Alzheimer's detection using various feature extraction approaches using a multimodal multi‐class deep learning model

Alzheimer's disease is a chronic brain condition that takes a toll on memory and potential to do even the most basic tasks. With no specific solution viable at this time, it's critical to pinpoint the start of Alzheimer's disease so that necessary steps may be initiated to limit its p...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of imaging systems and technology Vol. 33; no. 2; pp. 588 - 609
Main Authors Goenka, Nitika, Tiwari, Shamik
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0899-9457
1098-1098
DOI10.1002/ima.22813

Cover

Loading…
Abstract Alzheimer's disease is a chronic brain condition that takes a toll on memory and potential to do even the most basic tasks. With no specific solution viable at this time, it's critical to pinpoint the start of Alzheimer's disease so that necessary steps may be initiated to limit its progression. We used three distinct neuroanatomical computational methodologies namely 3D‐Subject, 3D‐Patches, and 3D‐Slices to construct a multimodal multi‐class deep learning model for three class and two class Alzheimer's classification using T1w‐MRI and AV‐45 PET scans obtained from ADNI database. Further, patches of various sizes were created using the patch‐extraction algorithm designed with torch package leading to separate datasets of patch size 32, 40, 48, 56, 64, 72, 80, and 88. In addition, Slices were produced from images using either uniform slicing, subset slicing, or interpolation zoom approaches then joined back to form a 3D image of varying depth (8,16,24,32,40,48,56, and 64) for the Slice‐based technique. Using T1w‐MRI and AV45‐PET scans, our multimodal multi‐class Ensembled Volumetric ConvNet framework obtained 93.01% accuracy for AD versus NC versus MCI (highest accuracy achieved using multi‐modalities as per our knowledge). The 3D‐Subject‐based neuroanatomy computation approach achieved 93.01% classification accuracy and it overruled Patch‐based approach which achieved 89.55% accuracy and Slice‐Based approach that achieved 89.37% accuracy. Using a 3D‐Patch‐based feature extraction technique, it was discovered that patches of greater size (80, 88) had accuracy over 89%, while medium‐sized patches (56, 64, and 72) had accuracy ranging from 83 to 88%, and small‐sized patches (32, 40, and 48) had the least accuracy ranging from 57 to 80%. From the three independent algorithms created for 3D‐Slice‐based neuroanatomy computational approach, the interpolation zoom technique outperformed uniform slicing and subset slicing, obtaining 89.37% accuracy over 88.35% and 82.83%, respectively. Link to GitHub code: https://github.com/ngoenka04/Alzheimer-Detection.
AbstractList Alzheimer's disease is a chronic brain condition that takes a toll on memory and potential to do even the most basic tasks. With no specific solution viable at this time, it's critical to pinpoint the start of Alzheimer's disease so that necessary steps may be initiated to limit its progression. We used three distinct neuroanatomical computational methodologies namely 3D‐Subject, 3D‐Patches, and 3D‐Slices to construct a multimodal multi‐class deep learning model for three class and two class Alzheimer's classification using T1w‐MRI and AV‐45 PET scans obtained from ADNI database. Further, patches of various sizes were created using the patch‐extraction algorithm designed with torch package leading to separate datasets of patch size 32, 40, 48, 56, 64, 72, 80, and 88. In addition, Slices were produced from images using either uniform slicing, subset slicing, or interpolation zoom approaches then joined back to form a 3D image of varying depth (8,16,24,32,40,48,56, and 64) for the Slice‐based technique. Using T1w‐MRI and AV45‐PET scans, our multimodal multi‐class Ensembled Volumetric ConvNet framework obtained 93.01% accuracy for AD versus NC versus MCI (highest accuracy achieved using multi‐modalities as per our knowledge). The 3D‐Subject‐based neuroanatomy computation approach achieved 93.01% classification accuracy and it overruled Patch‐based approach which achieved 89.55% accuracy and Slice‐Based approach that achieved 89.37% accuracy. Using a 3D‐Patch‐based feature extraction technique, it was discovered that patches of greater size (80, 88) had accuracy over 89%, while medium‐sized patches (56, 64, and 72) had accuracy ranging from 83 to 88%, and small‐sized patches (32, 40, and 48) had the least accuracy ranging from 57 to 80%. From the three independent algorithms created for 3D‐Slice‐based neuroanatomy computational approach, the interpolation zoom technique outperformed uniform slicing and subset slicing, obtaining 89.37% accuracy over 88.35% and 82.83%, respectively. Link to GitHub code: https://github.com/ngoenka04/Alzheimer-Detection .
Alzheimer's disease is a chronic brain condition that takes a toll on memory and potential to do even the most basic tasks. With no specific solution viable at this time, it's critical to pinpoint the start of Alzheimer's disease so that necessary steps may be initiated to limit its progression. We used three distinct neuroanatomical computational methodologies namely 3D‐Subject, 3D‐Patches, and 3D‐Slices to construct a multimodal multi‐class deep learning model for three class and two class Alzheimer's classification using T1w‐MRI and AV‐45 PET scans obtained from ADNI database. Further, patches of various sizes were created using the patch‐extraction algorithm designed with torch package leading to separate datasets of patch size 32, 40, 48, 56, 64, 72, 80, and 88. In addition, Slices were produced from images using either uniform slicing, subset slicing, or interpolation zoom approaches then joined back to form a 3D image of varying depth (8,16,24,32,40,48,56, and 64) for the Slice‐based technique. Using T1w‐MRI and AV45‐PET scans, our multimodal multi‐class Ensembled Volumetric ConvNet framework obtained 93.01% accuracy for AD versus NC versus MCI (highest accuracy achieved using multi‐modalities as per our knowledge). The 3D‐Subject‐based neuroanatomy computation approach achieved 93.01% classification accuracy and it overruled Patch‐based approach which achieved 89.55% accuracy and Slice‐Based approach that achieved 89.37% accuracy. Using a 3D‐Patch‐based feature extraction technique, it was discovered that patches of greater size (80, 88) had accuracy over 89%, while medium‐sized patches (56, 64, and 72) had accuracy ranging from 83 to 88%, and small‐sized patches (32, 40, and 48) had the least accuracy ranging from 57 to 80%. From the three independent algorithms created for 3D‐Slice‐based neuroanatomy computational approach, the interpolation zoom technique outperformed uniform slicing and subset slicing, obtaining 89.37% accuracy over 88.35% and 82.83%, respectively. Link to GitHub code: https://github.com/ngoenka04/Alzheimer-Detection.
Author Goenka, Nitika
Tiwari, Shamik
Author_xml – sequence: 1
  givenname: Nitika
  orcidid: 0000-0003-4886-1830
  surname: Goenka
  fullname: Goenka, Nitika
  email: goenka.nitika@gmail.com
  organization: University of Petroleum and Energy Studies
– sequence: 2
  givenname: Shamik
  orcidid: 0000-0002-5987-7101
  surname: Tiwari
  fullname: Tiwari, Shamik
  organization: University of Petroleum and Energy Studies
BookMark eNp9kL9OwzAQhy1UJNrCwBtEYkAMaW0nTuKxqvhTqYgFZst1LtSVkxQ7KZSJR-AZeRIc0gkJFp9P-u53p2-EBlVdAULnBE8IxnSqSzmhNCPRERoSzLOwewZoiDPOQx6z9ASNnNtgTAjDbIh2M_O-Bl2CvXRBDg2oRtdV0DpdPQc7aXXduqAA2bQWAnhrrOwBud3aWqo1uAMrg7I1jS7rXJr--_XxqYx0XSxsAwPSVh3oCTCn6LiQxsHZoY7R08314_wuXD7cLuazZagoTaMwjnNVSBr5SjlPVokkqeQ5y4o4TROigMYsIUTljMdxRmFFuUxIwgqWEswYRGN00ef6a19acI3Y1K2t_EpB04ySyCvhnrrqKWVr5ywUYmu9SLsXBItOq_Cd-NHq2ekvVulGdk68G23-m3jVBvZ_R4vF_ayf-AZ88I1l
CitedBy_id crossref_primary_10_1007_s11571_023_09993_5
crossref_primary_10_1002_ima_23074
crossref_primary_10_3390_s23198272
crossref_primary_10_3389_fninf_2024_1495571
Cites_doi 10.5121/ijcnc.2021.13503
10.1007/978-3-030-02628-8_3
10.1038/s41598-019-56651-0
10.1007/s12021-018-9370-4
10.1109/ESCI53509.2022.9758317
10.1016/j.neuroimage.2011.09.069
10.1016/j.jneumeth.2020.108795
10.1016/j.media.2019.101625
10.1109/TBME.2018.2869989
10.3389/fnins.2019.00509
10.1371/journal.pone.0226577
10.1016/j.bbr.2018.02.017
10.1109/TMI.2010.2046908
10.1109/ICOEI51242.2021.9453043
10.1038/s41598-019-56102-w
10.1109/ACCESS.2022.3149824
10.1007/978-3-030-59354-4_15
10.1002/hbm.10062
10.1109/TBME.2014.2372011
10.37418/amsj.10.3.7
10.1002/ima.22566
10.1016/j.compbiomed.2021.104919
10.37418/amsj.10.3.18
10.1016/B978-0-12-804832-0.00003-1
10.1109/ISBI.2017.7950647
10.1002/ima.22706
10.1016/S1353-4858(14)70096-0
10.1007/s10462-021-10016-0
10.1016/j.cogsys.2018.12.015
10.3390/app10020485
10.1016/j.neucom.2020.01.053
10.1371/journal.pone.0225759
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals, LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals, LLC.
DBID AAYXX
CITATION
DOI 10.1002/ima.22813
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-1098
EndPage 609
ExternalDocumentID 10_1002_ima_22813
IMA22813
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HDBZQ
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2273-44dcfa2344d2996b6a17a9d58f47761ce245611cd594482eb29a6165f571055e3
IEDL.DBID DR2
ISSN 0899-9457
IngestDate Fri Jul 25 08:34:15 EDT 2025
Tue Jul 01 01:29:50 EDT 2025
Thu Apr 24 23:00:46 EDT 2025
Wed Jan 22 16:16:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2273-44dcfa2344d2996b6a17a9d58f47761ce245611cd594482eb29a6165f571055e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5987-7101
0000-0003-4886-1830
PQID 2782139459
PQPubID 1026352
PageCount 22
ParticipantIDs proquest_journals_2782139459
crossref_primary_10_1002_ima_22813
crossref_citationtrail_10_1002_ima_22813
wiley_primary_10_1002_ima_22813_IMA22813
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: New York
PublicationTitle International journal of imaging systems and technology
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2002; 17
2019; 9
2013; 28
2020; 341
2019; 13
2019; 57
2018; 344
2019; 14
2021b
2018b; 66
2020; 388
2012; 59
2020; 10
2021; 13
2021; 10
2019; 60
2021; 31
2018; 2
2022; 2021
2020; 1
2022
2015; 62
2010; 29
2021
2020
2021; 138
2018a; 16
2019
2018
2016; 84
2017
2016
2021a; 54
2015
2014
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
e_1_2_12_38_1
Zunair H (e_1_2_12_40_1) 2019
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_25_1
Janghel RR (e_1_2_12_27_1) 2020; 1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
Gupta A (e_1_2_12_26_1) 2013; 28
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 84
  start-page: 51
  year: 2016
  end-page: 100
  article-title: Neuroimaging biomarkers in Alzheimer's disease
  publication-title: Biomark Alzheimer's Dis
– volume: 14
  issue: 12
  year: 2019
  article-title: Neuroimaging modality fusion in Alzheimer's classification using convolutional neural networks
  publication-title: PLoS ONE
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  end-page: 1320
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
– volume: 31
  start-page: 525
  year: 2021
  end-page: 539
  article-title: Convolutional capsule network forCOVID‐19 detection using radiography images
  publication-title: Int J Image Syst Technol
– start-page: 16
  year: 2016
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 12
  article-title: Predicting Alzheimer's disease progression using multi‐modal deep learning approach
  publication-title: Sci Rep
– volume: 9
  start-page: 1
  year: 2019
  end-page: 16
  article-title: Classification and visualization of Alzheimer's disease using volumetric convolutional neural network and transfer learning
  publication-title: Sci Rep
– volume: 13
  start-page: 37
  issue: 5
  year: 2021
  end-page: 56
  article-title: An effective control of hello process for routing protocol in MANET's
  publication-title: Int J Comput Netw Commun
– volume: 10
  start-page: 1311
  issue: 3
  year: 2021
  end-page: 1317
  article-title: Comparative analysis of newton raphson and particle swarm optimization techniques for harmonic minimization in CMLI
  publication-title: Adv Math: Sci J
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
– year: 2021
– volume: 66
  year: 2018b
  article-title: Joint classification and regression via deep multi‐task multi‐channel learning for Alzheimer's disease diagnosis
  publication-title: IEEE Transact Biomed Eng
– start-page: 1
  year: 2020
  end-page: 12
– volume: 344
  start-page: 103
  year: 2018
  end-page: 109
  article-title: Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging
  publication-title: Behav Brain Res
– start-page: 9
  year: 2019
  end-page: 12
  article-title: Estimating severity from CT scans of tuberculosis patients using 3D convolutional nets and slice selection
  publication-title: CLEF
– volume: 54
  start-page: 4827
  issue: 7
  year: 2021a
  end-page: 4871
  article-title: Deep learning for Alzheimer prediction using brain biomarkers
  publication-title: Artificial Intelligence Rev
– volume: 1
  start-page: 1
  year: 2020
  end-page: 10
  article-title: Deep convolution neural network based system for early diagnosis of Alzheimer's disease
  publication-title: IRBM
– volume: 57
  start-page: 147
  year: 2019
  end-page: 159
  article-title: Convolutional neural network based Alzheimer's disease classification from magnetic resonance brain images
  publication-title: Cogn Syst Res
– year: 2018
– start-page: 835
  year: 2017
  end-page: 838
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
  publication-title: ISBI
– volume: 16
  start-page: 295
  year: 2018a
  end-page: 308
  article-title: Multi‐modality cascaded convolutional neural networks for Alzheimer's disease diagnosis
  publication-title: Neuroinformatics
– volume: 28
  start-page: 987
  year: 2013
  end-page: 994
  article-title: Natural image bases to represent neuroimaging data
  publication-title: ICML
– volume: 10
  issue: 2
  year: 2020
  article-title: 3D Dense separated convolution module for volumetric medical image analysis
  publication-title: Appl Sci
– volume: 2
  start-page: 24
  year: 2018
  end-page: 31
  article-title: Visualizing convolutional networks for MRI‐based diagnosis of Alzheimer's disease
  publication-title: Lect Notes Comput Sci
– start-page: 1
  year: 2015
  end-page: 15
– volume: 2021
  start-page: 419
  year: 2022
  end-page: 434
  article-title: A lightweight capsule network architecture for detection of COVID‐19 from lung CT scans
  publication-title: Int J Image Syst Technol
– volume: 388
  start-page: 280
  year: 2020
  end-page: 287
  article-title: Detecting Alzheimer's disease based on 4D fMRI: an exploration under deep learning framework
  publication-title: Neurocomputing
– volume: 10
  start-page: 1175
  issue: 3
  year: 2021
  end-page: 1182
  article-title: No‐reference image blur detection scheme using fuzzy inference
  publication-title: Adv Math: Sci J
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  end-page: 907
  article-title: Multi‐modal multi‐task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
  publication-title: Neuroimage
– start-page: 17920
  year: 2022
  end-page: 17932
  article-title: Dermatologist‐level classification of skin cancer using cascaded ensembling of convolutional neural network and handcrafted features based deep neural network
  publication-title: IEEE Access
– volume: 13
  start-page: 509
  year: 2019
  article-title: Diagnosis of Alzheimer's disease via multi‐modality 3D convolutional neural network
  publication-title: Front Neurosci
– volume: 138
  year: 2021
  article-title: Feasibility evaluation of PET scan‐time reduction for diagnosing amyloid‐β levels in Alzheimer's disease patients using a deep‐learning‐based denoising algorithm
  publication-title: Comput Biol Med
– volume: 62
  start-page: 1132
  issue: 4
  year: 2015
  end-page: 1140
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease
  publication-title: IEEE Transact Biomed Eng
– start-page: 1500
  year: 2021b
  end-page: 1505
– volume: 341
  year: 2020
  article-title: Multi‐modal neuroimaging feature fusion for diagnosis of Alzheimer's disease
  publication-title: J Neurosci Methods
– start-page: 1
  year: 2014
  end-page: 10
– volume: 60
  year: 2019
  article-title: Multi‐modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease
  publication-title: Med Image Anal
– year: 2015
– volume: 14
  start-page: 1
  issue: 12
  year: 2019
  end-page: 13
  article-title: The use of back propagation neural networks and 18F‐florbetapir PET for early detection of Alzheimer's disease using Alzheimer's disease neuroimaging initiative database
  publication-title: PLoS ONE
– start-page: 1
  year: 2022
  end-page: 5
– ident: e_1_2_12_7_1
  doi: 10.5121/ijcnc.2021.13503
– ident: e_1_2_12_31_1
  doi: 10.1007/978-3-030-02628-8_3
– ident: e_1_2_12_10_1
  doi: 10.1038/s41598-019-56651-0
– ident: e_1_2_12_2_1
– ident: e_1_2_12_16_1
  doi: 10.1007/s12021-018-9370-4
– volume: 28
  start-page: 987
  year: 2013
  ident: e_1_2_12_26_1
  article-title: Natural image bases to represent neuroimaging data
  publication-title: ICML
– ident: e_1_2_12_18_1
  doi: 10.1109/ESCI53509.2022.9758317
– ident: e_1_2_12_23_1
  doi: 10.1016/j.neuroimage.2011.09.069
– ident: e_1_2_12_9_1
  doi: 10.1016/j.jneumeth.2020.108795
– ident: e_1_2_12_20_1
  doi: 10.1016/j.media.2019.101625
– volume: 1
  start-page: 1
  year: 2020
  ident: e_1_2_12_27_1
  article-title: Deep convolution neural network based system for early diagnosis of Alzheimer's disease
  publication-title: IRBM
– ident: e_1_2_12_17_1
  doi: 10.1109/TBME.2018.2869989
– ident: e_1_2_12_19_1
  doi: 10.3389/fnins.2019.00509
– start-page: 9
  year: 2019
  ident: e_1_2_12_40_1
  article-title: Estimating severity from CT scans of tuberculosis patients using 3D convolutional nets and slice selection
  publication-title: CLEF
– ident: e_1_2_12_14_1
  doi: 10.1371/journal.pone.0226577
– ident: e_1_2_12_15_1
– ident: e_1_2_12_33_1
  doi: 10.1016/j.bbr.2018.02.017
– ident: e_1_2_12_35_1
– ident: e_1_2_12_43_1
– ident: e_1_2_12_34_1
  doi: 10.1109/TMI.2010.2046908
– ident: e_1_2_12_29_1
  doi: 10.1109/ICOEI51242.2021.9453043
– ident: e_1_2_12_30_1
  doi: 10.1038/s41598-019-56102-w
– ident: e_1_2_12_5_1
  doi: 10.1109/ACCESS.2022.3149824
– ident: e_1_2_12_41_1
  doi: 10.1007/978-3-030-59354-4_15
– ident: e_1_2_12_36_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_12_21_1
  doi: 10.1109/TBME.2014.2372011
– ident: e_1_2_12_4_1
  doi: 10.37418/amsj.10.3.7
– ident: e_1_2_12_12_1
  doi: 10.1002/ima.22566
– ident: e_1_2_12_25_1
  doi: 10.1016/j.compbiomed.2021.104919
– ident: e_1_2_12_6_1
  doi: 10.37418/amsj.10.3.18
– ident: e_1_2_12_42_1
– ident: e_1_2_12_3_1
  doi: 10.1016/B978-0-12-804832-0.00003-1
– ident: e_1_2_12_32_1
  doi: 10.1109/ISBI.2017.7950647
– ident: e_1_2_12_37_1
– ident: e_1_2_12_13_1
  doi: 10.1002/ima.22706
– ident: e_1_2_12_22_1
– ident: e_1_2_12_39_1
  doi: 10.1016/S1353-4858(14)70096-0
– ident: e_1_2_12_8_1
  doi: 10.1007/s10462-021-10016-0
– ident: e_1_2_12_24_1
  doi: 10.1016/j.cogsys.2018.12.015
– ident: e_1_2_12_38_1
  doi: 10.3390/app10020485
– ident: e_1_2_12_44_1
– ident: e_1_2_12_11_1
  doi: 10.1016/j.neucom.2020.01.053
– ident: e_1_2_12_28_1
  doi: 10.1371/journal.pone.0225759
SSID ssj0011505
Score 2.3349824
Snippet Alzheimer's disease is a chronic brain condition that takes a toll on memory and potential to do even the most basic tasks. With no specific solution viable at...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 588
SubjectTerms 18F‐AV45 PET
Accuracy
Algorithms
Alzheimer's disease
Classification
Deep learning
Feature extraction
Interpolation
Machine learning
Magnetic resonance imaging
Medical imaging
multi‐modality
neuroimaging biomarker
Patches (structures)
patch‐based
Positron emission
slice‐based
Slicing
subject‐level
T1w‐sMRI
volumetric convnet
Title Alzheimer's detection using various feature extraction approaches using a multimodal multi‐class deep learning model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22813
https://www.proquest.com/docview/2782139459
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7IRNAHL1PxThBBX7rZ2KQtPg0vTHE-qIM9CCVLkynqJmvng0_-BH-jv8STtN2mKIhPzcNp0iYnOV_aL98B2PG01Iq73AkQTjiexFLItXC08HEzEMQY0yzb4pLXm955i7Um4LA4C5PpQww_uJmZYddrM8FFO6mOREPvjWwQDWzGWsPVMoDoaigdZYCOpS8GRoHSY36hKrRPq8M7v8aiEcAch6k2zpzOwW3xhBm95KEySNsV-fpNvPGfrzAPszn-JLXMYRZgQnXLMDOmSliGKcsKlckivNQeX-_U_ZPq7yYkVqmlbXWJ4cp3yAvusnuDhGhltUEJrvL97JQEKYTKVZLbCmKJi0-9GNu2xY-3d2mAO1arnkmeu6JDbGKeJWientwc1Z08UYMjKcIfx_NiqQU9wCtGN97mwvVFGLNAe77PXanM31XXlTEL0QEobuZDgf7BNPNNfk51sAylbq-rVoAEXIZUY8hE2IFYg4nAFwH3Y6pdJkJXrMJeMWSRzFXMTTKNxyjTX6YRdmpkO3UVtoemz5l0x09GG8W4R_nsTSKKsAmRscdCbM4O4O8VRGeNmi2s_d10HaZN1vqMyrYBpbQ_UJuIbdL2FkzWjhsX11vWmT8BEyD3MA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2hIgQc2BFLAQshwSUtcWMnkbhUCNSyHRBIvaDIdWxAdFPTcuiJT-Ab-RLGTlIWgYQ4xQfHSeyx540zfg9gz9NSK-5yJ0A44XgSSyHXwtHCx2AgiNGn2WyLK1679c4arDEBR_lZmJQfYrzhZmaGXa_NBDcb0uUP1tBHwxtEAyNZO2kUvW1AdT0mjzJQxyYwBoaD0mN-zit0SMvjW796ow-I-RmoWk9zOg93-TumCSZPpeGgWZKjb_SN__2IBZjLICippjazCBOqswSzn4gJl2DKJobKZBmeq63Rg3psq_5-QmI1sJlbHWLS5e_JMwba3WFCtLL0oAQX-n56UILkXOUqyeoKYnMX290Yn22Lby-v0mB3bFb1SCZfcU-sNs8K3J6e3BzXnEyrwZEUEZDjebHUglbwig6ON7lwfRHGLNCe73NXKvOD1XVlzEK0AYrxfCjQRJhmvpHoVJVVKHS6HbUGJOAypBq9JiIPhBtMBL4IuB9T7TIRumIdDvIxi2RGZG70NFpRSsFMI-zUyHbqOuyOq_ZS9o6fKhXzgY-yCZxEFJETgmOPhfg4O4K_NxDVL6u2sPH3qjswXbu5vIgu6lfnmzBjROzTzLYiFAb9odpCqDNobluLfgev-vm3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL2IoujCt_g2iKCbqo1JmuJqUAffiCi4EEomTVTUmWE648KVn-A3-iXepO34QEFcNYvbpE1uck_ak3MBVpjV1ohQBBLhRMA0lmJhVWBVhJsBmWJM82yLU7F_yQ6v-FUPbJdnYXJ9iO4HNzcz_HrtJngztRsfoqF3TjaISpexto-JTelceve8qx3lkI7nL0onQcl4VMoKbdKN7q1fg9EHwvyMU32gqY7AdfmIOb_kfr3Trq3r52_qjf98h1EYLgAoqeQeMwY9pj4OQ59kCceh39NCdTYBT5WH51tz92haqxlJTdvzturEkeVvyBNusxudjFjjxUEJLvOt_JgEKZXKTVbYKuKZi4-NFNv2xbeXV-2QO1ZrmqRIXnFDfGaeSbis7l3s7AdFpoZAU8Q_AWOptopu4RXDm6gJFUYqTrm0LIpEqI37vRqGOuUxegDF3Xys0EG45ZFL0Gm2pqC33qibaSBS6JhajJmIOxBscCUjJUWUUhtyFYdqBtbKIUt0IWPusmk8JLkAM02wUxPfqTOw3DVt5todPxnNl-OeFNM3SyjiJoTGjMfYnB_A3ytIDk4qvjD7d9MlGDjbrSbHB6dHczDoMtjntLZ56G23OmYBcU67tuj9-R3o2_hv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alzheimer%27s+detection+using+various+feature+extraction+approaches+using+a+multimodal+multi%E2%80%90class+deep+learning+model&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Goenka%2C+Nitika&rft.au=Tiwari%2C+Shamik&rft.date=2023-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=33&rft.issue=2&rft.spage=588&rft.epage=609&rft_id=info:doi/10.1002%2Fima.22813&rft.externalDBID=10.1002%252Fima.22813&rft.externalDocID=IMA22813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon