Distributionally robust optimization for the closed‐loop supply chain design under uncertainty

The closed‐loop supply chain network (CLSCN) contains reverse flows that collect products from customers and recycle or remanufacture usable parts. The CLSCN design problem is becoming more and more prominent under the context of Sustainable Development and Circular Economy. Parameters associated wi...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 68; no. 12
Main Authors Ge, Congqin, Zhang, Lifeng, Yuan, Zhihong
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2022
American Institute of Chemical Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The closed‐loop supply chain network (CLSCN) contains reverse flows that collect products from customers and recycle or remanufacture usable parts. The CLSCN design problem is becoming more and more prominent under the context of Sustainable Development and Circular Economy. Parameters associated with a CLSCN including customer demands, transportation costs, or disposal rates are usually subject to uncertainty. Furthermore, natural or man‐made disruptions may cause part of the CLSCN to malfunction. We herein propose a hybrid stochastic and distributionally robust optimization (DRO) approach to hedge against discrete disruption scenarios and uncertain customer demands. We also tailor a Benders decomposition‐based algorithm to efficiently solve the resulting large‐scale mixed integer linear programming reformulations. Computational experiments demonstrate that the proposed algorithm can outperform commercial solvers such as CPLEX, and the DRO approach can produce solutions with low average costs and low variance in out‐of‐sample tests.
AbstractList The closed‐loop supply chain network (CLSCN) contains reverse flows that collect products from customers and recycle or remanufacture usable parts. The CLSCN design problem is becoming more and more prominent under the context of Sustainable Development and Circular Economy. Parameters associated with a CLSCN including customer demands, transportation costs, or disposal rates are usually subject to uncertainty. Furthermore, natural or man‐made disruptions may cause part of the CLSCN to malfunction. We herein propose a hybrid stochastic and distributionally robust optimization (DRO) approach to hedge against discrete disruption scenarios and uncertain customer demands. We also tailor a Benders decomposition‐based algorithm to efficiently solve the resulting large‐scale mixed integer linear programming reformulations. Computational experiments demonstrate that the proposed algorithm can outperform commercial solvers such as CPLEX, and the DRO approach can produce solutions with low average costs and low variance in out‐of‐sample tests.
Author Yuan, Zhihong
Zhang, Lifeng
Ge, Congqin
Author_xml – sequence: 1
  givenname: Congqin
  orcidid: 0000-0002-7045-8581
  surname: Ge
  fullname: Ge, Congqin
  organization: Tsinghua University
– sequence: 2
  givenname: Lifeng
  surname: Zhang
  fullname: Zhang, Lifeng
  organization: Tsinghua University
– sequence: 3
  givenname: Zhihong
  orcidid: 0000-0002-4680-8203
  surname: Yuan
  fullname: Yuan, Zhihong
  email: zhihongyuan@mail.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNp9kE1OwzAQhS1UJNrCghtYYsUire3ESb2syl-lSmxgbRL_UFdpHGxHKF1xBM7ISXBbVkiwmBnN03sjzTcCg8Y2CoBLjCYYITItjZjggiF2AoaYZkVCGaIDMEQI4SQK-AyMvN_EjRQzMgQvN8YHZ6ouGNuUdd1DZ6vOB2jbYLZmV-51qK2DYa2gqK1X8uvjs7a2hb5r2xgQ69I0UCpvXhvYNVK52IVyIcqhPwenuqy9uviZY_B8d_u0eEhWj_fLxXyVCEIKlmiNZ6kikuWMUiKpokLkhaaVIipHEiEt0zzVOVOMVJJkM4qFELEQiVtWpGNwdbzbOvvWKR_4xnYuvuQ5KdJIIktJHl3XR5dw1nunNG-d2Zau5xjxPUAeAfIDwOid_vIKEw48gitN_V_i3dSq__s0ny8Xx8Q3GNKGnQ
CitedBy_id crossref_primary_10_1080_23302674_2024_2401033
crossref_primary_10_1002_aic_18177
crossref_primary_10_1002_aic_18156
crossref_primary_10_1016_j_cor_2024_106803
Cites_doi 10.1007/s10107-017-1172-1
10.1287/opre.1030.0065
10.1016/j.orl.2020.06.003
10.1177/0269094215578226
10.1016/j.ejor.2005.05.032
10.1016/j.compchemeng.2017.12.002
10.1007/s00521-018-3847-9
10.1016/j.tre.2022.102751
10.1007/s10479-011-0974-4
10.1007/s10107-015-0896-z
10.1016/j.ejor.2018.09.041
10.1002/aic.17329
10.1016/j.ejor.2015.08.028
10.1007/BF01386316
10.1016/j.cie.2016.12.022
10.1137/0117061
10.1016/j.orl.2008.01.005
10.1016/j.tre.2019.04.005
10.1287/mnsc.23.7.728
10.1137/17M1115046
10.1016/j.compchemeng.2015.12.015
10.1016/j.accre.2021.03.004
10.1016/j.jclepro.2021.129101
10.1007/s10479-015-1983-5
10.1016/j.apenergy.2020.115005
10.1016/j.ijpe.2010.07.020
10.1016/j.compchemeng.2008.05.004
10.1016/j.ejor.2014.07.012
10.1016/j.ejor.2009.05.022
10.1016/j.apm.2010.07.013
10.1016/j.ejor.2016.12.005
10.1177/0954405415578723
10.23919/ACC.2018.8431001
10.1016/j.ejor.2017.04.009
10.1016/j.spc.2021.12.003
10.1007/s10479-012-1237-8
10.1016/j.spc.2020.09.019
10.1016/j.compchemeng.2021.107307
10.1021/ie200150p
10.1080/13675569908901575
10.1016/j.jclepro.2014.07.052
10.1287/opre.29.3.464
10.1016/j.ejor.2009.06.011
10.1080/00207543.2011.625051
10.1016/j.ejor.2012.10.051
ContentType Journal Article
Copyright 2022 American Institute of Chemical Engineers.
2022 American Institute of Chemical Engineers
Copyright_xml – notice: 2022 American Institute of Chemical Engineers.
– notice: 2022 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.17909
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage n/a
ExternalDocumentID 10_1002_aic_17909
AIC17909
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2021YFB4000502
– fundername: National Natural Science Foundation of China
  funderid: 21978150
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABJIA
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7ST
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
L7M
SOI
ID FETCH-LOGICAL-c2279-ff183e2d969552d5e5cc67f5be2e60d00fd363f69e92bd24851ccc1cc02d24473
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Jul 25 19:44:57 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Tue Jul 01 01:46:55 EDT 2025
Wed Jan 22 16:23:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2279-ff183e2d969552d5e5cc67f5be2e60d00fd363f69e92bd24851ccc1cc02d24473
Notes Funding information
Ministry of Science and Technology of the People's Republic of China, Grant/Award Number: 2021YFB4000502; National Natural Science Foundation of China, Grant/Award Number: 21978150
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7045-8581
0000-0002-4680-8203
PQID 2735474326
PQPubID 7879
PageCount 15
ParticipantIDs proquest_journals_2735474326
crossref_primary_10_1002_aic_17909
crossref_citationtrail_10_1002_aic_17909
wiley_primary_10_1002_aic_17909_AIC17909
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle AIChE journal
PublicationYear 2022
Publisher John Wiley & Sons, Inc
American Institute of Chemical Engineers
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Institute of Chemical Engineers
References 23
2021; 26
2018; 28
2021; 67
2015; 105
2010; 128
2021; 323
2010; 202
2013; 226
2010; 203
2015; 30
2021; 149
1962; 4
2015; 10
2019; 126
2008; 36
2008; 32
2011; 35
2016; 249
1981; 29
2004
1999; 2
2020; 32
1969; 17
2017; 113
2017; 259
2012; 50
2015; 151
2004; 52
2007; 179
2018; 110
2018; 171
2022; 163
2021; 12
2015; 235
240
2020; 271
2015; 230
2011; 50
2013; 210
2016; 86
2018
2020; 48
2022; 30
2017; 263
2019; 274
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
RajKumar N (e_1_2_9_16_1) 2015; 10
Simchi‐Levi D (e_1_2_9_4_1) 2004
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 210
  start-page: 191
  year: 2013
  end-page: 211
  article-title: Multicut Benders decomposition algorithm for process supply chain planning under uncertainty
  publication-title: Ann Oper Res
– volume: 128
  start-page: 200
  year: 2010
  end-page: 208
  article-title: Optimal supply chain network design and redesign at minimal total cost and with demand satisfaction
  publication-title: Int J Prod Econ
– volume: 67
  year: 2021
  article-title: Multistage distributionally robust optimization for integrated production and maintenance scheduling
  publication-title: AIChE J
– volume: 32
  start-page: 3090
  year: 2008
  end-page: 3111
  article-title: Design of responsive supply chains under demand uncertainty
  publication-title: Comput Chem Eng
– volume: 151
  start-page: 35
  year: 2015
  end-page: 62
  article-title: A distributionally robust perspective on uncertainty quantification and chance constrained programming
  publication-title: Math Program
– volume: 26
  start-page: 411
  year: 2021
  end-page: 427
  article-title: Improving supply chain sustainability in the context of COVID‐19 pandemic in an emerging economy: exploring drivers using an integrated model
  publication-title: Sustain Prod Consum
– volume: 271
  year: 2020
  article-title: A machine learning and distributionally robust optimization framework for strategic energy planning under uncertainty
  publication-title: Appl Energy
– volume: 110
  start-page: 53
  year: 2018
  end-page: 68
  article-title: Distributionally robust optimization for planning and scheduling under uncertainty
  publication-title: Comput Chem Eng
– volume: 240
  start-page: 603
  end-page: 626
  article-title: Reverse logistics and closed‐loop supply chain: a comprehensive review to explore the future
  publication-title: Eur J Oper Res
– volume: 202
  start-page: 420
  year: 2010
  end-page: 433
  article-title: The impact of two‐product joint lifecycles on capacity planning of remanufacturing networks
  publication-title: Eur J Oper Res
– volume: 163
  year: 2022
  article-title: Data‐driven Wasserstein distributionally robust mitigation and recovery against random supply chain disruption
  publication-title: Transp Res E: Logist Transp Rev
– volume: 203
  start-page: 283
  year: 2010
  end-page: 293
  article-title: The design of robust value‐creating supply chain networks: a critical review
  publication-title: Eur J Oper Res
– volume: 274
  start-page: 91
  year: 2019
  end-page: 107
  article-title: On risk management of a two‐stage stochastic mixed 0–1 model for the closed‐loop supply chain design problem
  publication-title: Eur J Oper Res
– volume: 52
  start-page: 35
  year: 2004
  end-page: 53
  article-title: The price of robustness
  publication-title: Oper Res
– volume: 2
  start-page: 103
  year: 1999
  end-page: 104
  article-title: Logistics and supply chain management: strategies for reducing cost and improving service (second edition)
  publication-title: Int J Logist Res Appl
– volume: 263
  start-page: 108
  year: 2017
  end-page: 141
  article-title: Supply chain network design under uncertainty: a comprehensive review and future research directions
  publication-title: Eur J Oper Res
– volume: 4
  start-page: 238
  year: 1962
  end-page: 252
  article-title: Partitioning procedures for solving mixed‐variables programming problems
  publication-title: Numer Math
– volume: 171
  start-page: 115
  year: 2018
  end-page: 166
  article-title: Data‐driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations
  publication-title: Math Program
– volume: 226
  start-page: 185
  year: 2013
  end-page: 202
  article-title: An improved Benders decomposition algorithm for the tree of hubs location problem
  publication-title: Eur J Oper Res
– volume: 50
  start-page: 4649
  year: 2012
  end-page: 4669
  article-title: Robust closed‐loop supply chain network design for perishable goods in agile manufacturing under uncertainty
  publication-title: Int J Prod Res
– volume: 48
  start-page: 513
  year: 2020
  end-page: 523
  article-title: Tractable reformulations of two‐stage distributionally robust linear programs over the type‐∞ Wasserstein ball
  publication-title: Oper Res Lett
– volume: 32
  start-page: 3967
  year: 2020
  end-page: 3985
  article-title: A closed‐loop supply chain robust optimization for disposable appliances
  publication-title: Neural Comput Applic
– volume: 23
  start-page: 728
  end-page: 736
  article-title: Horizon effects in aggregate production planning with seasonal demand
  publication-title: Manage Sci
– volume: 230
  start-page: 1910
  year: 2015
  end-page: 1924
  article-title: Simultaneous optimization of operational and financial decisions to closed‐loop supply chain network under uncertainty
  publication-title: Proc Inst Mech Eng B J Eng Manuf
– start-page: 180
  year: 2018
  end-page: 187
– volume: 179
  start-page: 1063
  year: 2007
  end-page: 1077
  article-title: An optimization model for the design of a capacitated multi‐product reverse logistics network with uncertainty
  publication-title: Eur J Oper Res
– volume: 126
  start-page: 190
  year: 2019
  end-page: 211
  article-title: Distributionally robust inventory routing problem to maximize the service level under limited budget
  publication-title: Transp Res E: Logist Transp Rev
– volume: 28
  start-page: 2360
  year: 2018
  end-page: 2383
  article-title: Decomposition algorithms for two‐stage distributionally robust mixed binary programs
  publication-title: SIAM J Optim
– volume: 30
  start-page: 305
  year: 2015
  end-page: 315
  article-title: The circular economy, design thinking and education for sustainability
  publication-title: Local Econ
– volume: 323
  year: 2021
  article-title: Closed‐loop supply chain design for the transition towards a circular economy: a systematic literature review of methods, applications and current gaps
  publication-title: J Clean Prod
– volume: 149
  year: 2021
  article-title: Two‐stage distributionally robust optimization for maritime inventory routing
  publication-title: Comput Chem Eng
– volume: 86
  start-page: 90
  year: 2016
  end-page: 105
  article-title: Risk‐based integrated production scheduling and electricity procurement for continuous power‐intensive processes
  publication-title: Comput Chem Eng
– volume: 249
  start-page: 76
  year: 2016
  end-page: 92
  article-title: Hybrid robust and stochastic optimization for closed‐loop supply chain network design using accelerated Benders decomposition
  publication-title: Eur J Oper Res
– year: 2004
– volume: 17
  start-page: 638
  year: 1969
  end-page: 663
  article-title: L‐shaped linear programs with applications to optimal control and stochastic programming
  publication-title: SIAM J Appl Math
– volume: 12
  start-page: 281
  year: 2021
  end-page: 286
  article-title: Achieving Paris agreement temperature goals requires carbon neutrality by middle century with far‐reaching transitions in the whole society
  publication-title: Adv Clim Change Res
– volume: 105
  start-page: 14
  year: 2015
  end-page: 27
  article-title: Towards supply chain sustainability: economic, environmental and social design and planning
  publication-title: J Clean Prod
– volume: 113
  start-page: 727
  year: 2017
  end-page: 745
  article-title: A closed‐loop supply chain network design for automotive industry in Turkey
  publication-title: Comput Ind Eng
– volume: 259
  start-page: 801
  year: 2017
  end-page: 817
  article-title: The Benders decomposition algorithm: a literature review
  publication-title: Eur J Oper Res
– volume: 35
  start-page: 637
  year: 2011
  end-page: 649
  article-title: A robust optimization approach to closed‐loop supply chain network design under uncertainty
  publication-title: App Math Model
– volume: 30
  start-page: 278
  year: 2022
  end-page: 300
  article-title: Sustainable, resilient and responsive mixed supply chain network design under hybrid uncertainty with considering COVID‐19 pandemic disruption
  publication-title: Sustain Prod Consum
– volume: 235
  start-page: 337
  year: 2015
  end-page: 369
  article-title: Acceleration strategies of Benders decomposition for the security constraints power system expansion planning
  publication-title: Ann Oper Res
– volume: 10
  start-page: 3694
  year: 2015
  end-page: 3699
  article-title: Automotive closed loop supply chain with uncertainty
  publication-title: Int J Appl Eng Res
– volume: 50
  start-page: 10567
  year: 2011
  end-page: 10603
  article-title: A comparative theoretical and computational study on robust counterpart optimization: I. robust linear optimization and robust mixed integer linear optimization
  publication-title: Ind Eng Chem Res
– volume: 29
  start-page: 464
  year: 1981
  end-page: 484
  article-title: Accelerating Benders decomposition: algorithmic enhancement and model selection criteria
  publication-title: Oper Res
– volume: 210
  start-page: 101
  year: 2013
  end-page: 123
  article-title: Speed‐up Benders decomposition using maximum density cut (MDC) generation
  publication-title: Ann Oper Res
– volume: 36
  start-page: 444
  year: 2008
  end-page: 449
  article-title: Practical enhancements to the Magnanti‐Wong method
  publication-title: Oper Res Lett
– ident: e_1_2_9_30_1
  doi: 10.1007/s10107-017-1172-1
– ident: e_1_2_9_38_1
  doi: 10.1287/opre.1030.0065
– ident: e_1_2_9_41_1
  doi: 10.1016/j.orl.2020.06.003
– ident: e_1_2_9_7_1
  doi: 10.1177/0269094215578226
– ident: e_1_2_9_19_1
  doi: 10.1016/j.ejor.2005.05.032
– ident: e_1_2_9_27_1
  doi: 10.1016/j.compchemeng.2017.12.002
– ident: e_1_2_9_36_1
  doi: 10.1007/s00521-018-3847-9
– ident: e_1_2_9_47_1
  doi: 10.1016/j.tre.2022.102751
– ident: e_1_2_9_33_1
  doi: 10.1007/s10479-011-0974-4
– ident: e_1_2_9_39_1
  doi: 10.1007/s10107-015-0896-z
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ejor.2018.09.041
– volume: 10
  start-page: 3694
  year: 2015
  ident: e_1_2_9_16_1
  article-title: Automotive closed loop supply chain with uncertainty
  publication-title: Int J Appl Eng Res
– ident: e_1_2_9_29_1
  doi: 10.1002/aic.17329
– ident: e_1_2_9_23_1
  doi: 10.1016/j.ejor.2015.08.028
– ident: e_1_2_9_43_1
  doi: 10.1007/BF01386316
– ident: e_1_2_9_15_1
  doi: 10.1016/j.cie.2016.12.022
– ident: e_1_2_9_42_1
  doi: 10.1137/0117061
– ident: e_1_2_9_46_1
  doi: 10.1016/j.orl.2008.01.005
– ident: e_1_2_9_28_1
  doi: 10.1016/j.tre.2019.04.005
– ident: e_1_2_9_37_1
  doi: 10.1287/mnsc.23.7.728
– ident: e_1_2_9_40_1
  doi: 10.1137/17M1115046
– ident: e_1_2_9_45_1
  doi: 10.1016/j.compchemeng.2015.12.015
– ident: e_1_2_9_9_1
  doi: 10.1016/j.accre.2021.03.004
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jclepro.2021.129101
– ident: e_1_2_9_35_1
  doi: 10.1007/s10479-015-1983-5
– ident: e_1_2_9_25_1
  doi: 10.1016/j.apenergy.2020.115005
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ijpe.2010.07.020
– ident: e_1_2_9_20_1
  doi: 10.1016/j.compchemeng.2008.05.004
– volume-title: Managing the Supply Chain: Definitive Guide
  year: 2004
  ident: e_1_2_9_4_1
– ident: e_1_2_9_10_1
  doi: 10.1016/j.ejor.2014.07.012
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ejor.2009.05.022
– ident: e_1_2_9_21_1
  doi: 10.1016/j.apm.2010.07.013
– ident: e_1_2_9_44_1
  doi: 10.1016/j.ejor.2016.12.005
– ident: e_1_2_9_14_1
  doi: 10.1177/0954405415578723
– ident: e_1_2_9_24_1
  doi: 10.23919/ACC.2018.8431001
– ident: e_1_2_9_6_1
  doi: 10.1016/j.ejor.2017.04.009
– ident: e_1_2_9_11_1
  doi: 10.1016/j.spc.2021.12.003
– ident: e_1_2_9_34_1
  doi: 10.1007/s10479-012-1237-8
– ident: e_1_2_9_18_1
  doi: 10.1016/j.spc.2020.09.019
– ident: e_1_2_9_26_1
  doi: 10.1016/j.compchemeng.2021.107307
– ident: e_1_2_9_48_1
  doi: 10.1021/ie200150p
– ident: e_1_2_9_2_1
  doi: 10.1080/13675569908901575
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jclepro.2014.07.052
– ident: e_1_2_9_32_1
  doi: 10.1287/opre.29.3.464
– ident: e_1_2_9_5_1
  doi: 10.1016/j.ejor.2009.06.011
– ident: e_1_2_9_22_1
  doi: 10.1080/00207543.2011.625051
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ejor.2012.10.051
SSID ssj0012782
Score 2.4285762
Snippet The closed‐loop supply chain network (CLSCN) contains reverse flows that collect products from customers and recycle or remanufacture usable parts. The CLSCN...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Benders decomposition
Circular economy
closed‐loop supply chain
Computer applications
Customers
distributionally robust optimization
Integer programming
Linear programming
Mixed integer
Operating costs
Optimization
Reversed flow
Robustness
stochastic programming
Supply chains
Sustainable development
Uncertainty
Title Distributionally robust optimization for the closed‐loop supply chain design under uncertainty
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.17909
https://www.proquest.com/docview/2735474326
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JT4NAFMcnRi96cDcu1UyMBy9UGDpDiafGJdVYDy6JBxNkFqIRS1PooZ78CH5GP4nvsbTVaGI8QCAZBpj1P_De7xGyJ1XoOdxoSza5tNCO0JK-Iy2uhSMUGrUp_KPbuRTt28b5Hb-bIoeVL0zBhxh9cMOekY_X2MFDmR6MoaHhk6ojXgqd99BWCwXR1Qgd5TCvWZDCYbkMMsGpqEI2Oxhd-XUuGgvMSZmazzOnC-S-esLCvOS5PshkXb1-gzf-8xUWyXypP2mraDBLZMp0l8ncBJVwhTwcI0y3jIMVxvGQ9hM5SDOawPDyUvptUhC7FMQjVXGSGv3x9h4nSY-mGCR0SNVj-NSlOrcOoeim1oe9KqwPsuEquT09uTlqW2UgBkshYNCKIuj4hmlf-JwzzQ1XSngRl4YZYWvbjrQr3Ej4xmdSIyTNUUrBZjM4a3juGpnuJl2zTmjTC23XFdIDXdJA-h3zQulAzmEUKVhcbpD9qkoCVVLKMVhGHBR8ZRZAoQV5oW2Q3VHSXoHm-ClRrarXoOydaQCSjTdAOjEBt8sr6PcMgtbZUX6w-fekW2SWoZdEbvVSI9NZf2C2QbtkcofMtI47F9c7eWP9BPOC7do
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LTtwwFIaPKF20LOgVAaWthUBik5nEGTuTRReIKZopl0UFErsQXyIQYYImGaFh1Ufog_RVeAmepOfkMkBVJDYsWCRKJMtJ7GP7t3P8HYA1pePAE9Y4qiuUQ36Ejgo95QgjPanJqU3TH929fdk_7Pw4Ekcz8KfZC1PxIaYLbtQyyv6aGjgtSLdvqaHxqW4RXyqsXSp37OQSJ2z5t0EPa3ed8-3vB1t9p44p4Ghi5TlJgjZsuQllKAQ3wgqtZZAIZbmVrnHdxPjST2RoQ64M8b48rTUeLse7TuBjvi_gJUUQJ1J_7-cUVuXxoFuxyXGCjsLEazhGLm9PX_X-6Hcrae8K43Jk234D102ZVA4tZ61xoVr66h9c5HMptLcwX0tstlm1iXcwY4fvYe4OePEDHPeIF1yH-orTdMJGmRrnBcuwBz2vt6Yy1PMM9THTaZZbc_Prd5plFyynOKgTpk_i0yEzpQMMo514IzzrysGimHyEwyf5xAWYHWZDuwisG8Su70sVoPTqEOCPB7HyMOc4STTOn5dgo7GBSNcgdooHkkYVQppHWElRWUlLsDpNelHRR_6XaKUxpKjugPIIVanooDrkEh9XWsTDGUSbg63yYvnxSb_Cq_7B3m60O9jf-QSvOW0KKZ18VmC2GI3tZ5RqhfpSthAGx09tXX8BahlKQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LSuRAFIYPXkB04agz4t1CHJhN2qSSqnQWsxDbxvaGyAjuYuoSFGOn6aQZelY-wrzHvMo8xTyJp3JpLzjgxoWLhASKSlJ1qvJXcs53ALaFjHyHaWWJJhOW8SO0ROAIiynucGmc2qT5o3tyyg8uvMNLdjkGf-pYmJIPMfrgZkZGMV-bAd5T8c4jNDS6kQ2Dlwoqj8ojPfyJ67Xse6eFnfuV0vb-j70Dq0opYEmDyrPiGE1YUxXwgDGqmGZScj9mQlPNbWXbsXK5G_NAB1Qog_typJS42RTPPN_Fesdh0uN2YPJEtM5HrCqH-s0STY7rc9QlTo0xsunO6Fafv_weFe1TXVy82Nqf4G_dJKU_y21jkIuG_PWCFvlB2mwOZiuBTXbLETEPY7q7ADNPsIuf4aplaMFVoq8oSYakn4pBlpMU58-7KjCVoJonqI6JTNJMq3_3v5M07ZHMZEEdEnkd3XSJKtxfiInD6-Nelu4V-fALXLzLIy7CRDft6iUgTT-yXZcLH4WXZ_B-1I-EgzVHcSxx9bwM32oTCGWFYTfZQJKwBEjTEDspLDppGbZGRXsle-S1Qmu1HYXV9JOFqEmZh9qQcrxcYRD_ryDc7ewVBytvL7oJU2etdnjcOT1ahWlqIkIKD581mMj7A72OOi0XG8X4IHD13sb1AC0ISPI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributionally+robust+optimization+for+the+closed%E2%80%90loop+supply+chain+design+under+uncertainty&rft.jtitle=AIChE+journal&rft.au=Ge%2C+Congqin&rft.au=Zhang%2C+Lifeng&rft.au=Yuan%2C+Zhihong&rft.date=2022-12-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=68&rft.issue=12&rft_id=info:doi/10.1002%2Faic.17909&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon