Development of chopped glass fiber composites with difunctional benzoxazine and bio‐based phthalonitrile copolymer: A study of mechanical and thermomechanical properties
The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN) copolymer were developed by an isothermal compression molding technique. The silane coupling agent‐treated GF (TGF) reinforced composites sho...
Saved in:
Published in | Journal of applied polymer science Vol. 139; no. 34 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
10.09.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN) copolymer were developed by an isothermal compression molding technique. The silane coupling agent‐treated GF (TGF) reinforced composites showed much better impact strength as compared to as‐received GF reinforced composites. A rise of 95.2 MPa, 5.5GPa, 69.1 MPa, and 2.5GPa in flexural strength, flexural modulus, tensile strength, and Young's modulus were observed, respectively. The DMA results confirmed that the storage modulus (E') and glass transition temperature (Tg) were gradually increased and the damping factor decreased as the TGF reinforcement was raised from 0 to 40 wt%. E' and Tg values were 3.09 GPa and 27°C, respectively, higher than the recorded values for the neat copolymer. The 40 wt% TGF reinforced poly(BA‐a/EPN) composite showed the maximum thermal stability values of 475.4, 507.3°C, and 75.43% for T5, T10, and Yc, respectively. The LOI values confirm that the TGF/copolymer composites have self‐extinguishing properties. |
---|---|
AbstractList | The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN) copolymer were developed by an isothermal compression molding technique. The silane coupling agent‐treated GF (TGF) reinforced composites showed much better impact strength as compared to as‐received GF reinforced composites. A rise of 95.2 MPa, 5.5GPa, 69.1 MPa, and 2.5GPa in flexural strength, flexural modulus, tensile strength, and Young's modulus were observed, respectively. The DMA results confirmed that the storage modulus (E') and glass transition temperature (Tg) were gradually increased and the damping factor decreased as the TGF reinforcement was raised from 0 to 40 wt%. E' and Tg values were 3.09 GPa and 27°C, respectively, higher than the recorded values for the neat copolymer. The 40 wt% TGF reinforced poly(BA‐a/EPN) composite showed the maximum thermal stability values of 475.4, 507.3°C, and 75.43% for T5, T10, and Yc, respectively. The LOI values confirm that the TGF/copolymer composites have self‐extinguishing properties. The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN) copolymer were developed by an isothermal compression molding technique. The silane coupling agent‐treated GF (TGF) reinforced composites showed much better impact strength as compared to as‐received GF reinforced composites. A rise of 95.2 MPa, 5.5GPa, 69.1 MPa, and 2.5GPa in flexural strength, flexural modulus, tensile strength, and Young's modulus were observed, respectively. The DMA results confirmed that the storage modulus ( E' ) and glass transition temperature ( T g ) were gradually increased and the damping factor decreased as the TGF reinforcement was raised from 0 to 40 wt%. E' and T g values were 3.09 GPa and 27°C, respectively, higher than the recorded values for the neat copolymer. The 40 wt% TGF reinforced poly(BA‐a/EPN) composite showed the maximum thermal stability values of 475.4, 507.3°C, and 75.43% for T 5 , T 10 , and Y c , respectively. The LOI values confirm that the TGF/copolymer composites have self‐extinguishing properties. The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN) copolymer were developed by an isothermal compression molding technique. The silane coupling agent‐treated GF (TGF) reinforced composites showed much better impact strength as compared to as‐received GF reinforced composites. A rise of 95.2 MPa, 5.5GPa, 69.1 MPa, and 2.5GPa in flexural strength, flexural modulus, tensile strength, and Young's modulus were observed, respectively. The DMA results confirmed that the storage modulus (E') and glass transition temperature (Tg) were gradually increased and the damping factor decreased as the TGF reinforcement was raised from 0 to 40 wt%. E' and Tg values were 3.09 GPa and 27°C, respectively, higher than the recorded values for the neat copolymer. The 40 wt% TGF reinforced poly(BA‐a/EPN) composite showed the maximum thermal stability values of 475.4, 507.3°C, and 75.43% for T5, T10, and Yc, respectively. The LOI values confirm that the TGF/copolymer composites have self‐extinguishing properties. |
Author | Alshahrani, Hassan Liu, Wen‐Bin Dayo, Abdul Qadeer |
Author_xml | – sequence: 1 givenname: Hassan surname: Alshahrani fullname: Alshahrani, Hassan organization: Najran University – sequence: 2 givenname: Abdul Qadeer orcidid: 0000-0002-3082-7856 surname: Dayo fullname: Dayo, Abdul Qadeer email: abdul_qadeer_dayo@hotmail.com organization: Balochistan University of Information Technology, Engineering and Management Sciences – sequence: 3 givenname: Wen‐Bin surname: Liu fullname: Liu, Wen‐Bin email: wjlwb@163.com organization: Harbin Engineering University |
BookMark | eNp1kUtOHDEQhq2ISAyQBTewlBWLBtvtfmU3Ik8JCRbJuuVHOW3UbRvbEzKscoTcI7fKSeLJsEAoWZVU9f9fqeo_QgfOO0DolJJzSgi7ECGcN6wn_AVaUTJ0FW9Zf4BWZUarfhiaQ3SU0i0hlDakXaFfb-EbzD4s4DL2BqvJhwAaf51FSthYCRErvwSfbIaE722esLZm41S23okZS3AP_rt4sA6wcBpL63__-ClFKpAw5UnM3tkc7QyFE_y8XSC-wWuc8kZvdxsXUJNwVhXWzp8niIt_0gzRB4jZQjpBL42YE7x6rMfoy_t3ny8_VlfXHz5drq8qxVjHK85rDr1hjexMLUVNVEfaoTOMSqUbwjntNOm5bpmQlNZtL43RnW65MVISJetj9HrPLavvNpDyeOs3sRybRtYObc9IN_RFdbFXqehTimBGZbPYfSVHYeeRknGXyFgSGf8mUhxnzxwh2kXE7T-1j_T78rnt_4Xj-uZm7_gDkXWjJQ |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2025_111880 crossref_primary_10_3390_polym14214687 crossref_primary_10_1016_j_reactfunctpolym_2024_106058 crossref_primary_10_1007_s00289_025_05703_9 crossref_primary_10_1002_app_56402 crossref_primary_10_1016_j_eurpolymj_2024_113550 crossref_primary_10_1021_acsapm_3c01138 crossref_primary_10_1002_app_54646 crossref_primary_10_1016_j_reactfunctpolym_2024_105832 crossref_primary_10_1002_pc_29558 |
