Optimized poly(methyl methacrylate)/mixed‐phase silver vanadate nanocomposites with tuned optical properties and hydrophobicity

The fast advancements in technology have generated significant interest in optoelectronic materials. Nevertheless, the difficulty of creating affordable materials with exceptional optical characteristics is an ongoing challenge. Therefore, the objective of this work was to tune the optical propertie...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 141; no. 33
Main Authors Yousef, Ezz, Ali, M. K. M., Allam, Nageh K.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 05.09.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fast advancements in technology have generated significant interest in optoelectronic materials. Nevertheless, the difficulty of creating affordable materials with exceptional optical characteristics is an ongoing challenge. Therefore, the objective of this work was to tune the optical properties of poly(methyl methacrylate) (PMMA) by embedding silver vanadate (SV) in the polymer matrix. Moreover, the wettability test of the fabricated composite membranes showed a hydrophobic behavior, with the PMMA film containing 0.6 wt.% SV showed a contact angle of 86.75 ± 0.7°. Furthermore, SV showed high thermal stability with a maximum weight loss of 0.74% at 830°C, which is very high thermal stability at high temperatures. In addition, the 0.6 wt.% SV@PMMA film exhibited a maximum weight loss of 96.7% at 785°C. Moreover, the 0.6 wt.% SV@PMMA film showed the lowest indirect band gap energy (2.02 eV) compared to the other films and pure SV NPs. The findings demonstrate the potential of the synthesized films for optoelectronic applications. The addition of silver vanadate to PMMA film showed good indirect band gap energy of 2.02 eV with exceptional hydrophobocity.
AbstractList Abstract The fast advancements in technology have generated significant interest in optoelectronic materials. Nevertheless, the difficulty of creating affordable materials with exceptional optical characteristics is an ongoing challenge. Therefore, the objective of this work was to tune the optical properties of poly(methyl methacrylate) (PMMA) by embedding silver vanadate (SV) in the polymer matrix. Moreover, the wettability test of the fabricated composite membranes showed a hydrophobic behavior, with the PMMA film containing 0.6 wt.% SV showed a contact angle of 86.75 ± 0.7°. Furthermore, SV showed high thermal stability with a maximum weight loss of 0.74% at 830°C, which is very high thermal stability at high temperatures. In addition, the 0.6 wt.% SV@PMMA film exhibited a maximum weight loss of 96.7% at 785°C. Moreover, the 0.6 wt.% SV@PMMA film showed the lowest indirect band gap energy (2.02 eV) compared to the other films and pure SV NPs. The findings demonstrate the potential of the synthesized films for optoelectronic applications.
The fast advancements in technology have generated significant interest in optoelectronic materials. Nevertheless, the difficulty of creating affordable materials with exceptional optical characteristics is an ongoing challenge. Therefore, the objective of this work was to tune the optical properties of poly(methyl methacrylate) (PMMA) by embedding silver vanadate (SV) in the polymer matrix. Moreover, the wettability test of the fabricated composite membranes showed a hydrophobic behavior, with the PMMA film containing 0.6 wt.% SV showed a contact angle of 86.75 ± 0.7°. Furthermore, SV showed high thermal stability with a maximum weight loss of 0.74% at 830°C, which is very high thermal stability at high temperatures. In addition, the 0.6 wt.% SV@PMMA film exhibited a maximum weight loss of 96.7% at 785°C. Moreover, the 0.6 wt.% SV@PMMA film showed the lowest indirect band gap energy (2.02 eV) compared to the other films and pure SV NPs. The findings demonstrate the potential of the synthesized films for optoelectronic applications.
The fast advancements in technology have generated significant interest in optoelectronic materials. Nevertheless, the difficulty of creating affordable materials with exceptional optical characteristics is an ongoing challenge. Therefore, the objective of this work was to tune the optical properties of poly(methyl methacrylate) (PMMA) by embedding silver vanadate (SV) in the polymer matrix. Moreover, the wettability test of the fabricated composite membranes showed a hydrophobic behavior, with the PMMA film containing 0.6 wt.% SV showed a contact angle of 86.75 ± 0.7°. Furthermore, SV showed high thermal stability with a maximum weight loss of 0.74% at 830°C, which is very high thermal stability at high temperatures. In addition, the 0.6 wt.% SV@PMMA film exhibited a maximum weight loss of 96.7% at 785°C. Moreover, the 0.6 wt.% SV@PMMA film showed the lowest indirect band gap energy (2.02 eV) compared to the other films and pure SV NPs. The findings demonstrate the potential of the synthesized films for optoelectronic applications. The addition of silver vanadate to PMMA film showed good indirect band gap energy of 2.02 eV with exceptional hydrophobocity.
Author Allam, Nageh K.
Ali, M. K. M.
Yousef, Ezz
Author_xml – sequence: 1
  givenname: Ezz
  surname: Yousef
  fullname: Yousef, Ezz
  organization: The American University in Cairo
– sequence: 2
  givenname: M. K. M.
  surname: Ali
  fullname: Ali, M. K. M.
  organization: Imam Mohammad Ibn Saud Islamic University (IMSIU)
– sequence: 3
  givenname: Nageh K.
  orcidid: 0000-0001-9458-3507
  surname: Allam
  fullname: Allam, Nageh K.
  email: nageh.allam@aucegypt.edu
  organization: The American University in Cairo
BookMark eNp1kE1OwzAQhS1UJFpgwQ0ssaGLUDtJ03iJEH8SEixgHU2csWKUxMZ2KWEFN-CMnARD2bIaad733ozejEwGMyAhR5ydcsbSBVh7ulyWGd8hU87EKsmLtJyQadR4Ugqx3CMz758Y43zJiin5uLNB9_oNG2pNN570GNqxoz8DpBs7CDhf9PoVm6_3T9uCR-p194KOvsAATZTpAIORprfG64CebnRoaVgPMdHEbAkdtc5YdEFHFYaGtmMTF62ptdRhPCC7CjqPh39znzxeXjycXye3d1c352e3iUzTFU-AK1hxFErJWuQZqLJQdZaDEJKjAkylyjFvUAqR51IVnNeskMiKmpcrgDTbJ8fb3PjN8xp9qJ7M2g3xZJWxMmM8WrJIzbeUdMZ7h6qyTvfgxoqz6qfhKjZc_TYc2cWW3egOx__B6uz-fuv4BjlxhNE
CitedBy_id crossref_primary_10_1016_j_matchemphys_2024_129605
Cites_doi 10.1016/j.optmat.2022.112900
10.1016/j.jphotochem.2019.111986
10.1002/pc.27203
10.1021/acs.iecr.9b03623
10.1007/s40145-021-0534-6
10.1039/C6RA00279J
10.1016/j.bioadv.2022.213097
10.3390/polym16030333
10.1016/j.jiec.2023.09.042
10.1016/j.solidstatesciences.2014.10.016
10.3390/polym14122467
10.1016/j.seppur.2018.06.011
10.1016/j.rinp.2022.106173
10.1007/s00289-016-1891-0
10.1117/1.JNP.10.026011
10.1016/j.susmat.2020.e00210
10.1016/j.jlumin.2021.118588
10.1016/j.optmat.2022.112591
10.1088/0957-4484/21/18/185102
10.1039/C8NR02278J
10.1021/acsomega.7b00178
10.1021/acs.cgd.7b00594
10.1016/j.jlumin.2018.11.048
10.1016/j.molliq.2021.118447
10.3390/ijms19061746
10.1007/s00289-022-04508-4
10.1149/1945-7111/acd149
10.1007/s10854-021-07092-x
10.1016/j.materresbull.2015.08.028
10.1007/978-3-030-52359-6_14
10.1016/j.heliyon.2021.e06983
10.1007/s00216-015-9226-9
10.3390/ma16103764
10.1007/s00542-019-04686-8
10.1007/s11082-023-06075-y
10.1016/j.jallcom.2016.06.176
10.1007/s10854-022-08999-9
10.1016/j.matpr.2020.06.603
10.1016/j.apsusc.2008.01.115
10.1021/acsomega.0c05839
10.1016/j.physb.2010.07.006
10.1007/978-3-319-97779-9_4
10.1016/j.optlastec.2023.109833
10.1016/j.jlumin.2022.118954
10.1088/1464-4258/10/5/055303
10.1016/j.matchemphys.2016.06.061
10.1016/j.rinp.2019.102776
10.1007/s11998-017-0011-x
10.1007/s40145-022-0648-5
10.1155/2018/8462764
10.1016/j.optmat.2024.115193
10.1007/s11051-019-4704-1
10.1016/j.clay.2009.12.010
10.1149/MA2021-0213645mtgabs
10.1016/j.vibspec.2013.08.006
10.3390/polym11040601
10.1007/s10853-019-04316-8
10.1016/j.jmrt.2019.01.011
10.1016/j.polymer.2008.12.008
10.1016/j.mssp.2019.104824
10.1007/s00339-022-06137-0
10.1021/acs.jpclett.8b02892
10.1016/j.jpcs.2020.109767
10.1016/j.nimb.2010.12.025
10.1016/j.mtcomm.2023.105918
10.1039/C6CE01269H
10.1021/acsaem.2c00855
10.1039/D3TA02499G
10.1002/app.43421
10.1016/j.mtcomm.2023.106052
10.1016/j.tca.2012.04.026
10.1088/1755-1315/108/4/042097
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.55831
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_55831
APP55831
Genre researchArticle
GrantInformation_xml – fundername: Deanship of Scientific Research, Imam Mohammed Ibn Saud Islamic University
  funderid: IMSIU‐RP23085
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c2271-a1fa71e9ffcb943af86fb34a99c1efae2cf4e4dec9944cf611b06ce06b187aa23
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Thu Oct 10 22:43:51 EDT 2024
Fri Aug 23 04:41:08 EDT 2024
Sat Aug 24 00:57:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2271-a1fa71e9ffcb943af86fb34a99c1efae2cf4e4dec9944cf611b06ce06b187aa23
ORCID 0000-0001-9458-3507
PQID 3083016113
PQPubID 1006379
PageCount 13
ParticipantIDs proquest_journals_3083016113
crossref_primary_10_1002_app_55831
wiley_primary_10_1002_app_55831_APP55831
PublicationCentury 2000
PublicationDate September 5, 2024
PublicationDateYYYYMMDD 2024-09-05
PublicationDate_xml – month: 09
  year: 2024
  text: September 5, 2024
  day: 05
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2022; 133
2022; 131
2023; 35
2015; 39
2017; 2
2019; 11
2013; 68
2018; 206
2019; 15
2019; 58
2016; 74
2019; 207
2020; 55
2016; 181
2010; 21
2018; 9
2022; 242
2017; 74
2023; 170
2021; 33
2009; 50
2019; 21
2022; 80
2019; 28
2022; 33
2022; 128
2022; 248
2024; 150
2019; 8
2021; 02
2021; 7
2021; 6
2023; 11
2012; 541
2010; 405
2021; 148
2018; 108
2023; 16
2016; 408
2016; 10
2007
2020; 107
2008; 10
2024; 168
2024; 56
2016; 687
2022; 44
2016; 18
2019; 383
2012; 226
2024; 16
2011; 269
2018; 19
2016; 6
2018; 2018
2022; 141
2023; 44
2010; 47
2020; 31
2022; 5
2021
2017; 17
2020
2024; 130
2019
2022; 14
2018
2020; 26
2016; 133
2022; 11
2008; 254
2018; 10
2022; 348
2018; 15
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Gfroerer T. H. (e_1_2_8_78_1) 2007
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Viter R. (e_1_2_8_36_1) 2019
e_1_2_8_2_1
e_1_2_8_4_1
Li Y.‐C. M. (e_1_2_8_52_1) 2012; 226
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
Eid M. M. (e_1_2_8_37_1) 2021
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 130
  start-page: 25
  year: 2024
  publication-title: J. Ind. Eng. Chem.
– volume: 181
  start-page: 7
  year: 2016
  publication-title: Mater. Chem. Phys.
– volume: 148
  year: 2021
  publication-title: J. Phys. Chem. Solids
– volume: 47
  start-page: 414
  year: 2010
  publication-title: Appl. Clay Sci.
– volume: 58
  start-page: 18027
  year: 2019
  publication-title: Ind. Eng. Chem. Res.
– volume: 68
  start-page: 225
  year: 2013
  publication-title: Vib. Spectrosc.
– volume: 408
  start-page: 1357
  year: 2016
  publication-title: Anal. Bioanal. Chem.
– volume: 15
  year: 2019
  publication-title: Results Phys.
– volume: 141
  year: 2022
  publication-title: Biomater. Adv.
– volume: 17
  start-page: 4254
  year: 2017
  publication-title: Cryst. Growth Des.
– volume: 6
  start-page: 14909
  year: 2016
  publication-title: RSC Adv.
– start-page: 1
  year: 2021
– volume: 39
  start-page: 34
  year: 2015
  publication-title: Solid State Sci.
– volume: 55
  start-page: 4987
  year: 2020
  publication-title: J. Mater. Sci.
– volume: 8
  start-page: 1944
  year: 2019
  publication-title: J. Mater. Res. Technol.
– volume: 133
  start-page: 43421
  year: 2016
  publication-title: J. Appl. Polym. Sci.
– volume: 74
  start-page: 140
  year: 2016
  publication-title: Mater. Res. Bull.
– volume: 383
  year: 2019
  publication-title: J. Photochem. Photobiol., A
– volume: 9
  start-page: 6814
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 308
  year: 2022
  publication-title: J. Adv. Ceram.
– volume: 14
  start-page: 2467
  year: 2022
  publication-title: Polymer
– volume: 33
  start-page: 9018
  year: 2022
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 687
  start-page: 920
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 18
  start-page: 6483
  year: 2016
  publication-title: CrystEngComm
– volume: 19
  start-page: 1746
  year: 2018
  publication-title: Int. J. Mol. Sci.
– volume: 6
  start-page: 6261
  year: 2021
  publication-title: ACS Omega
– volume: 131
  year: 2022
  publication-title: Opt. Mater.
– volume: 21
  year: 2010
  publication-title: Nanotechnology
– volume: 35
  year: 2023
  publication-title: Mater. Today Commun.
– volume: 2018
  start-page: 1
  year: 2018
  publication-title: J. Nanomater.
– volume: 11
  start-page: 601
  year: 2019
  publication-title: Polymer
– volume: 11
  start-page: 116009
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 231
  year: 2018
  publication-title: J. Coat. Technol. Res.
– volume: 108
  year: 2018
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
– volume: 31
  start-page: 674
  year: 2020
  publication-title: Mater. Today: Proc.
– volume: 2
  start-page: 2792
  year: 2017
  publication-title: ACS Omega
– volume: 7
  year: 2021
  publication-title: Heliyon
– volume: 405
  start-page: 4163
  year: 2010
  publication-title: Phys. B
– volume: 10
  year: 2016
  publication-title: J. Nanophotonics
– year: 2007
– volume: 50
  start-page: 462
  year: 2009
  publication-title: Polymer
– volume: 207
  start-page: 571
  year: 2019
  publication-title: J. Lumin.
– volume: 128
  start-page: 1008
  year: 2022
  publication-title: Appl. Phys. A
– volume: 168
  year: 2024
  publication-title: Optics Laser Technol.
– volume: 541
  start-page: 42
  year: 2012
  publication-title: Thermochim. Acta
– volume: 5
  start-page: 6410
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 226
  start-page: 35
  year: 2012
  publication-title: J. Nanoeng. Nanosyst.
– volume: 16
  start-page: 3764
  year: 2023
  publication-title: Materials
– volume: 10
  year: 2008
  publication-title: J. Opt. A: Pure Appl. Opt.
– volume: 348
  year: 2022
  publication-title: J. Mol. Liq.
– volume: 28
  start-page: 255
  year: 2019
  publication-title: Microsyst. Technol.
– volume: 44
  start-page: 1762
  year: 2022
  publication-title: Polym. Compos.
– volume: 254
  start-page: 4820
  year: 2008
  publication-title: Appl. Surf. Sci.
– volume: 56
  start-page: 404
  year: 2024
  publication-title: Opt. Quantum Electron.
– volume: 33
  start-page: 22196
  year: 2022
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 269
  start-page: 1755
  year: 2011
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– start-page: 353
  year: 2020
– volume: 11
  start-page: 1789
  year: 2022
  publication-title: J. Adv. Ceram.
– volume: 21
  start-page: 1
  year: 2019
  publication-title: J. Nanopart. Res.
– volume: 133
  year: 2022
  publication-title: Opt. Mater.
– volume: 02
  start-page: 645
  year: 2021
  publication-title: ECS Meet. Abstr.
– volume: 150
  year: 2024
  publication-title: Opt. Mater.
– volume: 33
  start-page: 9018
  year: 2021
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 26
  year: 2020
  publication-title: Sustainable Mater. Technol.
– volume: 107
  year: 2020
  publication-title: Mater. Sci. Semicond. Process.
– volume: 16
  start-page: 333
  year: 2024
  publication-title: Polymer
– volume: 10
  start-page: 12871
  year: 2018
  publication-title: Nanoscale
– volume: 74
  start-page: 3213
  year: 2017
  publication-title: Polym. Bull.
– volume: 248
  year: 2022
  publication-title: J. Lumin.
– volume: 170
  year: 2023
  publication-title: J. Electrochem. Soc.
– volume: 44
  year: 2023
  publication-title: Results Phys.
– start-page: 87
  year: 2018
– volume: 80
  start-page: 9611
  year: 2022
  publication-title: Polym. Bull.
– start-page: 1
  year: 2019
– volume: 206
  start-page: 226
  year: 2018
  publication-title: Sep. Purif. Technol.
– volume: 242
  year: 2022
  publication-title: J. Lumin.
– ident: e_1_2_8_7_1
  doi: 10.1016/j.optmat.2022.112900
– ident: e_1_2_8_71_1
  doi: 10.1016/j.jphotochem.2019.111986
– ident: e_1_2_8_12_1
  doi: 10.1002/pc.27203
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.iecr.9b03623
– start-page: 1
  volume-title: Handbook Nanofibers
  year: 2019
  ident: e_1_2_8_36_1
  contributor:
    fullname: Viter R.
– ident: e_1_2_8_70_1
  doi: 10.1007/s40145-021-0534-6
– ident: e_1_2_8_25_1
  doi: 10.1039/C6RA00279J
– volume: 226
  start-page: 35
  year: 2012
  ident: e_1_2_8_52_1
  publication-title: J. Nanoeng. Nanosyst.
  contributor:
    fullname: Li Y.‐C. M.
– ident: e_1_2_8_42_1
  doi: 10.1016/j.bioadv.2022.213097
– ident: e_1_2_8_63_1
  doi: 10.3390/polym16030333
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jiec.2023.09.042
– ident: e_1_2_8_50_1
  doi: 10.1016/j.solidstatesciences.2014.10.016
– ident: e_1_2_8_11_1
  doi: 10.3390/polym14122467
– ident: e_1_2_8_53_1
  doi: 10.1016/j.seppur.2018.06.011
– ident: e_1_2_8_5_1
  doi: 10.1016/j.rinp.2022.106173
– ident: e_1_2_8_59_1
  doi: 10.1007/s00289-016-1891-0
– ident: e_1_2_8_77_1
  doi: 10.1117/1.JNP.10.026011
– ident: e_1_2_8_56_1
  doi: 10.1016/j.susmat.2020.e00210
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jlumin.2021.118588
– ident: e_1_2_8_41_1
  doi: 10.1016/j.optmat.2022.112591
– ident: e_1_2_8_49_1
  doi: 10.1088/0957-4484/21/18/185102
– ident: e_1_2_8_28_1
  doi: 10.1039/C8NR02278J
– ident: e_1_2_8_48_1
  doi: 10.1021/acsomega.7b00178
– ident: e_1_2_8_67_1
  doi: 10.1021/acs.cgd.7b00594
– start-page: 1
  volume-title: Handbook of Consumer Nanoproducts
  year: 2021
  ident: e_1_2_8_37_1
  contributor:
    fullname: Eid M. M.
– ident: e_1_2_8_75_1
  doi: 10.1016/j.jlumin.2018.11.048
– ident: e_1_2_8_38_1
  doi: 10.1016/j.molliq.2021.118447
– ident: e_1_2_8_58_1
  doi: 10.3390/ijms19061746
– ident: e_1_2_8_64_1
  doi: 10.1007/s00289-022-04508-4
– ident: e_1_2_8_20_1
  doi: 10.1149/1945-7111/acd149
– ident: e_1_2_8_47_1
  doi: 10.1007/s10854-021-07092-x
– ident: e_1_2_8_21_1
  doi: 10.1016/j.materresbull.2015.08.028
– ident: e_1_2_8_65_1
  doi: 10.1007/978-3-030-52359-6_14
– ident: e_1_2_8_66_1
  doi: 10.1016/j.heliyon.2021.e06983
– ident: e_1_2_8_43_1
  doi: 10.1007/s00216-015-9226-9
– ident: e_1_2_8_55_1
  doi: 10.3390/ma16103764
– ident: e_1_2_8_60_1
  doi: 10.1007/s00542-019-04686-8
– ident: e_1_2_8_72_1
  doi: 10.1007/s11082-023-06075-y
– ident: e_1_2_8_73_1
  doi: 10.1016/j.jallcom.2016.06.176
– ident: e_1_2_8_4_1
  doi: 10.1007/s10854-022-08999-9
– ident: e_1_2_8_33_1
  doi: 10.1016/j.matpr.2020.06.603
– ident: e_1_2_8_13_1
  doi: 10.1016/j.apsusc.2008.01.115
– ident: e_1_2_8_30_1
  doi: 10.1021/acsomega.0c05839
– ident: e_1_2_8_29_1
  doi: 10.1016/j.physb.2010.07.006
– ident: e_1_2_8_27_1
  doi: 10.1007/978-3-319-97779-9_4
– ident: e_1_2_8_9_1
  doi: 10.1016/j.optlastec.2023.109833
– ident: e_1_2_8_74_1
  doi: 10.1016/j.jlumin.2022.118954
– ident: e_1_2_8_45_1
  doi: 10.1088/1464-4258/10/5/055303
– ident: e_1_2_8_10_1
  doi: 10.1016/j.matchemphys.2016.06.061
– ident: e_1_2_8_35_1
  doi: 10.1016/j.rinp.2019.102776
– ident: e_1_2_8_57_1
  doi: 10.1007/s11998-017-0011-x
– ident: e_1_2_8_23_1
  doi: 10.1007/s40145-022-0648-5
– ident: e_1_2_8_76_1
  doi: 10.1007/s10854-021-07092-x
– ident: e_1_2_8_51_1
  doi: 10.1155/2018/8462764
– ident: e_1_2_8_32_1
  doi: 10.1016/j.optmat.2024.115193
– ident: e_1_2_8_54_1
  doi: 10.1007/s11051-019-4704-1
– volume-title: Encyclopedia of Analytical Chemistry
  year: 2007
  ident: e_1_2_8_78_1
  contributor:
    fullname: Gfroerer T. H.
– ident: e_1_2_8_14_1
  doi: 10.1016/j.clay.2009.12.010
– ident: e_1_2_8_19_1
  doi: 10.1149/MA2021-0213645mtgabs
– ident: e_1_2_8_46_1
  doi: 10.1016/j.vibspec.2013.08.006
– ident: e_1_2_8_44_1
  doi: 10.3390/polym11040601
– ident: e_1_2_8_40_1
  doi: 10.1007/s10853-019-04316-8
– ident: e_1_2_8_68_1
  doi: 10.1016/j.jmrt.2019.01.011
– ident: e_1_2_8_8_1
  doi: 10.1016/j.polymer.2008.12.008
– ident: e_1_2_8_39_1
  doi: 10.1016/j.mssp.2019.104824
– ident: e_1_2_8_31_1
  doi: 10.1007/s00339-022-06137-0
– ident: e_1_2_8_69_1
  doi: 10.1021/acs.jpclett.8b02892
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jpcs.2020.109767
– ident: e_1_2_8_34_1
  doi: 10.1016/j.nimb.2010.12.025
– ident: e_1_2_8_2_1
  doi: 10.1016/j.mtcomm.2023.105918
– ident: e_1_2_8_18_1
  doi: 10.1039/C6CE01269H
– ident: e_1_2_8_6_1
  doi: 10.1021/acsaem.2c00855
– ident: e_1_2_8_3_1
  doi: 10.1039/D3TA02499G
– ident: e_1_2_8_62_1
  doi: 10.1002/app.43421
– ident: e_1_2_8_17_1
  doi: 10.1016/j.mtcomm.2023.106052
– ident: e_1_2_8_26_1
  doi: 10.1016/j.tca.2012.04.026
– ident: e_1_2_8_61_1
  doi: 10.1088/1755-1315/108/4/042097
SSID ssj0011506
Score 2.5077083
Snippet The fast advancements in technology have generated significant interest in optoelectronic materials. Nevertheless, the difficulty of creating affordable...
Abstract The fast advancements in technology have generated significant interest in optoelectronic materials. Nevertheless, the difficulty of creating...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Contact angle
High temperature
Hydrophobicity
nanocomposite
Nanocomposites
optical
Optical properties
Optoelectronics
Photonic band gaps
PMMA
Polymer matrix composites
Polymethyl methacrylate
silver vanadate
Thermal stability
Vanadates
Weight loss
Wettability
Title Optimized poly(methyl methacrylate)/mixed‐phase silver vanadate nanocomposites with tuned optical properties and hydrophobicity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.55831
https://www.proquest.com/docview/3083016113
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9Kn_RB6xeerbIUH-pDetmvXBafilhKQS1ioQ9C2I9Z7vCahPuAXp_qf-Df6F_izuZyrYIgPiWETUh2dmZ-O5n5DSGvmQzac7AZKAzdqNxkpVIuk6WBIICPcoP1zh8-Fifn8vRCXWyRt30tTMcPsQm4oWYke40Kbux8eEsaim2wlCpTDTUS6SEg-ryhjkKgU3TpHSyLewrVswrlfLi583dfdAsw78LU5GeOH5Kv_Rt26SXfDpcLe-iu_yBv_M9P2CEP1viTHnUL5hHZgvoxuX-HlfAJ-f4pmpHLyTV42jbT1QE2mV5NKR6Mm62mEZ2-GV5OrsD_vPnRjqMbpPMJJlhTbNCMEQRam7rBZHXMCIM5xWAvXSyjRadNm4LntMWfADNkc6Wm9nS88vHCuLETF7cFT8n58fsv706ydaeGzHE-YplhwYwY6BCc1VKYUBbBCmm0dgyCAe6CBOnBaS2lCwVjNi8c5IVl5cgYLp6R7bqp4Tmh3muhc8h54Fpyz0qjQxyuRSGc5dIPyH4vs6rtCDmqjnqZV3E-qzSfA7LXS7Na6-S8EhFtIsBlYkAOklj-_oDq6Owsnbz496G75B6PiCcloKk9sr2YLeFlRCwL-yotzV9-Ku0h
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOvFEXCliIQzmkG7-yscSlAqoF2lKhVuoFRX6MtSu2SbQPie0J_gG_kV-CJ9lsCxIS4pQocqLE45n5PJn5hpAXTAbtOdgEFIZuVGqSXCmXyNxAEMAHqcF658OjbHgq35-psw3yqquFafkh1gE31IzGXqOCY0C6f8kain2wlMqxiPpaVHeFavnm05o8CqFO1iZ4sCTuKlTHK5Ty_vrW373RJcS8ClQbT7N_m3zu3rFNMPmyu5jbXXfxB33j_37EHXJrBUHpXrtm7pINKO-Rm1eICe-T7x-jJTkfX4CndTVZ7mCf6eWE4sG46XISAerL_vn4K_if337Uo-gJ6WyMOdYUezRjEIGWpqwwXx2TwmBGMd5L54to1GlVN_FzWuN_gCkSulJTejpa-nhhVNmxizuDB-R0_-3J62GyataQOM4HLDEsmAEDHYKzWgoT8ixYIY3WjkEwwF2QID04raV0IWPMppmDNLMsHxjDxUOyWVYlbBHqvRY6hZQHriX3LDc6xOFaZMJZLn2PPO-EVtQtJ0fRsi_zIs5n0cxnj2x34ixWajkrRASciHGZ6JGdRi5_f0Cxd3zcnDz696HPyPXhyeFBcfDu6MNjcoNHANTko6ltsjmfLuBJBDBz-7RZp78ARqPxQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG6WFUQPvmVHV23Ew3rITvqVSeNpcR3W1zqIC3sQQj-qmcHZJMwDnD3pP_A3-kvsSiazqyCIp4TQCUlXV_VXlaqvCHnGZNCeg01AYehGpSbJlXKJzA0EAXyQGqx3fn-cHZ3IN6fqdIu86GphWn6ITcANNaOx16jgtQ_9C9JQbIOlVI411FdkJjh6XocfN9xRiHSyNr-DJdGpUB2tUMr7m1t_34wuEOZlnNpsNMOb5HP3im1-yZf95cLuu_M_2Bv_8xtukRtrAEoP2hVzm2xBeYdcv0RLeJd8_xDtyNnkHDytq-lqD7tMr6YUD8bNVtMIT5_3zyZfwf_89qMex32QzieYYU2xQzOGEGhpygqz1TElDOYUo710sYwmnVZ1Ez2nNf4FmCGdKzWlp-OVjxfGlZ246BfcIyfDV59eHiXrVg2J43zAEsOCGTDQITirpTAhz4IV0mjtGAQD3AUJ0oPTWkoXMsZsmjlIM8vygTFc3CfbZVXCDqHea6FTSHngWnLPcqNDHK5FJpzl0vfI005mRd0ychQt9zIv4nwWzXz2yG4nzWKtlPNCRLiJCJeJHtlrxPL3BxQHo1Fz8uDfhz4hV0eHw-Ld6-O3D8k1HtFPk4ymdsn2YraERxG9LOzjZpX-ApV07_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+poly%28methyl+methacrylate%29%2Fmixed%E2%80%90phase+silver+vanadate+nanocomposites+with+tuned+optical+properties+and+hydrophobicity&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Yousef%2C+Ezz&rft.au=Ali%2C+M.+K.+M.&rft.au=Allam%2C+Nageh+K.&rft.date=2024-09-05&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=141&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapp.55831&rft.externalDBID=10.1002%252Fapp.55831&rft.externalDocID=APP55831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon