Development of chopped glass fiber composites with difunctional benzoxazine and bio‐based phthalonitrile copolymer: A study of mechanical and thermomechanical properties

The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN) copolymer were developed by an isothermal compression molding technique. The silane coupling agent‐treated GF (TGF) reinforced composites sho...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 139; no. 34
Main Authors Alshahrani, Hassan, Dayo, Abdul Qadeer, Liu, Wen‐Bin
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 10.09.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN) copolymer were developed by an isothermal compression molding technique. The silane coupling agent‐treated GF (TGF) reinforced composites showed much better impact strength as compared to as‐received GF reinforced composites. A rise of 95.2 MPa, 5.5GPa, 69.1 MPa, and 2.5GPa in flexural strength, flexural modulus, tensile strength, and Young's modulus were observed, respectively. The DMA results confirmed that the storage modulus (E') and glass transition temperature (Tg) were gradually increased and the damping factor decreased as the TGF reinforcement was raised from 0 to 40 wt%. E' and Tg values were 3.09 GPa and 27°C, respectively, higher than the recorded values for the neat copolymer. The 40 wt% TGF reinforced poly(BA‐a/EPN) composite showed the maximum thermal stability values of 475.4, 507.3°C, and 75.43% for T5, T10, and Yc, respectively. The LOI values confirm that the TGF/copolymer composites have self‐extinguishing properties.
AbstractList The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN) copolymer were developed by an isothermal compression molding technique. The silane coupling agent‐treated GF (TGF) reinforced composites showed much better impact strength as compared to as‐received GF reinforced composites. A rise of 95.2 MPa, 5.5GPa, 69.1 MPa, and 2.5GPa in flexural strength, flexural modulus, tensile strength, and Young's modulus were observed, respectively. The DMA results confirmed that the storage modulus (E') and glass transition temperature (Tg) were gradually increased and the damping factor decreased as the TGF reinforcement was raised from 0 to 40 wt%. E' and Tg values were 3.09 GPa and 27°C, respectively, higher than the recorded values for the neat copolymer. The 40 wt% TGF reinforced poly(BA‐a/EPN) composite showed the maximum thermal stability values of 475.4, 507.3°C, and 75.43% for T5, T10, and Yc, respectively. The LOI values confirm that the TGF/copolymer composites have self‐extinguishing properties.
The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN) copolymer were developed by an isothermal compression molding technique. The silane coupling agent‐treated GF (TGF) reinforced composites showed much better impact strength as compared to as‐received GF reinforced composites. A rise of 95.2 MPa, 5.5GPa, 69.1 MPa, and 2.5GPa in flexural strength, flexural modulus, tensile strength, and Young's modulus were observed, respectively. The DMA results confirmed that the storage modulus ( E' ) and glass transition temperature ( T g ) were gradually increased and the damping factor decreased as the TGF reinforcement was raised from 0 to 40 wt%. E' and T g values were 3.09 GPa and 27°C, respectively, higher than the recorded values for the neat copolymer. The 40 wt% TGF reinforced poly(BA‐a/EPN) composite showed the maximum thermal stability values of 475.4, 507.3°C, and 75.43% for T 5 , T 10 , and Y c , respectively. The LOI values confirm that the TGF/copolymer composites have self‐extinguishing properties.
The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN) copolymer were developed by an isothermal compression molding technique. The silane coupling agent‐treated GF (TGF) reinforced composites showed much better impact strength as compared to as‐received GF reinforced composites. A rise of 95.2 MPa, 5.5GPa, 69.1 MPa, and 2.5GPa in flexural strength, flexural modulus, tensile strength, and Young's modulus were observed, respectively. The DMA results confirmed that the storage modulus (E') and glass transition temperature (Tg) were gradually increased and the damping factor decreased as the TGF reinforcement was raised from 0 to 40 wt%. E' and Tg values were 3.09 GPa and 27°C, respectively, higher than the recorded values for the neat copolymer. The 40 wt% TGF reinforced poly(BA‐a/EPN) composite showed the maximum thermal stability values of 475.4, 507.3°C, and 75.43% for T5, T10, and Yc, respectively. The LOI values confirm that the TGF/copolymer composites have self‐extinguishing properties.