Cites_doi | 10.1016/j.matlet.2015.02.122 10.1177/0954008318793181 10.1016/B978-0-08-054819-7.00021-2 10.1002/pc.25834 10.1080/25740881.2019.1647237 10.1016/j.jmrt.2018.06.013 10.1002/app.38089 10.1002/app.52193 10.3390/polym10121308 10.1016/j.compstruct.2018.06.068 10.1016/j.reactfunctpolym.2018.03.017 10.1016/B978-0-12-823791-5.00004-1 10.1002/app.51643 10.1016/j.conbuildmat.2014.11.043 10.1002/pc.10674 10.1002/app.36335 10.1002/app.34877 10.1007/s10924-010-0210-3 10.1007/s12221-019-8838-7 10.1016/j.matdes.2015.02.001 10.1002/app.47505 10.1002/pc.25085 10.1016/j.matchemphys.2012.01.105 10.1016/j.vacuum.2018.01.025 10.1016/j.reactfunctpolym.2018.07.022 10.1016/j.compositesb.2014.02.011 10.1002/pc.26293 10.1016/j.compositesb.2018.11.039 10.1016/j.compscitech.2018.11.027 10.1016/j.matpr.2020.11.669 10.1016/j.jmrt.2018.10.012 10.1002/app.46283 10.1002/app.51279 10.1177/0954008315591190 10.1007/s10853-013-7623-z 10.1002/pc.26215 10.1002/slct.201600304 10.1002/app.29085 10.1016/j.conbuildmat.2015.12.075 10.1007/s12221-016-5928-7 10.1007/s13726-016-0442-8 10.1002/pola.28989 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.52804 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_52804 APP52804 |
Genre | article |
GrantInformation_xml | – fundername: Najran University funderid: NU/RG/SERC/11/2 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c2274-4434e8f25b7f3ba30c70697f21bcd504417d084d62ab11368bffd7d64ffbb0cb3 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Fri Jul 25 12:04:23 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Tue Jul 01 01:59:52 EDT 2025 Wed Jan 22 16:23:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2274-4434e8f25b7f3ba30c70697f21bcd504417d084d62ab11368bffd7d64ffbb0cb3 |
Notes | Funding information Najran University, Grant/Award Number: NU/RG/SERC/11/2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3082-7856 |
PQID | 2696820798 |
PQPubID | 1006379 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2696820798 crossref_citationtrail_10_1002_app_52804 crossref_primary_10_1002_app_52804 wiley_primary_10_1002_app_52804_APP52804 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 10, 2022 |
PublicationDateYYYYMMDD | 2022-09-10 |
PublicationDate_xml | – month: 09 year: 2022 text: September 10, 2022 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2019; 8 2021; 43 2013; 48 1996; 17 2021; 42 2012; 123 2020; 42 2019; 31 2015; 71 2018; 127 2015; 149 2010; 18 2013; 127 2018; 202 2015; 76 2009 2009; 111 2020; 59 2019; 169 2016; 106 2022; 43 2012; 125 2016; 17 2014; 62 2019; 163 2022; 139 2018; 131 2021; 13 2015; 28 2016; 1 2012; 133 2019; 40 2018; 150 2019; 20 2022 2018; 135 2021; 138 2019; 136 2018; 56 2018; 10 2016; 25 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Li J. (e_1_2_8_22_1) 2022; 43 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Rajak D. K. (e_1_2_8_3_1) 2021; 13 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 8 start-page: 853 year: 2019 publication-title: J. Mater. Res. Technol. – volume: 43 start-page: 314 year: 2021 publication-title: Mater. Today: Proc. – volume: 106 start-page: 149 year: 2016 publication-title: Constr. Build. Mater. – volume: 76 start-page: 87 year: 2015 publication-title: Constr. Build. Mater. – volume: 40 start-page: 912 year: 2019 publication-title: Polym. Compos. – volume: 150 start-page: 12 year: 2018 publication-title: Vacuum – volume: 169 start-page: 249 year: 2019 publication-title: Compos. Sci. Technol. – volume: 138 year: 2021 publication-title: J. Appl. Polym. Sci. – volume: 25 start-page: 503 year: 2016 publication-title: Iran. Polym. J. – volume: 1 start-page: 3423 year: 2016 publication-title: ChemistrySelect – volume: 135 year: 2018 publication-title: J. Appl. Polym. Sci. – volume: 59 start-page: 311 year: 2020 publication-title: Polym.‐Plast. Technol. Mater. – volume: 131 start-page: 156 year: 2018 publication-title: React. Funct. Polym. – volume: 42 year: 2021 publication-title: Polym. Compos. – volume: 71 start-page: 48 year: 2015 publication-title: Mater. Des. – volume: 31 start-page: 719 year: 2019 publication-title: High Perform. Polym. – volume: 8 start-page: 1470 year: 2019 publication-title: J. Mater. Res. Technol. – volume: 20 start-page: 811 year: 2019 publication-title: Fibers Polym. – volume: 111 start-page: 1225 year: 2009 publication-title: J. Appl. Polym. Sci. – start-page: 693 year: 2022 – volume: 62 start-page: 19 year: 2014 publication-title: Composites, Part B – volume: 127 start-page: 1 year: 2018 publication-title: React. Funct. Polym. – volume: 123 start-page: 3580 year: 2012 publication-title: J. Appl. Polym. Sci. – volume: 13 year: 2021 publication-title: Polymer – volume: 125 start-page: 649 year: 2012 publication-title: J. Appl. Polym. Sci. – volume: 17 start-page: 910 year: 2016 publication-title: Fibers Polym. – volume: 42 start-page: 6160 year: 2021 publication-title: Polym. Compos. – volume: 28 start-page: 581 year: 2015 publication-title: High Perform. Polym. – volume: 17 start-page: 816 year: 1996 publication-title: Polym. Compos. – volume: 163 start-page: 165 year: 2019 publication-title: Composites, Part B – volume: 10 start-page: 1308 year: 2018 publication-title: Polymers – volume: 42 start-page: 412 year: 2020 publication-title: Polym. Compos. – volume: 133 start-page: 845 year: 2012 publication-title: Mater. Chem. Phys. – volume: 48 start-page: 8108 year: 2013 publication-title: J. Mater. Sci. – volume: 139 year: 2022 publication-title: J. Appl. Polym. Sci. – volume: 127 start-page: 4873 year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 149 start-page: 81 year: 2015 publication-title: Mater. Lett. – start-page: 763 year: 2009 – volume: 202 start-page: 1330 year: 2018 publication-title: Compos. Struct. – volume: 18 start-page: 727 year: 2010 publication-title: J. Polym. Environ. – volume: 56 start-page: 1128 year: 2018 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 43 year: 2022 publication-title: Polym. Compos. – volume: 136 year: 2019 publication-title: J. Appl. Polym. Sci. – ident: e_1_2_8_38_1 doi: 10.1016/j.matlet.2015.02.122 – ident: e_1_2_8_16_1 doi: 10.1177/0954008318793181 – ident: e_1_2_8_41_1 doi: 10.1016/B978-0-08-054819-7.00021-2 – ident: e_1_2_8_4_1 doi: 10.1002/pc.25834 – ident: e_1_2_8_44_1 doi: 10.1080/25740881.2019.1647237 – ident: e_1_2_8_30_1 doi: 10.1016/j.jmrt.2018.06.013 – ident: e_1_2_8_33_1 doi: 10.1002/app.38089 – ident: e_1_2_8_40_1 doi: 10.1002/app.52193 – ident: e_1_2_8_42_1 doi: 10.3390/polym10121308 – ident: e_1_2_8_17_1 doi: 10.1016/j.compstruct.2018.06.068 – ident: e_1_2_8_9_1 doi: 10.1016/j.reactfunctpolym.2018.03.017 – ident: e_1_2_8_5_1 doi: 10.1016/B978-0-12-823791-5.00004-1 – ident: e_1_2_8_19_1 doi: 10.1002/app.51643 – ident: e_1_2_8_43_1 doi: 10.1016/j.conbuildmat.2014.11.043 – ident: e_1_2_8_6_1 doi: 10.1002/pc.10674 – ident: e_1_2_8_13_1 doi: 10.1002/app.36335 – ident: e_1_2_8_11_1 doi: 10.1002/app.34877 – ident: e_1_2_8_25_1 doi: 10.1007/s10924-010-0210-3 – ident: e_1_2_8_26_1 doi: 10.1007/s12221-019-8838-7 – ident: e_1_2_8_37_1 doi: 10.1016/j.matdes.2015.02.001 – ident: e_1_2_8_10_1 doi: 10.1002/app.47505 – ident: e_1_2_8_20_1 doi: 10.1002/pc.25085 – ident: e_1_2_8_24_1 doi: 10.1016/j.matchemphys.2012.01.105 – ident: e_1_2_8_23_1 doi: 10.1016/j.vacuum.2018.01.025 – ident: e_1_2_8_15_1 doi: 10.1016/j.reactfunctpolym.2018.07.022 – ident: e_1_2_8_28_1 doi: 10.1016/j.compositesb.2014.02.011 – ident: e_1_2_8_18_1 doi: 10.1002/pc.26293 – ident: e_1_2_8_31_1 doi: 10.1016/j.compositesb.2018.11.039 – ident: e_1_2_8_29_1 doi: 10.1016/j.compscitech.2018.11.027 – ident: e_1_2_8_2_1 doi: 10.1016/j.matpr.2020.11.669 – ident: e_1_2_8_32_1 doi: 10.1016/j.jmrt.2018.10.012 – ident: e_1_2_8_45_1 doi: 10.1002/app.46283 – volume: 13 year: 2021 ident: e_1_2_8_3_1 publication-title: Polymer – ident: e_1_2_8_36_1 doi: 10.1002/app.51279 – ident: e_1_2_8_14_1 doi: 10.1177/0954008315591190 – ident: e_1_2_8_12_1 doi: 10.1007/s10853-013-7623-z – ident: e_1_2_8_35_1 doi: 10.1002/pc.26215 – ident: e_1_2_8_8_1 doi: 10.1002/slct.201600304 – ident: e_1_2_8_34_1 doi: 10.1002/app.29085 – ident: e_1_2_8_27_1 doi: 10.1016/j.conbuildmat.2015.12.075 – ident: e_1_2_8_21_1 doi: 10.1007/s12221-016-5928-7 – volume: 43 year: 2022 ident: e_1_2_8_22_1 publication-title: Polym. Compos. – ident: e_1_2_8_39_1 doi: 10.1007/s13726-016-0442-8 – ident: e_1_2_8_7_1 doi: 10.1002/pola.28989 |
SSID | ssj0011506 |
Score | 2.4514747 |
Snippet | The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN)... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Benzoxazines biopolymers and renewable polymers Bisphenol A composites Copolymers Coupling agents Damping Fiber composites Flexural strength Glass fibers glass transition Glass transition temperature Impact strength Materials science mechanical properties Modulus of elasticity Modulus of rupture in bending Polymers Pressure molding Storage modulus Tensile strength Thermal stability thermogravimetric analysis Thermomechanical properties |
Title | Development of chopped glass fiber composites with difunctional benzoxazine and bio‐based phthalonitrile copolymer: A study of mechanical and thermomechanical properties |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.52804 https://www.proquest.com/docview/2696820798 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBahe1kf2t1Kbyti9GEvThRZtuTtKbQrYawjbAvkoWCsGy1NbJO4sPVpP2H_Y_9qv2Q6sp1ko4XSN2N0s3Sk8x35nO8gdMyZlVIlcQCZrAMWahEIyU0gbaxjTSAoGAKFzz_HwzH7OIkmHfS-jYWp-SGWF26wM_x5DRs8k4veijQU0mBFVHguUPDVAkD0ZUkdBUAnrt07-oGzKaKWVYjQ3rLmv7poBTDXYarXM2fb6KIdYe1ect29qWRX3f5H3vjIT3iGthr8iQe1wDxHHZO_QJtrrIQv0e81RyJcWOwOyLI0GnugjS24mGDwRAd3L7PAcJOL9RUoyPpeEUuT3xbfPW81znKN5VXx5-cv0Jcal5fVZTaFg2TuhuzaKYvpj5mZv8MD7KluoceZgXhkEB9fHzDqrFh7WcIfhDlQwb5C47MP306GQZPTIVDUGcABYyEzwtJIchvKLCSKkzjhlval0hGBhGiaCKZjmklINyOktZrrmFknU0TJcAdt5EVudhG21vKMq4TRTDETcpE488pYIxwENSzq76G37eqmqiE8h7wb07Smaqapm__Uz_8eerMsWtYsH3cVOmxFJG02-iKlQC5ECU-E686v9f0NpIPRyD_sP7zoAXpKIeACklaQQ7RRzW_MaweDKnmEngxOzz99PfJy_xd5CQt8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaq7gF4YFzFWAEL8bCXtK7jxA7aS4Woyi5VhTapLyiKb2pFm0RdJ2172k_gf_Cv-CXzcZq2QyAh3qLIt9jH9ndOzvkOQh84s1KqJA4gk3XAQi0CIbkJpI11rAkEBUOg8OkwHpyzo3E0bqDDOham4odYG9xgZ_jzGjY4GKQ7G9ZQyIMVUQFkoDuQ0dsrVF_X5FEAdeLKwaMbOK0iqnmFCO2sq96_jTYQcxuo-pumv4u-1WOsHEy-ty-Xsq1ufqNv_N-PeIIeryAo7lUy8xQ1TP4MPdoiJnyOfm75EuHCYndGlqXR2GNtbMHLBIMzOnh8mQsMxlysp3BHVqZFLE1-U1x56mqc5RrLafHr9gdcmRqXk-Ukm8FZsnBjdu2Uxex6bhYfcQ97tlvocW4gJBkkyNcHmDovtl6W8BNhAWywL9B5__PZp0GwSusQKOp04ICxkBlhaSS5DWUWEsVJnHBLu1LpiEBONE0E0zHNJGScEdJazXXMrBMromT4EjXzIjevELbW8oyrhNFMMRNykTgNy1gjHAo1LOruoYN6eVO14jyH1BuztGJrpqmb_9TP_x56vy5aVkQffyrUqmUkXe31i5QCvxAlPBGuO7_Yf28g7Y1G_uH1vxd9hx4Mzk5P0pMvw-N99JBC_AXksCAt1FwuLs0bh4qW8q0X_jubcA4D |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQlVB7oECp-MdCHLgEvI5jO_S0Ala0BbRCIHGoFMV_ArGbRMsitZx4hL5H36pPgsfZLAtqpaq3KPJf7LHnG2fmG4S2BXNK6ZRHkMk6YrGRkVTCRspxww2BoGAIFD4948eX7MtVcjWFPjWxMDU_xPjCDXZGOK9hg1fG7T2ThkIarIRK4AJ9wziRINKH52PuKEA6vPbvaEXeqEgaWiFC98ZVXyqjZ4Q5iVODoum8R9-aIdb-Jbe790O1qx9esTf-5zfModkRAMXtWmLm0ZQtFtC7CVrCD-jXhCcRLh32J2RVWYMD0sYOfEwwuKKDv5e9w3CVi80NaMj6YhErWzyU3wNxNc4Lg9VN-fvxJyhMg6vr4XXeg5Nk4Ifs26nK3o--HezjNg5ct9Bj30JAMshPqA8gtV9OvKzgF8IAuGAX0WXn6OLgOBoldYg09RZwxFjMrHQ0UcLFKo-JFoSnwtGW0iYhkBHNEMkMp7mCfDNSOWeE4cx5oSJaxR_RdFEWdglh55zIhU4ZzTWzsZCpt6-ss9JjUMuS1jLaaVY30yPGc0i80ctqrmaa-fnPwvwvo61x0aqm-fhTobVGRLLRTr_LKLALUSJS6bsLa_33BrJ2txseVv696Caa6R52spPPZ19X0VsKwReQwIKsoenh4N6ue0g0VBtB9J8Al3MMuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+chopped+glass+fiber+composites+with+difunctional+benzoxazine+and+bio%E2%80%90based+phthalonitrile+copolymer%3A+A+study+of+mechanical+and+thermomechanical+properties&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Alshahrani%2C+Hassan&rft.au=Dayo%2C+Abdul+Qadeer&rft.au=Liu%2C+Wen%E2%80%90Bin&rft.date=2022-09-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=139&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapp.52804&rft.externalDBID=10.1002%252Fapp.52804&rft.externalDocID=APP52804 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |