Distributionally robust optimization for the closed‐loop supply chain design under uncertainty
The closed‐loop supply chain network (CLSCN) contains reverse flows that collect products from customers and recycle or remanufacture usable parts. The CLSCN design problem is becoming more and more prominent under the context of Sustainable Development and Circular Economy. Parameters associated wi...
Saved in:
Published in | AIChE journal Vol. 68; no. 12 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2022
American Institute of Chemical Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The closed‐loop supply chain network (CLSCN) contains reverse flows that collect products from customers and recycle or remanufacture usable parts. The CLSCN design problem is becoming more and more prominent under the context of Sustainable Development and Circular Economy. Parameters associated with a CLSCN including customer demands, transportation costs, or disposal rates are usually subject to uncertainty. Furthermore, natural or man‐made disruptions may cause part of the CLSCN to malfunction. We herein propose a hybrid stochastic and distributionally robust optimization (DRO) approach to hedge against discrete disruption scenarios and uncertain customer demands. We also tailor a Benders decomposition‐based algorithm to efficiently solve the resulting large‐scale mixed integer linear programming reformulations. Computational experiments demonstrate that the proposed algorithm can outperform commercial solvers such as CPLEX, and the DRO approach can produce solutions with low average costs and low variance in out‐of‐sample tests. |
---|---|
AbstractList | The closed‐loop supply chain network (CLSCN) contains reverse flows that collect products from customers and recycle or remanufacture usable parts. The CLSCN design problem is becoming more and more prominent under the context of Sustainable Development and Circular Economy. Parameters associated with a CLSCN including customer demands, transportation costs, or disposal rates are usually subject to uncertainty. Furthermore, natural or man‐made disruptions may cause part of the CLSCN to malfunction. We herein propose a hybrid stochastic and distributionally robust optimization (DRO) approach to hedge against discrete disruption scenarios and uncertain customer demands. We also tailor a Benders decomposition‐based algorithm to efficiently solve the resulting large‐scale mixed integer linear programming reformulations. Computational experiments demonstrate that the proposed algorithm can outperform commercial solvers such as CPLEX, and the DRO approach can produce solutions with low average costs and low variance in out‐of‐sample tests. |
Author | Yuan, Zhihong Zhang, Lifeng Ge, Congqin |
Author_xml | – sequence: 1 givenname: Congqin orcidid: 0000-0002-7045-8581 surname: Ge fullname: Ge, Congqin organization: Tsinghua University – sequence: 2 givenname: Lifeng surname: Zhang fullname: Zhang, Lifeng organization: Tsinghua University – sequence: 3 givenname: Zhihong orcidid: 0000-0002-4680-8203 surname: Yuan fullname: Yuan, Zhihong email: zhihongyuan@mail.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNp9kE1OwzAQhS1UJNrCghtYYsUire3ESb2syl-lSmxgbRL_UFdpHGxHKF1xBM7ISXBbVkiwmBnN03sjzTcCg8Y2CoBLjCYYITItjZjggiF2AoaYZkVCGaIDMEQI4SQK-AyMvN_EjRQzMgQvN8YHZ6ouGNuUdd1DZ6vOB2jbYLZmV-51qK2DYa2gqK1X8uvjs7a2hb5r2xgQ69I0UCpvXhvYNVK52IVyIcqhPwenuqy9uviZY_B8d_u0eEhWj_fLxXyVCEIKlmiNZ6kikuWMUiKpokLkhaaVIipHEiEt0zzVOVOMVJJkM4qFELEQiVtWpGNwdbzbOvvWKR_4xnYuvuQ5KdJIIktJHl3XR5dw1nunNG-d2Zau5xjxPUAeAfIDwOid_vIKEw48gitN_V_i3dSq__s0ny8Xx8Q3GNKGnQ |
CitedBy_id | crossref_primary_10_1080_23302674_2024_2401033 crossref_primary_10_1002_aic_18177 crossref_primary_10_1002_aic_18156 crossref_primary_10_1016_j_cor_2024_106803 |
Cites_doi | 10.1007/s10107-017-1172-1 10.1287/opre.1030.0065 10.1016/j.orl.2020.06.003 10.1177/0269094215578226 10.1016/j.ejor.2005.05.032 10.1016/j.compchemeng.2017.12.002 10.1007/s00521-018-3847-9 10.1016/j.tre.2022.102751 10.1007/s10479-011-0974-4 10.1007/s10107-015-0896-z 10.1016/j.ejor.2018.09.041 10.1002/aic.17329 10.1016/j.ejor.2015.08.028 10.1007/BF01386316 10.1016/j.cie.2016.12.022 10.1137/0117061 10.1016/j.orl.2008.01.005 10.1016/j.tre.2019.04.005 10.1287/mnsc.23.7.728 10.1137/17M1115046 10.1016/j.compchemeng.2015.12.015 10.1016/j.accre.2021.03.004 10.1016/j.jclepro.2021.129101 10.1007/s10479-015-1983-5 10.1016/j.apenergy.2020.115005 10.1016/j.ijpe.2010.07.020 10.1016/j.compchemeng.2008.05.004 10.1016/j.ejor.2014.07.012 10.1016/j.ejor.2009.05.022 10.1016/j.apm.2010.07.013 10.1016/j.ejor.2016.12.005 10.1177/0954405415578723 10.23919/ACC.2018.8431001 10.1016/j.ejor.2017.04.009 10.1016/j.spc.2021.12.003 10.1007/s10479-012-1237-8 10.1016/j.spc.2020.09.019 10.1016/j.compchemeng.2021.107307 10.1021/ie200150p 10.1080/13675569908901575 10.1016/j.jclepro.2014.07.052 10.1287/opre.29.3.464 10.1016/j.ejor.2009.06.011 10.1080/00207543.2011.625051 10.1016/j.ejor.2012.10.051 |
ContentType | Journal Article |
Copyright | 2022 American Institute of Chemical Engineers. 2022 American Institute of Chemical Engineers |
Copyright_xml | – notice: 2022 American Institute of Chemical Engineers. – notice: 2022 American Institute of Chemical Engineers |
DBID | AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
DOI | 10.1002/aic.17909 |
DatabaseName | CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1547-5905 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aic_17909 AIC17909 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2021YFB4000502 – fundername: National Natural Science Foundation of China funderid: 21978150 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAHQN AAIHA AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABJIA ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7ST 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K L7M SOI |
ID | FETCH-LOGICAL-c2279-ff183e2d969552d5e5cc67f5be2e60d00fd363f69e92bd24851ccc1cc02d24473 |
IEDL.DBID | DR2 |
ISSN | 0001-1541 |
IngestDate | Fri Jul 25 19:44:57 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 Tue Jul 01 01:46:55 EDT 2025 Wed Jan 22 16:23:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2279-ff183e2d969552d5e5cc67f5be2e60d00fd363f69e92bd24851ccc1cc02d24473 |
Notes | Funding information Ministry of Science and Technology of the People's Republic of China, Grant/Award Number: 2021YFB4000502; National Natural Science Foundation of China, Grant/Award Number: 21978150 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7045-8581 0000-0002-4680-8203 |
PQID | 2735474326 |
PQPubID | 7879 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2735474326 crossref_primary_10_1002_aic_17909 crossref_citationtrail_10_1002_aic_17909 wiley_primary_10_1002_aic_17909_AIC17909 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | AIChE journal |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc American Institute of Chemical Engineers |
Publisher_xml | – name: John Wiley & Sons, Inc – name: American Institute of Chemical Engineers |
References | 23 2021; 26 2018; 28 2021; 67 2015; 105 2010; 128 2021; 323 2010; 202 2013; 226 2010; 203 2015; 30 2021; 149 1962; 4 2015; 10 2019; 126 2008; 36 2008; 32 2011; 35 2016; 249 1981; 29 2004 1999; 2 2020; 32 1969; 17 2017; 113 2017; 259 2012; 50 2015; 151 2004; 52 2007; 179 2018; 110 2018; 171 2022; 163 2021; 12 2015; 235 240 2020; 271 2015; 230 2011; 50 2013; 210 2016; 86 2018 2020; 48 2022; 30 2017; 263 2019; 274 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 RajKumar N (e_1_2_9_16_1) 2015; 10 Simchi‐Levi D (e_1_2_9_4_1) 2004 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 210 start-page: 191 year: 2013 end-page: 211 article-title: Multicut Benders decomposition algorithm for process supply chain planning under uncertainty publication-title: Ann Oper Res – volume: 128 start-page: 200 year: 2010 end-page: 208 article-title: Optimal supply chain network design and redesign at minimal total cost and with demand satisfaction publication-title: Int J Prod Econ – volume: 67 year: 2021 article-title: Multistage distributionally robust optimization for integrated production and maintenance scheduling publication-title: AIChE J – volume: 32 start-page: 3090 year: 2008 end-page: 3111 article-title: Design of responsive supply chains under demand uncertainty publication-title: Comput Chem Eng – volume: 151 start-page: 35 year: 2015 end-page: 62 article-title: A distributionally robust perspective on uncertainty quantification and chance constrained programming publication-title: Math Program – volume: 26 start-page: 411 year: 2021 end-page: 427 article-title: Improving supply chain sustainability in the context of COVID‐19 pandemic in an emerging economy: exploring drivers using an integrated model publication-title: Sustain Prod Consum – volume: 271 year: 2020 article-title: A machine learning and distributionally robust optimization framework for strategic energy planning under uncertainty publication-title: Appl Energy – volume: 110 start-page: 53 year: 2018 end-page: 68 article-title: Distributionally robust optimization for planning and scheduling under uncertainty publication-title: Comput Chem Eng – volume: 240 start-page: 603 end-page: 626 article-title: Reverse logistics and closed‐loop supply chain: a comprehensive review to explore the future publication-title: Eur J Oper Res – volume: 202 start-page: 420 year: 2010 end-page: 433 article-title: The impact of two‐product joint lifecycles on capacity planning of remanufacturing networks publication-title: Eur J Oper Res – volume: 163 year: 2022 article-title: Data‐driven Wasserstein distributionally robust mitigation and recovery against random supply chain disruption publication-title: Transp Res E: Logist Transp Rev – volume: 203 start-page: 283 year: 2010 end-page: 293 article-title: The design of robust value‐creating supply chain networks: a critical review publication-title: Eur J Oper Res – volume: 274 start-page: 91 year: 2019 end-page: 107 article-title: On risk management of a two‐stage stochastic mixed 0–1 model for the closed‐loop supply chain design problem publication-title: Eur J Oper Res – volume: 52 start-page: 35 year: 2004 end-page: 53 article-title: The price of robustness publication-title: Oper Res – volume: 2 start-page: 103 year: 1999 end-page: 104 article-title: Logistics and supply chain management: strategies for reducing cost and improving service (second edition) publication-title: Int J Logist Res Appl – volume: 263 start-page: 108 year: 2017 end-page: 141 article-title: Supply chain network design under uncertainty: a comprehensive review and future research directions publication-title: Eur J Oper Res – volume: 4 start-page: 238 year: 1962 end-page: 252 article-title: Partitioning procedures for solving mixed‐variables programming problems publication-title: Numer Math – volume: 171 start-page: 115 year: 2018 end-page: 166 article-title: Data‐driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations publication-title: Math Program – volume: 226 start-page: 185 year: 2013 end-page: 202 article-title: An improved Benders decomposition algorithm for the tree of hubs location problem publication-title: Eur J Oper Res – volume: 50 start-page: 4649 year: 2012 end-page: 4669 article-title: Robust closed‐loop supply chain network design for perishable goods in agile manufacturing under uncertainty publication-title: Int J Prod Res – volume: 48 start-page: 513 year: 2020 end-page: 523 article-title: Tractable reformulations of two‐stage distributionally robust linear programs over the type‐∞ Wasserstein ball publication-title: Oper Res Lett – volume: 32 start-page: 3967 year: 2020 end-page: 3985 article-title: A closed‐loop supply chain robust optimization for disposable appliances publication-title: Neural Comput Applic – volume: 23 start-page: 728 end-page: 736 article-title: Horizon effects in aggregate production planning with seasonal demand publication-title: Manage Sci – volume: 230 start-page: 1910 year: 2015 end-page: 1924 article-title: Simultaneous optimization of operational and financial decisions to closed‐loop supply chain network under uncertainty publication-title: Proc Inst Mech Eng B J Eng Manuf – start-page: 180 year: 2018 end-page: 187 – volume: 179 start-page: 1063 year: 2007 end-page: 1077 article-title: An optimization model for the design of a capacitated multi‐product reverse logistics network with uncertainty publication-title: Eur J Oper Res – volume: 126 start-page: 190 year: 2019 end-page: 211 article-title: Distributionally robust inventory routing problem to maximize the service level under limited budget publication-title: Transp Res E: Logist Transp Rev – volume: 28 start-page: 2360 year: 2018 end-page: 2383 article-title: Decomposition algorithms for two‐stage distributionally robust mixed binary programs publication-title: SIAM J Optim – volume: 30 start-page: 305 year: 2015 end-page: 315 article-title: The circular economy, design thinking and education for sustainability publication-title: Local Econ – volume: 323 year: 2021 article-title: Closed‐loop supply chain design for the transition towards a circular economy: a systematic literature review of methods, applications and current gaps publication-title: J Clean Prod – volume: 149 year: 2021 article-title: Two‐stage distributionally robust optimization for maritime inventory routing publication-title: Comput Chem Eng – volume: 86 start-page: 90 year: 2016 end-page: 105 article-title: Risk‐based integrated production scheduling and electricity procurement for continuous power‐intensive processes publication-title: Comput Chem Eng – volume: 249 start-page: 76 year: 2016 end-page: 92 article-title: Hybrid robust and stochastic optimization for closed‐loop supply chain network design using accelerated Benders decomposition publication-title: Eur J Oper Res – year: 2004 – volume: 17 start-page: 638 year: 1969 end-page: 663 article-title: L‐shaped linear programs with applications to optimal control and stochastic programming publication-title: SIAM J Appl Math – volume: 12 start-page: 281 year: 2021 end-page: 286 article-title: Achieving Paris agreement temperature goals requires carbon neutrality by middle century with far‐reaching transitions in the whole society publication-title: Adv Clim Change Res – volume: 105 start-page: 14 year: 2015 end-page: 27 article-title: Towards supply chain sustainability: economic, environmental and social design and planning publication-title: J Clean Prod – volume: 113 start-page: 727 year: 2017 end-page: 745 article-title: A closed‐loop supply chain network design for automotive industry in Turkey publication-title: Comput Ind Eng – volume: 259 start-page: 801 year: 2017 end-page: 817 article-title: The Benders decomposition algorithm: a literature review publication-title: Eur J Oper Res – volume: 35 start-page: 637 year: 2011 end-page: 649 article-title: A robust optimization approach to closed‐loop supply chain network design under uncertainty publication-title: App Math Model – volume: 30 start-page: 278 year: 2022 end-page: 300 article-title: Sustainable, resilient and responsive mixed supply chain network design under hybrid uncertainty with considering COVID‐19 pandemic disruption publication-title: Sustain Prod Consum – volume: 235 start-page: 337 year: 2015 end-page: 369 article-title: Acceleration strategies of Benders decomposition for the security constraints power system expansion planning publication-title: Ann Oper Res – volume: 10 start-page: 3694 year: 2015 end-page: 3699 article-title: Automotive closed loop supply chain with uncertainty publication-title: Int J Appl Eng Res – volume: 50 start-page: 10567 year: 2011 end-page: 10603 article-title: A comparative theoretical and computational study on robust counterpart optimization: I. robust linear optimization and robust mixed integer linear optimization publication-title: Ind Eng Chem Res – volume: 29 start-page: 464 year: 1981 end-page: 484 article-title: Accelerating Benders decomposition: algorithmic enhancement and model selection criteria publication-title: Oper Res – volume: 210 start-page: 101 year: 2013 end-page: 123 article-title: Speed‐up Benders decomposition using maximum density cut (MDC) generation publication-title: Ann Oper Res – volume: 36 start-page: 444 year: 2008 end-page: 449 article-title: Practical enhancements to the Magnanti‐Wong method publication-title: Oper Res Lett – ident: e_1_2_9_30_1 doi: 10.1007/s10107-017-1172-1 – ident: e_1_2_9_38_1 doi: 10.1287/opre.1030.0065 – ident: e_1_2_9_41_1 doi: 10.1016/j.orl.2020.06.003 – ident: e_1_2_9_7_1 doi: 10.1177/0269094215578226 – ident: e_1_2_9_19_1 doi: 10.1016/j.ejor.2005.05.032 – ident: e_1_2_9_27_1 doi: 10.1016/j.compchemeng.2017.12.002 – ident: e_1_2_9_36_1 doi: 10.1007/s00521-018-3847-9 – ident: e_1_2_9_47_1 doi: 10.1016/j.tre.2022.102751 – ident: e_1_2_9_33_1 doi: 10.1007/s10479-011-0974-4 – ident: e_1_2_9_39_1 doi: 10.1007/s10107-015-0896-z – ident: e_1_2_9_17_1 doi: 10.1016/j.ejor.2018.09.041 – volume: 10 start-page: 3694 year: 2015 ident: e_1_2_9_16_1 article-title: Automotive closed loop supply chain with uncertainty publication-title: Int J Appl Eng Res – ident: e_1_2_9_29_1 doi: 10.1002/aic.17329 – ident: e_1_2_9_23_1 doi: 10.1016/j.ejor.2015.08.028 – ident: e_1_2_9_43_1 doi: 10.1007/BF01386316 – ident: e_1_2_9_15_1 doi: 10.1016/j.cie.2016.12.022 – ident: e_1_2_9_42_1 doi: 10.1137/0117061 – ident: e_1_2_9_46_1 doi: 10.1016/j.orl.2008.01.005 – ident: e_1_2_9_28_1 doi: 10.1016/j.tre.2019.04.005 – ident: e_1_2_9_37_1 doi: 10.1287/mnsc.23.7.728 – ident: e_1_2_9_40_1 doi: 10.1137/17M1115046 – ident: e_1_2_9_45_1 doi: 10.1016/j.compchemeng.2015.12.015 – ident: e_1_2_9_9_1 doi: 10.1016/j.accre.2021.03.004 – ident: e_1_2_9_12_1 doi: 10.1016/j.jclepro.2021.129101 – ident: e_1_2_9_35_1 doi: 10.1007/s10479-015-1983-5 – ident: e_1_2_9_25_1 doi: 10.1016/j.apenergy.2020.115005 – ident: e_1_2_9_3_1 doi: 10.1016/j.ijpe.2010.07.020 – ident: e_1_2_9_20_1 doi: 10.1016/j.compchemeng.2008.05.004 – volume-title: Managing the Supply Chain: Definitive Guide year: 2004 ident: e_1_2_9_4_1 – ident: e_1_2_9_10_1 doi: 10.1016/j.ejor.2014.07.012 – ident: e_1_2_9_8_1 doi: 10.1016/j.ejor.2009.05.022 – ident: e_1_2_9_21_1 doi: 10.1016/j.apm.2010.07.013 – ident: e_1_2_9_44_1 doi: 10.1016/j.ejor.2016.12.005 – ident: e_1_2_9_14_1 doi: 10.1177/0954405415578723 – ident: e_1_2_9_24_1 doi: 10.23919/ACC.2018.8431001 – ident: e_1_2_9_6_1 doi: 10.1016/j.ejor.2017.04.009 – ident: e_1_2_9_11_1 doi: 10.1016/j.spc.2021.12.003 – ident: e_1_2_9_34_1 doi: 10.1007/s10479-012-1237-8 – ident: e_1_2_9_18_1 doi: 10.1016/j.spc.2020.09.019 – ident: e_1_2_9_26_1 doi: 10.1016/j.compchemeng.2021.107307 – ident: e_1_2_9_48_1 doi: 10.1021/ie200150p – ident: e_1_2_9_2_1 doi: 10.1080/13675569908901575 – ident: e_1_2_9_13_1 doi: 10.1016/j.jclepro.2014.07.052 – ident: e_1_2_9_32_1 doi: 10.1287/opre.29.3.464 – ident: e_1_2_9_5_1 doi: 10.1016/j.ejor.2009.06.011 – ident: e_1_2_9_22_1 doi: 10.1080/00207543.2011.625051 – ident: e_1_2_9_31_1 doi: 10.1016/j.ejor.2012.10.051 |
SSID | ssj0012782 |
Score | 2.4285762 |
Snippet | The closed‐loop supply chain network (CLSCN) contains reverse flows that collect products from customers and recycle or remanufacture usable parts. The CLSCN... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Benders decomposition Circular economy closed‐loop supply chain Computer applications Customers distributionally robust optimization Integer programming Linear programming Mixed integer Operating costs Optimization Reversed flow Robustness stochastic programming Supply chains Sustainable development Uncertainty |
Title | Distributionally robust optimization for the closed‐loop supply chain design under uncertainty |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.17909 https://www.proquest.com/docview/2735474326 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1JT4NAFMcnRi96cDcu1UyMBy9UGDpDiafGJdVYDy6JBxNkFqIRS1PooZ78CH5GP4nvsbTVaGI8QCAZBpj1P_De7xGyJ1XoOdxoSza5tNCO0JK-Iy2uhSMUGrUp_KPbuRTt28b5Hb-bIoeVL0zBhxh9cMOekY_X2MFDmR6MoaHhk6ojXgqd99BWCwXR1Qgd5TCvWZDCYbkMMsGpqEI2Oxhd-XUuGgvMSZmazzOnC-S-esLCvOS5PshkXb1-gzf-8xUWyXypP2mraDBLZMp0l8ncBJVwhTwcI0y3jIMVxvGQ9hM5SDOawPDyUvptUhC7FMQjVXGSGv3x9h4nSY-mGCR0SNVj-NSlOrcOoeim1oe9KqwPsuEquT09uTlqW2UgBkshYNCKIuj4hmlf-JwzzQ1XSngRl4YZYWvbjrQr3Ej4xmdSIyTNUUrBZjM4a3juGpnuJl2zTmjTC23XFdIDXdJA-h3zQulAzmEUKVhcbpD9qkoCVVLKMVhGHBR8ZRZAoQV5oW2Q3VHSXoHm-ClRrarXoOydaQCSjTdAOjEBt8sr6PcMgtbZUX6w-fekW2SWoZdEbvVSI9NZf2C2QbtkcofMtI47F9c7eWP9BPOC7do |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LTtwwFIaPKF20LOgVAaWthUBik5nEGTuTRReIKZopl0UFErsQXyIQYYImGaFh1Ufog_RVeAmepOfkMkBVJDYsWCRKJMtJ7GP7t3P8HYA1pePAE9Y4qiuUQ36Ejgo95QgjPanJqU3TH929fdk_7Pw4Ekcz8KfZC1PxIaYLbtQyyv6aGjgtSLdvqaHxqW4RXyqsXSp37OQSJ2z5t0EPa3ed8-3vB1t9p44p4Ghi5TlJgjZsuQllKAQ3wgqtZZAIZbmVrnHdxPjST2RoQ64M8b48rTUeLse7TuBjvi_gJUUQJ1J_7-cUVuXxoFuxyXGCjsLEazhGLm9PX_X-6Hcrae8K43Jk234D102ZVA4tZ61xoVr66h9c5HMptLcwX0tstlm1iXcwY4fvYe4OePEDHPeIF1yH-orTdMJGmRrnBcuwBz2vt6Yy1PMM9THTaZZbc_Prd5plFyynOKgTpk_i0yEzpQMMo514IzzrysGimHyEwyf5xAWYHWZDuwisG8Su70sVoPTqEOCPB7HyMOc4STTOn5dgo7GBSNcgdooHkkYVQppHWElRWUlLsDpNelHRR_6XaKUxpKjugPIIVanooDrkEh9XWsTDGUSbg63yYvnxSb_Cq_7B3m60O9jf-QSvOW0KKZ18VmC2GI3tZ5RqhfpSthAGx09tXX8BahlKQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LSuRAFIYPXkB04agz4t1CHJhN2qSSqnQWsxDbxvaGyAjuYuoSFGOn6aQZelY-wrzHvMo8xTyJp3JpLzjgxoWLhASKSlJ1qvJXcs53ALaFjHyHaWWJJhOW8SO0ROAIiynucGmc2qT5o3tyyg8uvMNLdjkGf-pYmJIPMfrgZkZGMV-bAd5T8c4jNDS6kQ2Dlwoqj8ojPfyJ67Xse6eFnfuV0vb-j70Dq0opYEmDyrPiGE1YUxXwgDGqmGZScj9mQlPNbWXbsXK5G_NAB1Qog_typJS42RTPPN_Fesdh0uN2YPJEtM5HrCqH-s0STY7rc9QlTo0xsunO6Fafv_weFe1TXVy82Nqf4G_dJKU_y21jkIuG_PWCFvlB2mwOZiuBTXbLETEPY7q7ADNPsIuf4aplaMFVoq8oSYakn4pBlpMU58-7KjCVoJonqI6JTNJMq3_3v5M07ZHMZEEdEnkd3XSJKtxfiInD6-Nelu4V-fALXLzLIy7CRDft6iUgTT-yXZcLH4WXZ_B-1I-EgzVHcSxx9bwM32oTCGWFYTfZQJKwBEjTEDspLDppGbZGRXsle-S1Qmu1HYXV9JOFqEmZh9qQcrxcYRD_ryDc7ewVBytvL7oJU2etdnjcOT1ahWlqIkIKD581mMj7A72OOi0XG8X4IHD13sb1AC0ISPI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributionally+robust+optimization+for+the+closed%E2%80%90loop+supply+chain+design+under+uncertainty&rft.jtitle=AIChE+journal&rft.au=Ge%2C+Congqin&rft.au=Zhang%2C+Lifeng&rft.au=Yuan%2C+Zhihong&rft.date=2022-12-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=68&rft.issue=12&rft_id=info:doi/10.1002%2Faic.17909&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |