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records publication-title: Comput. Methods Programs Biomed. – volume: 101 start-page: 141 year: 1959 end-page: 162 ident: b0060 article-title: The number of homeomorphically irreducible trees, and other species publication-title: Acta Math. – volume: 25 start-page: 4571 year: 2021 end-page: 4595 ident: b0065 article-title: A novel technique for the detection of myocardial dysfunction using ECG signals based on hybrid signal processing and neural networks publication-title: Soft. Comput. – volume: 143 year: 2020 ident: b0175 article-title: Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait publication-title: Expert Syst. Appl. – volume: 57 year: 2020 ident: b0075 article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM publication-title: Biomed. Signal Process. Control – volume: 202 year: 2021 ident: b0100 article-title: Arrhythmia classification from single-lead ECG signals using the inter-patient paradigm publication-title: Comput. Methods Programs Biomed. – volume: 57 start-page: S70 year: 2019 end-page: S74 ident: b0055 article-title: Cardiac arrhythmia detection using deep learning: a review publication-title: J. Electrocardiol. – volume: 41 start-page: 721 year: 2018 end-page: 730 ident: b0225 article-title: A stable feature extraction method in classification epileptic EEG signals publication-title: Australas. Phys. Eng. Sci. Med. – volume: 55 year: 2020 ident: b0130 article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process publication-title: Biomed. Signal Process. Control – volume: 144 start-page: 471 year: 2014 end-page: 483 ident: b0050 article-title: An estimation of the state of consumption of a positive displacement pump based on dynamic pressure or vibrations using neural networks publication-title: Neurocomputing – start-page: 11 year: 2009 end-page: 71 ident: b0045 article-title: Background 1: ECG Interpretation publication-title: Ubiquitous Cardiology: Emerging Wireless Telemedical Applications – volume: 34 start-page: 1083 year: 2018 end-page: 1087 ident: b0025 article-title: The emerging role of wearable technologies in detection of arrhythmia publication-title: Can. J. Cardiol. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: b0190 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 59 start-page: 303 year: 2011 end-page: 306 ident: b0015 article-title: Physiological parameter monitoring from optical recordings with a mobile phone publication-title: IEEE Trans. Biomed. Eng. – volume: 44 start-page: 173 year: 2021 end-page: 182 ident: b0105 article-title: Automated detection of arrhythmia from electrocardiogram signal based on new convolutional encoded features with bidirectional long short-term memory network classifier publication-title: Phys. Eng. Sci. Med. – reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, (2014). – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b0090 article-title: PhysioBankPhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – reference: P. Rajpurkar, A.Y. Hannun, M. Haghpanahi, C. Bourn, A.Y. Ng, Cardiologist-level arrhythmia detection with convolutional neural networks, arXiv preprint arXiv:1707.01836, (2017). – volume: 120 year: 2020 ident: b0115 article-title: Automated pre-screening of arrhythmia using hybrid combination of Fourier-Bessel expansion and LSTM publication-title: Comput. Biol. Med. – volume: 17 start-page: 889 year: 2020 end-page: 895 ident: b0020 article-title: Wearables in cardiology: Here to stay publication-title: Heart Rhythm – volume: 96 start-page: 189 year: 2018 end-page: 202 ident: b0110 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Comput. Biol. Med. – volume: 10 year: 2020 ident: b0215 article-title: Optimal multi-stage arrhythmia classification approach publication-title: Sci. Rep. – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b0070 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. – volume: 43 start-page: 1 year: 2019 end-page: 23 ident: b0030 article-title: IAPSO-AIRS: a novel improved machine learning-based system for wart disease treatment publication-title: J. Med. Syst. – volume: 415 start-page: 190 year: 2017 end-page: 198 ident: b0165 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. – volume: 513 start-page: 386 year: 2020 end-page: 396 ident: b0155 article-title: A hybrid deep learning model for efficient intrusion detection in big data environment publication-title: Inf. Sci. – volume: 27 start-page: 169 year: 2007 ident: b0040 article-title: Analysis of human eye movements during the plot inspection as a tool of assessment of local informative value of the 12-lead ECG publication-title: Biocybern. Biomed. Eng. – start-page: 2452 year: 2012 end-page: 2455 ident: b0010 article-title: Real-time ECG monitoring and arrhythmia detection using Android-based mobile device publication-title: 2012 annual international conference of the IEEE engineering in medicine and biology society – start-page: 55 year: 1998 end-page: 85 ident: b0235 article-title: The support vector method of function estimation publication-title: Nonlinear Modeling – start-page: 82 year: 2020 end-page: 90 ident: b0170 article-title: Vine disease detection by deep learning method combined with 3D depth information publication-title: International Conference on Image and Signal Processing – volume: 535 start-page: 1 year: 2020 end-page: 15 ident: b0160 article-title: Malware-detection method with a convolutional recurrent neural network using opcode sequences publication-title: Inf. Sci. – volume: 65 year: 2021 ident: b0120 article-title: A new automated CNN deep learning approach for identification of ECG congestive heart failure and arrhythmia using constant-Q non-stationary Gabor transform publication-title: Biomed. Signal Process. Control – volume: 196 year: 2020 ident: b0150 article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network publication-title: Comput. Methods Programs Biomed. – volume: 565 start-page: 91 year: 2021 end-page: 104 ident: b0185 article-title: Application of Petersen graph pattern technique for automated detection of heart valve diseases with PCG signals publication-title: Inf. Sci. – volume: 144 year: 2021 ident: b0230 article-title: A new fractal pattern feature generation function based emotion recognition method using EEG publication-title: Chaos, Solitons Fractals – volume: 123 year: 2020 ident: b0145 article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss publication-title: Comput. Biol. Med. – volume: 7 start-page: 661 year: 1986 end-page: 670 ident: b0125 article-title: Survival of patients with severe congestive heart failure treated with oral milrinone publication-title: J. Am. Coll. Cardiol. – year: 1976 ident: b0220 article-title: Graph Theory with Applications – reference: S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, arXiv preprint arXiv:1710.09829, (2017). – volume: 11 start-page: 181 year: 2021 end-page: 193 ident: b0135 article-title: Exploiting feature fusion and long-term context dependencies for simultaneous ECG heartbeat segmentation and classification publication-title: Int. J. Data Sci. Anal. – start-page: 227 year: 1983 end-page: 230 ident: b0095 article-title: A new method for detecting atrial fibrillation using RR intervals publication-title: Comput. Cardiol. – volume: 25 start-page: 4571 issue: 6 year: 2021 ident: 10.1016/j.ins.2021.06.022_b0065 article-title: A novel technique for the detection of myocardial dysfunction using ECG signals based on hybrid signal processing and neural networks publication-title: Soft. Comput. doi: 10.1007/s00500-020-05465-8 – volume: 65 year: 2021 ident: 10.1016/j.ins.2021.06.022_b0120 article-title: A new automated CNN deep learning approach for identification of ECG congestive heart failure and arrhythmia using constant-Q non-stationary Gabor transform publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102326 – volume: 29 start-page: 462 issue: 4 year: 2017 ident: 10.1016/j.ins.2021.06.022_b0205 article-title: Intrusion detection model using fusion of chi-square feature selection and multi class SVM publication-title: J. King Saud Univ. –Comput. Inf. Sci. – volume: 43 start-page: 1 year: 2019 ident: 10.1016/j.ins.2021.06.022_b0030 article-title: IAPSO-AIRS: a novel improved machine learning-based system for wart disease treatment publication-title: J. Med. Syst. doi: 10.1007/s10916-019-1343-0 – volume: 415 start-page: 190 year: 2017 ident: 10.1016/j.ins.2021.06.022_b0165 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.06.027 – year: 2009 ident: 10.1016/j.ins.2021.06.022_b0240 – start-page: 55 year: 1998 ident: 10.1016/j.ins.2021.06.022_b0235 article-title: The support vector method of function estimation – start-page: 770 year: 2016 ident: 10.1016/j.ins.2021.06.022_b0195 article-title: Deep residual learning for image recognition – volume: 565 start-page: 91 year: 2021 ident: 10.1016/j.ins.2021.06.022_b0185 article-title: Application of Petersen graph pattern technique for automated detection of heart valve diseases with PCG signals publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.01.088 – volume: 57 start-page: S70 year: 2019 ident: 10.1016/j.ins.2021.06.022_b0055 article-title: Cardiac arrhythmia detection using deep learning: a review publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2019.08.004 – ident: 10.1016/j.ins.2021.06.022_b0200 – ident: 10.1016/j.ins.2021.06.022_b0005 – volume: 63 year: 2021 ident: 10.1016/j.ins.2021.06.022_b0085 article-title: Automated atrial fibrillation detection using a Hybrid CNN-LSTM network on imbalanced ECG datasets publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102194 – volume: 535 start-page: 1 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0160 article-title: Malware-detection method with a convolutional recurrent neural network using opcode sequences publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.05.026 – volume: 143 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0175 article-title: Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113075 – volume: 197 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0245 article-title: Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105740 – volume: 202 year: 2021 ident: 10.1016/j.ins.2021.06.022_b0100 article-title: Arrhythmia classification from single-lead ECG signals using the inter-patient paradigm publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.105948 – volume: 41 start-page: 721 issue: 3 year: 2018 ident: 10.1016/j.ins.2021.06.022_b0225 article-title: A stable feature extraction method in classification epileptic EEG signals publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-018-0669-0 – volume: 186 year: 2019 ident: 10.1016/j.ins.2021.06.022_b0080 article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.104923 – volume: 120 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0115 article-title: Automated pre-screening of arrhythmia using hybrid combination of Fourier-Bessel expansion and LSTM publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103753 – volume: 123 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0145 article-title: Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103866 – volume: 17 start-page: 889 issue: 5 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0020 article-title: Wearables in cardiology: Here to stay publication-title: Heart Rhythm doi: 10.1016/j.hrthm.2020.02.023 – volume: 101 start-page: e215 year: 2000 ident: 10.1016/j.ins.2021.06.022_b0090 article-title: PhysioBankPhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 144 start-page: 471 year: 2014 ident: 10.1016/j.ins.2021.06.022_b0050 article-title: An estimation of the state of consumption of a positive displacement pump based on dynamic pressure or vibrations using neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.04.026 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.ins.2021.06.022_b0190 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 227 year: 1983 ident: 10.1016/j.ins.2021.06.022_b0095 article-title: A new method for detecting atrial fibrillation using RR intervals publication-title: Comput. Cardiol. – volume: 144 year: 2021 ident: 10.1016/j.ins.2021.06.022_b0230 article-title: A new fractal pattern feature generation function based emotion recognition method using EEG publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2021.110671 – start-page: 82 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0170 article-title: Vine disease detection by deep learning method combined with 3D depth information – year: 2020 ident: 10.1016/j.ins.2021.06.022_b0035 article-title: ResNet-Attention model for human authentication using ECG signals publication-title: Expert Syst. – volume: 44 start-page: 173 issue: 1 year: 2021 ident: 10.1016/j.ins.2021.06.022_b0105 article-title: Automated detection of arrhythmia from electrocardiogram signal based on new convolutional encoded features with bidirectional long short-term memory network classifier publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00965-1 – volume: 34 start-page: 1083 year: 2018 ident: 10.1016/j.ins.2021.06.022_b0025 article-title: The emerging role of wearable technologies in detection of arrhythmia publication-title: Can. J. Cardiol. doi: 10.1016/j.cjca.2018.05.003 – ident: 10.1016/j.ins.2021.06.022_b0180 – volume: 55 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0130 article-title: Automated detection of atrial fibrillation in ECG signals based on wavelet packet transform and correlation function of random process publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101662 – volume: 7 start-page: 1 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0210 article-title: A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients publication-title: Sci. Data doi: 10.1038/s41597-020-0386-x – volume: 7 start-page: 661 issue: 3 year: 1986 ident: 10.1016/j.ins.2021.06.022_b0125 article-title: Survival of patients with severe congestive heart failure treated with oral milrinone publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(86)80478-8 – volume: 513 start-page: 386 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0155 article-title: A hybrid deep learning model for efficient intrusion detection in big data environment publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.10.069 – start-page: 2452 year: 2012 ident: 10.1016/j.ins.2021.06.022_b0010 article-title: Real-time ECG monitoring and arrhythmia detection using Android-based mobile device – volume: 27 start-page: 169 year: 2007 ident: 10.1016/j.ins.2021.06.022_b0040 article-title: Analysis of human eye movements during the plot inspection as a tool of assessment of local informative value of the 12-lead ECG publication-title: Biocybern. Biomed. Eng. – volume: 101 start-page: 141 year: 1959 ident: 10.1016/j.ins.2021.06.022_b0060 article-title: The number of homeomorphically irreducible trees, and other species publication-title: Acta Math. doi: 10.1007/BF02559543 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0215 article-title: Optimal multi-stage arrhythmia classification approach publication-title: Sci. Rep. – volume: 57 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0075 article-title: Automated arrhythmia classification based on a combination network of CNN and LSTM publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.101819 – volume: 59 start-page: 303 year: 2011 ident: 10.1016/j.ins.2021.06.022_b0015 article-title: Physiological parameter monitoring from optical recordings with a mobile phone publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2163157 – volume: 11 start-page: 181 issue: 3 year: 2021 ident: 10.1016/j.ins.2021.06.022_b0135 article-title: Exploiting feature fusion and long-term context dependencies for simultaneous ECG heartbeat segmentation and classification publication-title: Int. J. Data Sci. Anal. doi: 10.1007/s41060-020-00239-9 – start-page: 11 year: 2009 ident: 10.1016/j.ins.2021.06.022_b0045 article-title: Background 1: ECG Interpretation – volume: 70 start-page: 1 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0140 article-title: A multitier deep learning model for arrhythmia detection publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3033072 – volume: 196 year: 2020 ident: 10.1016/j.ins.2021.06.022_b0150 article-title: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105607 – year: 1976 ident: 10.1016/j.ins.2021.06.022_b0220 – volume: 96 start-page: 189 year: 2018 ident: 10.1016/j.ins.2021.06.022_b0110 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.016 – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.ins.2021.06.022_b0070 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 |
SSID | ssj0004766 |
Score | 2.5457194 |
Snippet | Arrhythmia constitute a common clinical problem in cardiology. The diagnosis is often made using electrocardiographic (ECG) signals but manual ECG... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 323 |
SubjectTerms | Automated arrhythmia detection Chi2 feature selection ECG Homeomorphically irreducible tree pattern Maximum absolute pooling |
Title | Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10,000 individual subject ECG records |
URI | https://dx.doi.org/10.1016/j.ins.2021.06.022 |
Volume | 575 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuKtGxADIuC4TpOMVQUUEEwgsUWx49CgNqlCOrCw8b-5S5wCEjCwRIplS8nd2ec7f_eZsUOpeRp7QcdJOr7nSIOPMEx9J069TqoSoqSi2uHbu-7gQV4_eo9zrN_WwhCs0q79zZper9a25cxK82ySZVTjK-odMQYt5JSoolxKn6z89O0T5oEt3QbmwR3q3Z5s1hivLCfGbuHWFJ5C_OybvvibixW2bDeK0Gu-ZZXNmXyNLX2hD1xj-7boAI7AVhWRlMFO13X23ptWBTaaBOKyHL5Ww3EWQ2KqGn6VA-VgYViMTTEuUNykrtErZGVJdK6ZGhmgI2uY0bwCgeSfgKC5QBl3cPkJ_jtks6IueJkqSuzAef8SmvzPywZ7uDi_7w8ce-2Co4XwKwcDiDDQCSpJaO2pUAqh09hgZJVqV4W-ll0MotzYcxWPjeRacmWSALuhOYTG7Wyy-bzIzRaDBPVuVDfhSmqZBl6A0bifSi6Vio0r_W3GW4FH2nKS09UYo6gFnz1HqKOIdBQRAE-IbXY8GzJpCDn-6ixbLUbfrCpCh_H7sJ3_Ddtli_TWQP322HxVTs0-blkqdVDb5AFb6F3dDO4-AFdx7SY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCAqohT7mUDggQhOvs0kOHKo-2D5PrdRbiB2HDdpNqmxWaC_c-ov6BzuTONsilR6QesnBsSPbM5mXvxkDbErtZokf9py0F_iONPSIoixwkszvZSrlklScO3xy2h-cy8ML_2IBrrtcGIZVWtnfyvRGWtuWLbubW5d5zjm-orGIyWlhpRRYZOWRmf0mv23y7WCXiPxRiP29s52BY68WcLQQQe2QkRyFOqWJCK19FUkhdJYY8h4y7ako0LJPjoKX-J5yEyNdLV1l0pC60ZIj4_Xou0_gqSRxwdcmfP1ziyuRQXtAyn4ZT687Sm1AZXnBJcKF19QMFeJ-ZXhHwe2_gpfWMsXtdvGvYcEUS_DiTr3CJVizWQ74CW0aE5MVrXx4A1fb07qkRpNiUlXDWT0c5wmmpm7wXgVy0BeH5diU45Loy_wxmmFeVVw_Nlcjg3xGjvO6ssio_J_IWGDkED967hdaO-bzLDKcTBVHknBv5zu2AafJWzh_FGK8g8WiLMwyYEqMZlQ_dZXUMgv9kNz_IJOuVCoxngxWwO02PNa2CDrfxTGKO7Tbr5hoFDONYkb8CbECn-dDLtsKIA91lh0V47_YOCYN9e9h7_9v2AY8G5ydHMfHB6dHH-A5v2lxhquwWFdTs0b2Uq3WG_5E-PHYP8QNSaQpMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+arrhythmia+detection+with+homeomorphically+irreducible+tree+technique+using+more+than+10%2C000+individual+subject+ECG+records&rft.jtitle=Information+sciences&rft.au=Baygin%2C+Mehmet&rft.au=Tuncer%2C+Turker&rft.au=Dogan%2C+Sengul&rft.au=Tan%2C+Ru-San&rft.date=2021-10-01&rft.issn=0020-0255&rft.volume=575&rft.spage=323&rft.epage=337&rft_id=info:doi/10.1016%2Fj.ins.2021.06.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_06_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |