Alzheimer's detection using various feature extraction approaches using a multimodal multi‐class deep learning model
Alzheimer's disease is a chronic brain condition that takes a toll on memory and potential to do even the most basic tasks. With no specific solution viable at this time, it's critical to pinpoint the start of Alzheimer's disease so that necessary steps may be initiated to limit its p...
Saved in:
Published in | International journal of imaging systems and technology Vol. 33; no. 2; pp. 588 - 609 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0899-9457 1098-1098 |
DOI | 10.1002/ima.22813 |
Cover
Loading…
Abstract | Alzheimer's disease is a chronic brain condition that takes a toll on memory and potential to do even the most basic tasks. With no specific solution viable at this time, it's critical to pinpoint the start of Alzheimer's disease so that necessary steps may be initiated to limit its progression. We used three distinct neuroanatomical computational methodologies namely 3D‐Subject, 3D‐Patches, and 3D‐Slices to construct a multimodal multi‐class deep learning model for three class and two class Alzheimer's classification using T1w‐MRI and AV‐45 PET scans obtained from ADNI database. Further, patches of various sizes were created using the patch‐extraction algorithm designed with torch package leading to separate datasets of patch size 32, 40, 48, 56, 64, 72, 80, and 88. In addition, Slices were produced from images using either uniform slicing, subset slicing, or interpolation zoom approaches then joined back to form a 3D image of varying depth (8,16,24,32,40,48,56, and 64) for the Slice‐based technique. Using T1w‐MRI and AV45‐PET scans, our multimodal multi‐class Ensembled Volumetric ConvNet framework obtained 93.01% accuracy for AD versus NC versus MCI (highest accuracy achieved using multi‐modalities as per our knowledge). The 3D‐Subject‐based neuroanatomy computation approach achieved 93.01% classification accuracy and it overruled Patch‐based approach which achieved 89.55% accuracy and Slice‐Based approach that achieved 89.37% accuracy. Using a 3D‐Patch‐based feature extraction technique, it was discovered that patches of greater size (80, 88) had accuracy over 89%, while medium‐sized patches (56, 64, and 72) had accuracy ranging from 83 to 88%, and small‐sized patches (32, 40, and 48) had the least accuracy ranging from 57 to 80%. From the three independent algorithms created for 3D‐Slice‐based neuroanatomy computational approach, the interpolation zoom technique outperformed uniform slicing and subset slicing, obtaining 89.37% accuracy over 88.35% and 82.83%, respectively. Link to GitHub code: https://github.com/ngoenka04/Alzheimer-Detection. |
---|---|
AbstractList | Alzheimer's disease is a chronic brain condition that takes a toll on memory and potential to do even the most basic tasks. With no specific solution viable at this time, it's critical to pinpoint the start of Alzheimer's disease so that necessary steps may be initiated to limit its progression. We used three distinct neuroanatomical computational methodologies namely 3D‐Subject, 3D‐Patches, and 3D‐Slices to construct a multimodal multi‐class deep learning model for three class and two class Alzheimer's classification using T1w‐MRI and AV‐45 PET scans obtained from ADNI database. Further, patches of various sizes were created using the patch‐extraction algorithm designed with torch package leading to separate datasets of patch size 32, 40, 48, 56, 64, 72, 80, and 88. In addition, Slices were produced from images using either uniform slicing, subset slicing, or interpolation zoom approaches then joined back to form a 3D image of varying depth (8,16,24,32,40,48,56, and 64) for the Slice‐based technique. Using T1w‐MRI and AV45‐PET scans, our multimodal multi‐class Ensembled Volumetric ConvNet framework obtained 93.01% accuracy for AD versus NC versus MCI (highest accuracy achieved using multi‐modalities as per our knowledge). The 3D‐Subject‐based neuroanatomy computation approach achieved 93.01% classification accuracy and it overruled Patch‐based approach which achieved 89.55% accuracy and Slice‐Based approach that achieved 89.37% accuracy. Using a 3D‐Patch‐based feature extraction technique, it was discovered that patches of greater size (80, 88) had accuracy over 89%, while medium‐sized patches (56, 64, and 72) had accuracy ranging from 83 to 88%, and small‐sized patches (32, 40, and 48) had the least accuracy ranging from 57 to 80%. From the three independent algorithms created for 3D‐Slice‐based neuroanatomy computational approach, the interpolation zoom technique outperformed uniform slicing and subset slicing, obtaining 89.37% accuracy over 88.35% and 82.83%, respectively. Link to GitHub code:
https://github.com/ngoenka04/Alzheimer-Detection
. Alzheimer's disease is a chronic brain condition that takes a toll on memory and potential to do even the most basic tasks. With no specific solution viable at this time, it's critical to pinpoint the start of Alzheimer's disease so that necessary steps may be initiated to limit its progression. We used three distinct neuroanatomical computational methodologies namely 3D‐Subject, 3D‐Patches, and 3D‐Slices to construct a multimodal multi‐class deep learning model for three class and two class Alzheimer's classification using T1w‐MRI and AV‐45 PET scans obtained from ADNI database. Further, patches of various sizes were created using the patch‐extraction algorithm designed with torch package leading to separate datasets of patch size 32, 40, 48, 56, 64, 72, 80, and 88. In addition, Slices were produced from images using either uniform slicing, subset slicing, or interpolation zoom approaches then joined back to form a 3D image of varying depth (8,16,24,32,40,48,56, and 64) for the Slice‐based technique. Using T1w‐MRI and AV45‐PET scans, our multimodal multi‐class Ensembled Volumetric ConvNet framework obtained 93.01% accuracy for AD versus NC versus MCI (highest accuracy achieved using multi‐modalities as per our knowledge). The 3D‐Subject‐based neuroanatomy computation approach achieved 93.01% classification accuracy and it overruled Patch‐based approach which achieved 89.55% accuracy and Slice‐Based approach that achieved 89.37% accuracy. Using a 3D‐Patch‐based feature extraction technique, it was discovered that patches of greater size (80, 88) had accuracy over 89%, while medium‐sized patches (56, 64, and 72) had accuracy ranging from 83 to 88%, and small‐sized patches (32, 40, and 48) had the least accuracy ranging from 57 to 80%. From the three independent algorithms created for 3D‐Slice‐based neuroanatomy computational approach, the interpolation zoom technique outperformed uniform slicing and subset slicing, obtaining 89.37% accuracy over 88.35% and 82.83%, respectively. Link to GitHub code: https://github.com/ngoenka04/Alzheimer-Detection. |
Author | Goenka, Nitika Tiwari, Shamik |
Author_xml | – sequence: 1 givenname: Nitika orcidid: 0000-0003-4886-1830 surname: Goenka fullname: Goenka, Nitika email: goenka.nitika@gmail.com organization: University of Petroleum and Energy Studies – sequence: 2 givenname: Shamik orcidid: 0000-0002-5987-7101 surname: Tiwari fullname: Tiwari, Shamik organization: University of Petroleum and Energy Studies |
BookMark | eNp9kL9OwzAQhy1UJNrCwBtEYkAMaW0nTuKxqvhTqYgFZst1LtSVkxQ7KZSJR-AZeRIc0gkJFp9P-u53p2-EBlVdAULnBE8IxnSqSzmhNCPRERoSzLOwewZoiDPOQx6z9ASNnNtgTAjDbIh2M_O-Bl2CvXRBDg2oRtdV0DpdPQc7aXXduqAA2bQWAnhrrOwBud3aWqo1uAMrg7I1jS7rXJr--_XxqYx0XSxsAwPSVh3oCTCn6LiQxsHZoY7R08314_wuXD7cLuazZagoTaMwjnNVSBr5SjlPVokkqeQ5y4o4TROigMYsIUTljMdxRmFFuUxIwgqWEswYRGN00ef6a19acI3Y1K2t_EpB04ySyCvhnrrqKWVr5ywUYmu9SLsXBItOq_Cd-NHq2ekvVulGdk68G23-m3jVBvZ_R4vF_ayf-AZ88I1l |
CitedBy_id | crossref_primary_10_1007_s11571_023_09993_5 crossref_primary_10_1002_ima_23074 crossref_primary_10_3390_s23198272 crossref_primary_10_3389_fninf_2024_1495571 |
Cites_doi | 10.5121/ijcnc.2021.13503 10.1007/978-3-030-02628-8_3 10.1038/s41598-019-56651-0 10.1007/s12021-018-9370-4 10.1109/ESCI53509.2022.9758317 10.1016/j.neuroimage.2011.09.069 10.1016/j.jneumeth.2020.108795 10.1016/j.media.2019.101625 10.1109/TBME.2018.2869989 10.3389/fnins.2019.00509 10.1371/journal.pone.0226577 10.1016/j.bbr.2018.02.017 10.1109/TMI.2010.2046908 10.1109/ICOEI51242.2021.9453043 10.1038/s41598-019-56102-w 10.1109/ACCESS.2022.3149824 10.1007/978-3-030-59354-4_15 10.1002/hbm.10062 10.1109/TBME.2014.2372011 10.37418/amsj.10.3.7 10.1002/ima.22566 10.1016/j.compbiomed.2021.104919 10.37418/amsj.10.3.18 10.1016/B978-0-12-804832-0.00003-1 10.1109/ISBI.2017.7950647 10.1002/ima.22706 10.1016/S1353-4858(14)70096-0 10.1007/s10462-021-10016-0 10.1016/j.cogsys.2018.12.015 10.3390/app10020485 10.1016/j.neucom.2020.01.053 10.1371/journal.pone.0225759 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. 2023 Wiley Periodicals, LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. – notice: 2023 Wiley Periodicals, LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/ima.22813 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1098-1098 |
EndPage | 609 |
ExternalDocumentID | 10_1002_ima_22813 IMA22813 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HDBZQ HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2273-44dcfa2344d2996b6a17a9d58f47761ce245611cd594482eb29a6165f571055e3 |
IEDL.DBID | DR2 |
ISSN | 0899-9457 |
IngestDate | Fri Jul 25 08:34:15 EDT 2025 Tue Jul 01 01:29:50 EDT 2025 Thu Apr 24 23:00:46 EDT 2025 Wed Jan 22 16:16:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2273-44dcfa2344d2996b6a17a9d58f47761ce245611cd594482eb29a6165f571055e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5987-7101 0000-0003-4886-1830 |
PQID | 2782139459 |
PQPubID | 1026352 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2782139459 crossref_primary_10_1002_ima_22813 crossref_citationtrail_10_1002_ima_22813 wiley_primary_10_1002_ima_22813_IMA22813 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: New York |
PublicationTitle | International journal of imaging systems and technology |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2002; 17 2019; 9 2013; 28 2020; 341 2019; 13 2019; 57 2018; 344 2019; 14 2021b 2018b; 66 2020; 388 2012; 59 2020; 10 2021; 13 2021; 10 2019; 60 2021; 31 2018; 2 2022; 2021 2020; 1 2022 2015; 62 2010; 29 2021 2020 2021; 138 2018a; 16 2019 2018 2016; 84 2017 2016 2021a; 54 2015 2014 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_38_1 Zunair H (e_1_2_12_40_1) 2019 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 Janghel RR (e_1_2_12_27_1) 2020; 1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 Gupta A (e_1_2_12_26_1) 2013; 28 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
References_xml | – volume: 84 start-page: 51 year: 2016 end-page: 100 article-title: Neuroimaging biomarkers in Alzheimer's disease publication-title: Biomark Alzheimer's Dis – volume: 14 issue: 12 year: 2019 article-title: Neuroimaging modality fusion in Alzheimer's classification using convolutional neural networks publication-title: PLoS ONE – volume: 29 start-page: 1310 issue: 6 year: 2010 end-page: 1320 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans Med Imaging – volume: 31 start-page: 525 year: 2021 end-page: 539 article-title: Convolutional capsule network forCOVID‐19 detection using radiography images publication-title: Int J Image Syst Technol – start-page: 16 year: 2016 – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 12 article-title: Predicting Alzheimer's disease progression using multi‐modal deep learning approach publication-title: Sci Rep – volume: 9 start-page: 1 year: 2019 end-page: 16 article-title: Classification and visualization of Alzheimer's disease using volumetric convolutional neural network and transfer learning publication-title: Sci Rep – volume: 13 start-page: 37 issue: 5 year: 2021 end-page: 56 article-title: An effective control of hello process for routing protocol in MANET's publication-title: Int J Comput Netw Commun – volume: 10 start-page: 1311 issue: 3 year: 2021 end-page: 1317 article-title: Comparative analysis of newton raphson and particle swarm optimization techniques for harmonic minimization in CMLI publication-title: Adv Math: Sci J – volume: 17 start-page: 143 issue: 3 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp – year: 2021 – volume: 66 year: 2018b article-title: Joint classification and regression via deep multi‐task multi‐channel learning for Alzheimer's disease diagnosis publication-title: IEEE Transact Biomed Eng – start-page: 1 year: 2020 end-page: 12 – volume: 344 start-page: 103 year: 2018 end-page: 109 article-title: Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging publication-title: Behav Brain Res – start-page: 9 year: 2019 end-page: 12 article-title: Estimating severity from CT scans of tuberculosis patients using 3D convolutional nets and slice selection publication-title: CLEF – volume: 54 start-page: 4827 issue: 7 year: 2021a end-page: 4871 article-title: Deep learning for Alzheimer prediction using brain biomarkers publication-title: Artificial Intelligence Rev – volume: 1 start-page: 1 year: 2020 end-page: 10 article-title: Deep convolution neural network based system for early diagnosis of Alzheimer's disease publication-title: IRBM – volume: 57 start-page: 147 year: 2019 end-page: 159 article-title: Convolutional neural network based Alzheimer's disease classification from magnetic resonance brain images publication-title: Cogn Syst Res – year: 2018 – start-page: 835 year: 2017 end-page: 838 article-title: Residual and plain convolutional neural networks for 3D brain MRI classification publication-title: ISBI – volume: 16 start-page: 295 year: 2018a end-page: 308 article-title: Multi‐modality cascaded convolutional neural networks for Alzheimer's disease diagnosis publication-title: Neuroinformatics – volume: 28 start-page: 987 year: 2013 end-page: 994 article-title: Natural image bases to represent neuroimaging data publication-title: ICML – volume: 10 issue: 2 year: 2020 article-title: 3D Dense separated convolution module for volumetric medical image analysis publication-title: Appl Sci – volume: 2 start-page: 24 year: 2018 end-page: 31 article-title: Visualizing convolutional networks for MRI‐based diagnosis of Alzheimer's disease publication-title: Lect Notes Comput Sci – start-page: 1 year: 2015 end-page: 15 – volume: 2021 start-page: 419 year: 2022 end-page: 434 article-title: A lightweight capsule network architecture for detection of COVID‐19 from lung CT scans publication-title: Int J Image Syst Technol – volume: 388 start-page: 280 year: 2020 end-page: 287 article-title: Detecting Alzheimer's disease based on 4D fMRI: an exploration under deep learning framework publication-title: Neurocomputing – volume: 10 start-page: 1175 issue: 3 year: 2021 end-page: 1182 article-title: No‐reference image blur detection scheme using fuzzy inference publication-title: Adv Math: Sci J – volume: 59 start-page: 895 issue: 2 year: 2012 end-page: 907 article-title: Multi‐modal multi‐task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease publication-title: Neuroimage – start-page: 17920 year: 2022 end-page: 17932 article-title: Dermatologist‐level classification of skin cancer using cascaded ensembling of convolutional neural network and handcrafted features based deep neural network publication-title: IEEE Access – volume: 13 start-page: 509 year: 2019 article-title: Diagnosis of Alzheimer's disease via multi‐modality 3D convolutional neural network publication-title: Front Neurosci – volume: 138 year: 2021 article-title: Feasibility evaluation of PET scan‐time reduction for diagnosing amyloid‐β levels in Alzheimer's disease patients using a deep‐learning‐based denoising algorithm publication-title: Comput Biol Med – volume: 62 start-page: 1132 issue: 4 year: 2015 end-page: 1140 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease publication-title: IEEE Transact Biomed Eng – start-page: 1500 year: 2021b end-page: 1505 – volume: 341 year: 2020 article-title: Multi‐modal neuroimaging feature fusion for diagnosis of Alzheimer's disease publication-title: J Neurosci Methods – start-page: 1 year: 2014 end-page: 10 – volume: 60 year: 2019 article-title: Multi‐modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer's disease publication-title: Med Image Anal – year: 2015 – volume: 14 start-page: 1 issue: 12 year: 2019 end-page: 13 article-title: The use of back propagation neural networks and 18F‐florbetapir PET for early detection of Alzheimer's disease using Alzheimer's disease neuroimaging initiative database publication-title: PLoS ONE – start-page: 1 year: 2022 end-page: 5 – ident: e_1_2_12_7_1 doi: 10.5121/ijcnc.2021.13503 – ident: e_1_2_12_31_1 doi: 10.1007/978-3-030-02628-8_3 – ident: e_1_2_12_10_1 doi: 10.1038/s41598-019-56651-0 – ident: e_1_2_12_2_1 – ident: e_1_2_12_16_1 doi: 10.1007/s12021-018-9370-4 – volume: 28 start-page: 987 year: 2013 ident: e_1_2_12_26_1 article-title: Natural image bases to represent neuroimaging data publication-title: ICML – ident: e_1_2_12_18_1 doi: 10.1109/ESCI53509.2022.9758317 – ident: e_1_2_12_23_1 doi: 10.1016/j.neuroimage.2011.09.069 – ident: e_1_2_12_9_1 doi: 10.1016/j.jneumeth.2020.108795 – ident: e_1_2_12_20_1 doi: 10.1016/j.media.2019.101625 – volume: 1 start-page: 1 year: 2020 ident: e_1_2_12_27_1 article-title: Deep convolution neural network based system for early diagnosis of Alzheimer's disease publication-title: IRBM – ident: e_1_2_12_17_1 doi: 10.1109/TBME.2018.2869989 – ident: e_1_2_12_19_1 doi: 10.3389/fnins.2019.00509 – start-page: 9 year: 2019 ident: e_1_2_12_40_1 article-title: Estimating severity from CT scans of tuberculosis patients using 3D convolutional nets and slice selection publication-title: CLEF – ident: e_1_2_12_14_1 doi: 10.1371/journal.pone.0226577 – ident: e_1_2_12_15_1 – ident: e_1_2_12_33_1 doi: 10.1016/j.bbr.2018.02.017 – ident: e_1_2_12_35_1 – ident: e_1_2_12_43_1 – ident: e_1_2_12_34_1 doi: 10.1109/TMI.2010.2046908 – ident: e_1_2_12_29_1 doi: 10.1109/ICOEI51242.2021.9453043 – ident: e_1_2_12_30_1 doi: 10.1038/s41598-019-56102-w – ident: e_1_2_12_5_1 doi: 10.1109/ACCESS.2022.3149824 – ident: e_1_2_12_41_1 doi: 10.1007/978-3-030-59354-4_15 – ident: e_1_2_12_36_1 doi: 10.1002/hbm.10062 – ident: e_1_2_12_21_1 doi: 10.1109/TBME.2014.2372011 – ident: e_1_2_12_4_1 doi: 10.37418/amsj.10.3.7 – ident: e_1_2_12_12_1 doi: 10.1002/ima.22566 – ident: e_1_2_12_25_1 doi: 10.1016/j.compbiomed.2021.104919 – ident: e_1_2_12_6_1 doi: 10.37418/amsj.10.3.18 – ident: e_1_2_12_42_1 – ident: e_1_2_12_3_1 doi: 10.1016/B978-0-12-804832-0.00003-1 – ident: e_1_2_12_32_1 doi: 10.1109/ISBI.2017.7950647 – ident: e_1_2_12_37_1 – ident: e_1_2_12_13_1 doi: 10.1002/ima.22706 – ident: e_1_2_12_22_1 – ident: e_1_2_12_39_1 doi: 10.1016/S1353-4858(14)70096-0 – ident: e_1_2_12_8_1 doi: 10.1007/s10462-021-10016-0 – ident: e_1_2_12_24_1 doi: 10.1016/j.cogsys.2018.12.015 – ident: e_1_2_12_38_1 doi: 10.3390/app10020485 – ident: e_1_2_12_44_1 – ident: e_1_2_12_11_1 doi: 10.1016/j.neucom.2020.01.053 – ident: e_1_2_12_28_1 doi: 10.1371/journal.pone.0225759 |
SSID | ssj0011505 |
Score | 2.3349824 |
Snippet | Alzheimer's disease is a chronic brain condition that takes a toll on memory and potential to do even the most basic tasks. With no specific solution viable at... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 588 |
SubjectTerms | 18F‐AV45 PET Accuracy Algorithms Alzheimer's disease Classification Deep learning Feature extraction Interpolation Machine learning Magnetic resonance imaging Medical imaging multi‐modality neuroimaging biomarker Patches (structures) patch‐based Positron emission slice‐based Slicing subject‐level T1w‐sMRI volumetric convnet |
Title | Alzheimer's detection using various feature extraction approaches using a multimodal multi‐class deep learning model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fima.22813 https://www.proquest.com/docview/2782139459 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7IRNAHL1PxThBBX7rZ2KQtPg0vTHE-qIM9CCVLkynqJmvng0_-BH-jv8STtN2mKIhPzcNp0iYnOV_aL98B2PG01Iq73AkQTjiexFLItXC08HEzEMQY0yzb4pLXm955i7Um4LA4C5PpQww_uJmZYddrM8FFO6mOREPvjWwQDWzGWsPVMoDoaigdZYCOpS8GRoHSY36hKrRPq8M7v8aiEcAch6k2zpzOwW3xhBm95KEySNsV-fpNvPGfrzAPszn-JLXMYRZgQnXLMDOmSliGKcsKlckivNQeX-_U_ZPq7yYkVqmlbXWJ4cp3yAvusnuDhGhltUEJrvL97JQEKYTKVZLbCmKJi0-9GNu2xY-3d2mAO1arnkmeu6JDbGKeJWientwc1Z08UYMjKcIfx_NiqQU9wCtGN97mwvVFGLNAe77PXanM31XXlTEL0QEobuZDgf7BNPNNfk51sAylbq-rVoAEXIZUY8hE2IFYg4nAFwH3Y6pdJkJXrMJeMWSRzFXMTTKNxyjTX6YRdmpkO3UVtoemz5l0x09GG8W4R_nsTSKKsAmRscdCbM4O4O8VRGeNmi2s_d10HaZN1vqMyrYBpbQ_UJuIbdL2FkzWjhsX11vWmT8BEyD3MA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2hIgQc2BFLAQshwSUtcWMnkbhUCNSyHRBIvaDIdWxAdFPTcuiJT-Ab-RLGTlIWgYQ4xQfHSeyx540zfg9gz9NSK-5yJ0A44XgSSyHXwtHCx2AgiNGn2WyLK1679c4arDEBR_lZmJQfYrzhZmaGXa_NBDcb0uUP1tBHwxtEAyNZO2kUvW1AdT0mjzJQxyYwBoaD0mN-zit0SMvjW796ow-I-RmoWk9zOg93-TumCSZPpeGgWZKjb_SN__2IBZjLICippjazCBOqswSzn4gJl2DKJobKZBmeq63Rg3psq_5-QmI1sJlbHWLS5e_JMwba3WFCtLL0oAQX-n56UILkXOUqyeoKYnMX290Yn22Lby-v0mB3bFb1SCZfcU-sNs8K3J6e3BzXnEyrwZEUEZDjebHUglbwig6ON7lwfRHGLNCe73NXKvOD1XVlzEK0AYrxfCjQRJhmvpHoVJVVKHS6HbUGJOAypBq9JiIPhBtMBL4IuB9T7TIRumIdDvIxi2RGZG70NFpRSsFMI-zUyHbqOuyOq_ZS9o6fKhXzgY-yCZxEFJETgmOPhfg4O4K_NxDVL6u2sPH3qjswXbu5vIgu6lfnmzBjROzTzLYiFAb9odpCqDNobluLfgev-vm3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL2IoujCt_g2iKCbqo1JmuJqUAffiCi4EEomTVTUmWE648KVn-A3-iXepO34QEFcNYvbpE1uck_ak3MBVpjV1ohQBBLhRMA0lmJhVWBVhJsBmWJM82yLU7F_yQ6v-FUPbJdnYXJ9iO4HNzcz_HrtJngztRsfoqF3TjaISpexto-JTelceve8qx3lkI7nL0onQcl4VMoKbdKN7q1fg9EHwvyMU32gqY7AdfmIOb_kfr3Trq3r52_qjf98h1EYLgAoqeQeMwY9pj4OQ59kCceh39NCdTYBT5WH51tz92haqxlJTdvzturEkeVvyBNusxudjFjjxUEJLvOt_JgEKZXKTVbYKuKZi4-NFNv2xbeXV-2QO1ZrmqRIXnFDfGaeSbis7l3s7AdFpoZAU8Q_AWOptopu4RXDm6gJFUYqTrm0LIpEqI37vRqGOuUxegDF3Xys0EG45ZFL0Gm2pqC33qibaSBS6JhajJmIOxBscCUjJUWUUhtyFYdqBtbKIUt0IWPusmk8JLkAM02wUxPfqTOw3DVt5todPxnNl-OeFNM3SyjiJoTGjMfYnB_A3ytIDk4qvjD7d9MlGDjbrSbHB6dHczDoMtjntLZ56G23OmYBcU67tuj9-R3o2_hv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alzheimer%27s+detection+using+various+feature+extraction+approaches+using+a+multimodal+multi%E2%80%90class+deep+learning+model&rft.jtitle=International+journal+of+imaging+systems+and+technology&rft.au=Goenka%2C+Nitika&rft.au=Tiwari%2C+Shamik&rft.date=2023-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0899-9457&rft.eissn=1098-1098&rft.volume=33&rft.issue=2&rft.spage=588&rft.epage=609&rft_id=info:doi/10.1002%2Fima.22813&rft.externalDBID=10.1002%252Fima.22813&rft.externalDocID=IMA22813 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-9457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-9457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-9457&client=summon |