Author Alshahrani, Hassan
Liu, Wen‐Bin
Dayo, Abdul Qadeer
Author_xml – sequence: 1
  givenname: Hassan
  surname: Alshahrani
  fullname: Alshahrani, Hassan
  organization: Najran University
– sequence: 2
  givenname: Abdul Qadeer
  orcidid: 0000-0002-3082-7856
  surname: Dayo
  fullname: Dayo, Abdul Qadeer
  email: abdul_qadeer_dayo@hotmail.com
  organization: Balochistan University of Information Technology, Engineering and Management Sciences
– sequence: 3
  givenname: Wen‐Bin
  surname: Liu
  fullname: Liu, Wen‐Bin
  email: wjlwb@163.com
  organization: Harbin Engineering University
BookMark eNp1kUtOHDEQhq2ISAyQBTewlBWLBtvtfmU3Ik8JCRbJuuVHOW3UbRvbEzKscoTcI7fKSeLJsEAoWZVU9f9fqeo_QgfOO0DolJJzSgi7ECGcN6wn_AVaUTJ0FW9Zf4BWZUarfhiaQ3SU0i0hlDakXaFfb-EbzD4s4DL2BqvJhwAaf51FSthYCRErvwSfbIaE722esLZm41S23okZS3AP_rt4sA6wcBpL63__-ClFKpAw5UnM3tkc7QyFE_y8XSC-wWuc8kZvdxsXUJNwVhXWzp8niIt_0gzRB4jZQjpBL42YE7x6rMfoy_t3ny8_VlfXHz5drq8qxVjHK85rDr1hjexMLUVNVEfaoTOMSqUbwjntNOm5bpmQlNZtL43RnW65MVISJetj9HrPLavvNpDyeOs3sRybRtYObc9IN_RFdbFXqehTimBGZbPYfSVHYeeRknGXyFgSGf8mUhxnzxwh2kXE7T-1j_T78rnt_4Xj-uZm7_gDkXWjJQ
CitedBy_id crossref_primary_10_1016_j_mtcomm_2025_111880
crossref_primary_10_3390_polym14214687
crossref_primary_10_1016_j_reactfunctpolym_2024_106058
crossref_primary_10_1007_s00289_025_05703_9
crossref_primary_10_1002_app_56402
crossref_primary_10_1016_j_eurpolymj_2024_113550
crossref_primary_10_1021_acsapm_3c01138
crossref_primary_10_1002_app_54646
crossref_primary_10_1016_j_reactfunctpolym_2024_105832
crossref_primary_10_1002_pc_29558
Cites_doi 10.1016/j.matlet.2015.02.122
10.1177/0954008318793181
10.1016/B978-0-08-054819-7.00021-2
10.1002/pc.25834
10.1080/25740881.2019.1647237
10.1016/j.jmrt.2018.06.013
10.1002/app.38089
10.1002/app.52193
10.3390/polym10121308
10.1016/j.compstruct.2018.06.068
10.1016/j.reactfunctpolym.2018.03.017
10.1016/B978-0-12-823791-5.00004-1
10.1002/app.51643
10.1016/j.conbuildmat.2014.11.043
10.1002/pc.10674
10.1002/app.36335
10.1002/app.34877
10.1007/s10924-010-0210-3
10.1007/s12221-019-8838-7
10.1016/j.matdes.2015.02.001
10.1002/app.47505
10.1002/pc.25085
10.1016/j.matchemphys.2012.01.105
10.1016/j.vacuum.2018.01.025
10.1016/j.reactfunctpolym.2018.07.022
10.1016/j.compositesb.2014.02.011
10.1002/pc.26293
10.1016/j.compositesb.2018.11.039
10.1016/j.compscitech.2018.11.027
10.1016/j.matpr.2020.11.669
10.1016/j.jmrt.2018.10.012
10.1002/app.46283
10.1002/app.51279
10.1177/0954008315591190
10.1007/s10853-013-7623-z
10.1002/pc.26215
10.1002/slct.201600304
10.1002/app.29085
10.1016/j.conbuildmat.2015.12.075
10.1007/s12221-016-5928-7
10.1007/s13726-016-0442-8
10.1002/pola.28989
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.52804
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_52804
APP52804
Genre article
GrantInformation_xml – fundername: Najran University
  funderid: NU/RG/SERC/11/2
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c2274-4434e8f25b7f3ba30c70697f21bcd504417d084d62ab11368bffd7d64ffbb0cb3
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Fri Jul 25 12:04:23 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Tue Jul 01 01:59:52 EDT 2025
Wed Jan 22 16:23:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2274-4434e8f25b7f3ba30c70697f21bcd504417d084d62ab11368bffd7d64ffbb0cb3
Notes Funding information
Najran University, Grant/Award Number: NU/RG/SERC/11/2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3082-7856
PQID 2696820798
PQPubID 1006379
PageCount 11
ParticipantIDs proquest_journals_2696820798
crossref_citationtrail_10_1002_app_52804
crossref_primary_10_1002_app_52804
wiley_primary_10_1002_app_52804_APP52804
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 10, 2022
PublicationDateYYYYMMDD 2022-09-10
PublicationDate_xml – month: 09
  year: 2022
  text: September 10, 2022
  day: 10
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 8
2021; 43
2013; 48
1996; 17
2021; 42
2012; 123
2020; 42
2019; 31
2015; 71
2018; 127
2015; 149
2010; 18
2013; 127
2018; 202
2015; 76
2009
2009; 111
2020; 59
2019; 169
2016; 106
2022; 43
2012; 125
2016; 17
2014; 62
2019; 163
2022; 139
2018; 131
2021; 13
2015; 28
2016; 1
2012; 133
2019; 40
2018; 150
2019; 20
2022
2018; 135
2021; 138
2019; 136
2018; 56
2018; 10
2016; 25
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Li J. (e_1_2_8_22_1) 2022; 43
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Rajak D. K. (e_1_2_8_3_1) 2021; 13
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 8
  start-page: 853
  year: 2019
  publication-title: J. Mater. Res. Technol.
– volume: 43
  start-page: 314
  year: 2021
  publication-title: Mater. Today: Proc.
– volume: 106
  start-page: 149
  year: 2016
  publication-title: Constr. Build. Mater.
– volume: 76
  start-page: 87
  year: 2015
  publication-title: Constr. Build. Mater.
– volume: 40
  start-page: 912
  year: 2019
  publication-title: Polym. Compos.
– volume: 150
  start-page: 12
  year: 2018
  publication-title: Vacuum
– volume: 169
  start-page: 249
  year: 2019
  publication-title: Compos. Sci. Technol.
– volume: 138
  year: 2021
  publication-title: J. Appl. Polym. Sci.
– volume: 25
  start-page: 503
  year: 2016
  publication-title: Iran. Polym. J.
– volume: 1
  start-page: 3423
  year: 2016
  publication-title: ChemistrySelect
– volume: 135
  year: 2018
  publication-title: J. Appl. Polym. Sci.
– volume: 59
  start-page: 311
  year: 2020
  publication-title: Polym.‐Plast. Technol. Mater.
– volume: 131
  start-page: 156
  year: 2018
  publication-title: React. Funct. Polym.
– volume: 42
  year: 2021
  publication-title: Polym. Compos.
– volume: 71
  start-page: 48
  year: 2015
  publication-title: Mater. Des.
– volume: 31
  start-page: 719
  year: 2019
  publication-title: High Perform. Polym.
– volume: 8
  start-page: 1470
  year: 2019
  publication-title: J. Mater. Res. Technol.
– volume: 20
  start-page: 811
  year: 2019
  publication-title: Fibers Polym.
– volume: 111
  start-page: 1225
  year: 2009
  publication-title: J. Appl. Polym. Sci.
– start-page: 693
  year: 2022
– volume: 62
  start-page: 19
  year: 2014
  publication-title: Composites, Part B
– volume: 127
  start-page: 1
  year: 2018
  publication-title: React. Funct. Polym.
– volume: 123
  start-page: 3580
  year: 2012
  publication-title: J. Appl. Polym. Sci.
– volume: 13
  year: 2021
  publication-title: Polymer
– volume: 125
  start-page: 649
  year: 2012
  publication-title: J. Appl. Polym. Sci.
– volume: 17
  start-page: 910
  year: 2016
  publication-title: Fibers Polym.
– volume: 42
  start-page: 6160
  year: 2021
  publication-title: Polym. Compos.
– volume: 28
  start-page: 581
  year: 2015
  publication-title: High Perform. Polym.
– volume: 17
  start-page: 816
  year: 1996
  publication-title: Polym. Compos.
– volume: 163
  start-page: 165
  year: 2019
  publication-title: Composites, Part B
– volume: 10
  start-page: 1308
  year: 2018
  publication-title: Polymers
– volume: 42
  start-page: 412
  year: 2020
  publication-title: Polym. Compos.
– volume: 133
  start-page: 845
  year: 2012
  publication-title: Mater. Chem. Phys.
– volume: 48
  start-page: 8108
  year: 2013
  publication-title: J. Mater. Sci.
– volume: 139
  year: 2022
  publication-title: J. Appl. Polym. Sci.
– volume: 127
  start-page: 4873
  year: 2013
  publication-title: J. Appl. Polym. Sci.
– volume: 149
  start-page: 81
  year: 2015
  publication-title: Mater. Lett.
– start-page: 763
  year: 2009
– volume: 202
  start-page: 1330
  year: 2018
  publication-title: Compos. Struct.
– volume: 18
  start-page: 727
  year: 2010
  publication-title: J. Polym. Environ.
– volume: 56
  start-page: 1128
  year: 2018
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 43
  year: 2022
  publication-title: Polym. Compos.
– volume: 136
  year: 2019
  publication-title: J. Appl. Polym. Sci.
– ident: e_1_2_8_38_1
  doi: 10.1016/j.matlet.2015.02.122
– ident: e_1_2_8_16_1
  doi: 10.1177/0954008318793181
– ident: e_1_2_8_41_1
  doi: 10.1016/B978-0-08-054819-7.00021-2
– ident: e_1_2_8_4_1
  doi: 10.1002/pc.25834
– ident: e_1_2_8_44_1
  doi: 10.1080/25740881.2019.1647237
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jmrt.2018.06.013
– ident: e_1_2_8_33_1
  doi: 10.1002/app.38089
– ident: e_1_2_8_40_1
  doi: 10.1002/app.52193
– ident: e_1_2_8_42_1
  doi: 10.3390/polym10121308
– ident: e_1_2_8_17_1
  doi: 10.1016/j.compstruct.2018.06.068
– ident: e_1_2_8_9_1
  doi: 10.1016/j.reactfunctpolym.2018.03.017
– ident: e_1_2_8_5_1
  doi: 10.1016/B978-0-12-823791-5.00004-1
– ident: e_1_2_8_19_1
  doi: 10.1002/app.51643
– ident: e_1_2_8_43_1
  doi: 10.1016/j.conbuildmat.2014.11.043
– ident: e_1_2_8_6_1
  doi: 10.1002/pc.10674
– ident: e_1_2_8_13_1
  doi: 10.1002/app.36335
– ident: e_1_2_8_11_1
  doi: 10.1002/app.34877
– ident: e_1_2_8_25_1
  doi: 10.1007/s10924-010-0210-3
– ident: e_1_2_8_26_1
  doi: 10.1007/s12221-019-8838-7
– ident: e_1_2_8_37_1
  doi: 10.1016/j.matdes.2015.02.001
– ident: e_1_2_8_10_1
  doi: 10.1002/app.47505
– ident: e_1_2_8_20_1
  doi: 10.1002/pc.25085
– ident: e_1_2_8_24_1
  doi: 10.1016/j.matchemphys.2012.01.105
– ident: e_1_2_8_23_1
  doi: 10.1016/j.vacuum.2018.01.025
– ident: e_1_2_8_15_1
  doi: 10.1016/j.reactfunctpolym.2018.07.022
– ident: e_1_2_8_28_1
  doi: 10.1016/j.compositesb.2014.02.011
– ident: e_1_2_8_18_1
  doi: 10.1002/pc.26293
– ident: e_1_2_8_31_1
  doi: 10.1016/j.compositesb.2018.11.039
– ident: e_1_2_8_29_1
  doi: 10.1016/j.compscitech.2018.11.027
– ident: e_1_2_8_2_1
  doi: 10.1016/j.matpr.2020.11.669
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jmrt.2018.10.012
– ident: e_1_2_8_45_1
  doi: 10.1002/app.46283
– volume: 13
  year: 2021
  ident: e_1_2_8_3_1
  publication-title: Polymer
– ident: e_1_2_8_36_1
  doi: 10.1002/app.51279
– ident: e_1_2_8_14_1
  doi: 10.1177/0954008315591190
– ident: e_1_2_8_12_1
  doi: 10.1007/s10853-013-7623-z
– ident: e_1_2_8_35_1
  doi: 10.1002/pc.26215
– ident: e_1_2_8_8_1
  doi: 10.1002/slct.201600304
– ident: e_1_2_8_34_1
  doi: 10.1002/app.29085
– ident: e_1_2_8_27_1
  doi: 10.1016/j.conbuildmat.2015.12.075
– ident: e_1_2_8_21_1
  doi: 10.1007/s12221-016-5928-7
– volume: 43
  year: 2022
  ident: e_1_2_8_22_1
  publication-title: Polym. Compos.
– ident: e_1_2_8_39_1
  doi: 10.1007/s13726-016-0442-8
– ident: e_1_2_8_7_1
  doi: 10.1002/pola.28989
SSID ssj0011506
Score 2.4514747
Snippet The randomly‐oriented glass fibers (GF) reinforced composites with Bisphenol A–amine based benzoxazine (BA‐a) and bio‐based eugenol‐based phthalonitrile (EPN)...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Benzoxazines
biopolymers and renewable polymers
Bisphenol A
composites
Copolymers
Coupling agents
Damping
Fiber composites
Flexural strength
Glass fibers
glass transition
Glass transition temperature
Impact strength
Materials science
mechanical properties
Modulus of elasticity
Modulus of rupture in bending
Polymers
Pressure molding
Storage modulus
Tensile strength
Thermal stability
thermogravimetric analysis
Thermomechanical properties
Title Development of chopped glass fiber composites with difunctional benzoxazine and bio‐based phthalonitrile copolymer: A study of mechanical and thermomechanical properties
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.52804
https://www.proquest.com/docview/2696820798
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBahe1kf2t1Kbyti9GEvThRZtuTtKbQrYawjbAvkoWCsGy1NbJO4sPVpP2H_Y_9qv2Q6sp1ko4XSN2N0s3Sk8x35nO8gdMyZlVIlcQCZrAMWahEIyU0gbaxjTSAoGAKFzz_HwzH7OIkmHfS-jYWp-SGWF26wM_x5DRs8k4veijQU0mBFVHguUPDVAkD0ZUkdBUAnrt07-oGzKaKWVYjQ3rLmv7poBTDXYarXM2fb6KIdYe1ect29qWRX3f5H3vjIT3iGthr8iQe1wDxHHZO_QJtrrIQv0e81RyJcWOwOyLI0GnugjS24mGDwRAd3L7PAcJOL9RUoyPpeEUuT3xbfPW81znKN5VXx5-cv0Jcal5fVZTaFg2TuhuzaKYvpj5mZv8MD7KluoceZgXhkEB9fHzDqrFh7WcIfhDlQwb5C47MP306GQZPTIVDUGcABYyEzwtJIchvKLCSKkzjhlval0hGBhGiaCKZjmklINyOktZrrmFknU0TJcAdt5EVudhG21vKMq4TRTDETcpE488pYIxwENSzq76G37eqmqiE8h7wb07Smaqapm__Uz_8eerMsWtYsH3cVOmxFJG02-iKlQC5ECU-E686v9f0NpIPRyD_sP7zoAXpKIeACklaQQ7RRzW_MaweDKnmEngxOzz99PfJy_xd5CQt8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaq7gF4YFzFWAEL8bCXtK7jxA7aS4Woyi5VhTapLyiKb2pFm0RdJ2172k_gf_Cv-CXzcZq2QyAh3qLIt9jH9ndOzvkOQh84s1KqJA4gk3XAQi0CIbkJpI11rAkEBUOg8OkwHpyzo3E0bqDDOham4odYG9xgZ_jzGjY4GKQ7G9ZQyIMVUQFkoDuQ0dsrVF_X5FEAdeLKwaMbOK0iqnmFCO2sq96_jTYQcxuo-pumv4u-1WOsHEy-ty-Xsq1ufqNv_N-PeIIeryAo7lUy8xQ1TP4MPdoiJnyOfm75EuHCYndGlqXR2GNtbMHLBIMzOnh8mQsMxlysp3BHVqZFLE1-U1x56mqc5RrLafHr9gdcmRqXk-Ukm8FZsnBjdu2Uxex6bhYfcQ97tlvocW4gJBkkyNcHmDovtl6W8BNhAWywL9B5__PZp0GwSusQKOp04ICxkBlhaSS5DWUWEsVJnHBLu1LpiEBONE0E0zHNJGScEdJazXXMrBMromT4EjXzIjevELbW8oyrhNFMMRNykTgNy1gjHAo1LOruoYN6eVO14jyH1BuztGJrpqmb_9TP_x56vy5aVkQffyrUqmUkXe31i5QCvxAlPBGuO7_Yf28g7Y1G_uH1vxd9hx4Mzk5P0pMvw-N99JBC_AXksCAt1FwuLs0bh4qW8q0X_jubcA4D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYQlVB7oECp-MdCHLgEvI5jO_S0Ala0BbRCIHGoFMV_ArGbRMsitZx4hL5H36pPgsfZLAtqpaq3KPJf7LHnG2fmG4S2BXNK6ZRHkMk6YrGRkVTCRspxww2BoGAIFD4948eX7MtVcjWFPjWxMDU_xPjCDXZGOK9hg1fG7T2ThkIarIRK4AJ9wziRINKH52PuKEA6vPbvaEXeqEgaWiFC98ZVXyqjZ4Q5iVODoum8R9-aIdb-Jbe790O1qx9esTf-5zfModkRAMXtWmLm0ZQtFtC7CVrCD-jXhCcRLh32J2RVWYMD0sYOfEwwuKKDv5e9w3CVi80NaMj6YhErWzyU3wNxNc4Lg9VN-fvxJyhMg6vr4XXeg5Nk4Ifs26nK3o--HezjNg5ct9Bj30JAMshPqA8gtV9OvKzgF8IAuGAX0WXn6OLgOBoldYg09RZwxFjMrHQ0UcLFKo-JFoSnwtGW0iYhkBHNEMkMp7mCfDNSOWeE4cx5oSJaxR_RdFEWdglh55zIhU4ZzTWzsZCpt6-ss9JjUMuS1jLaaVY30yPGc0i80ctqrmaa-fnPwvwvo61x0aqm-fhTobVGRLLRTr_LKLALUSJS6bsLa_33BrJ2txseVv696Caa6R52spPPZ19X0VsKwReQwIKsoenh4N6ue0g0VBtB9J8Al3MMuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+chopped+glass+fiber+composites+with+difunctional+benzoxazine+and+bio%E2%80%90based+phthalonitrile+copolymer%3A+A+study+of+mechanical+and+thermomechanical+properties&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Alshahrani%2C+Hassan&rft.au=Dayo%2C+Abdul+Qadeer&rft.au=Liu%2C+Wen%E2%80%90Bin&rft.date=2022-09-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=139&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapp.52804&rft.externalDBID=10.1002%252Fapp.52804&rft.externalDocID=APP52804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon