Preparation of multifunctional silicon‐phosphorus acrylate particles for the simultaneous improvement of the flame retardancy and mechanical performance of polylactic acid

Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a multifunctional silicon‐phosphorus acrylic resin(P/Si‐ACR) is designed to endow both flame retardancy and toughness to PLA. P/Si‐ACR is prepared by see...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 140; no. 4
Main Authors Gao, Xueyu, Yan, Li, Sang, Xiaoming
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 20.01.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0021-8995
1097-4628
DOI10.1002/app.53380

Cover

Abstract Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a multifunctional silicon‐phosphorus acrylic resin(P/Si‐ACR) is designed to endow both flame retardancy and toughness to PLA. P/Si‐ACR is prepared by seeded emulsion polymerization with polysiloxane as the core layer and diethyl methylphosphonate acrylate and 9, 10‐dihydro‐9‐oxa‐10‐phosphophenanthrene‐10‐oxide acrylate as the shell materials. P/Si‐ACR has a particle size of approximately 200 nm and glass transition temperatures of −38 and 152°C for the core and shell layers, respectively. Addition of 7 wt% P/Si‐ACR to PLA increases the notched impact strength and elongation at break by 124% and 46%, respectively. This improved mechanical performance is due to the elasticity of silicone rubber and the promotion of crystallization by P/Si‐ACR. Combustion testing revealed that the limiting oxygen index increases from 19.1% to 22.5%, while the peak heat release rate decreases by 36%. This enhanced flame retardancy is due to the synergistic effect of phosphorus and silicon, with the former promoting graphitization and inhibiting the free radical degradation of PLA, and the latter stabilizing the char residue. Therefore, P/Si‐ACR is a promising multifunctional modifier that can achieve an optimal balance among flame retardancy, crystallization performance, and toughness in polymers. A multifunctional silicon‐phosphorus acrylic resin (P/Si‐ACR) with a core‐shell structure was synthesized as a modifier for polylactic acid (PLA). Experiments demonstrate that the addition of P/Si‐ACR to PLA increased the notched impact strength and elongation at break. The flame retardancy of PLA also improved significantly with the addition of P/Si‐ACR.
AbstractList Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a multifunctional silicon‐phosphorus acrylic resin(P/Si‐ACR) is designed to endow both flame retardancy and toughness to PLA. P/Si‐ACR is prepared by seeded emulsion polymerization with polysiloxane as the core layer and diethyl methylphosphonate acrylate and 9, 10‐dihydro‐9‐oxa‐10‐phosphophenanthrene‐10‐oxide acrylate as the shell materials. P/Si‐ACR has a particle size of approximately 200 nm and glass transition temperatures of −38 and 152°C for the core and shell layers, respectively. Addition of 7 wt% P/Si‐ACR to PLA increases the notched impact strength and elongation at break by 124% and 46%, respectively. This improved mechanical performance is due to the elasticity of silicone rubber and the promotion of crystallization by P/Si‐ACR. Combustion testing revealed that the limiting oxygen index increases from 19.1% to 22.5%, while the peak heat release rate decreases by 36%. This enhanced flame retardancy is due to the synergistic effect of phosphorus and silicon, with the former promoting graphitization and inhibiting the free radical degradation of PLA, and the latter stabilizing the char residue. Therefore, P/Si‐ACR is a promising multifunctional modifier that can achieve an optimal balance among flame retardancy, crystallization performance, and toughness in polymers.
Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a multifunctional silicon‐phosphorus acrylic resin(P/Si‐ACR) is designed to endow both flame retardancy and toughness to PLA. P/Si‐ACR is prepared by seeded emulsion polymerization with polysiloxane as the core layer and diethyl methylphosphonate acrylate and 9, 10‐dihydro‐9‐oxa‐10‐phosphophenanthrene‐10‐oxide acrylate as the shell materials. P/Si‐ACR has a particle size of approximately 200 nm and glass transition temperatures of −38 and 152°C for the core and shell layers, respectively. Addition of 7 wt% P/Si‐ACR to PLA increases the notched impact strength and elongation at break by 124% and 46%, respectively. This improved mechanical performance is due to the elasticity of silicone rubber and the promotion of crystallization by P/Si‐ACR. Combustion testing revealed that the limiting oxygen index increases from 19.1% to 22.5%, while the peak heat release rate decreases by 36%. This enhanced flame retardancy is due to the synergistic effect of phosphorus and silicon, with the former promoting graphitization and inhibiting the free radical degradation of PLA, and the latter stabilizing the char residue. Therefore, P/Si‐ACR is a promising multifunctional modifier that can achieve an optimal balance among flame retardancy, crystallization performance, and toughness in polymers. A multifunctional silicon‐phosphorus acrylic resin (P/Si‐ACR) with a core‐shell structure was synthesized as a modifier for polylactic acid (PLA). Experiments demonstrate that the addition of P/Si‐ACR to PLA increased the notched impact strength and elongation at break. The flame retardancy of PLA also improved significantly with the addition of P/Si‐ACR.
Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a multifunctional silicon‐phosphorus acrylic resin(P/Si‐ACR) is designed to endow both flame retardancy and toughness to PLA. P/Si‐ACR is prepared by seeded emulsion polymerization with polysiloxane as the core layer and diethyl methylphosphonate acrylate and 9, 10‐dihydro‐9‐oxa‐10‐phosphophenanthrene‐10‐oxide acrylate as the shell materials. P/Si‐ACR has a particle size of approximately 200 nm and glass transition temperatures of −38 and 152°C for the core and shell layers, respectively. Addition of 7 wt% P/Si‐ACR to PLA increases the notched impact strength and elongation at break by 124% and 46%, respectively. This improved mechanical performance is due to the elasticity of silicone rubber and the promotion of crystallization by P/Si‐ACR. Combustion testing revealed that the limiting oxygen index increases from 19.1% to 22.5%, while the peak heat release rate decreases by 36%. This enhanced flame retardancy is due to the synergistic effect of phosphorus and silicon, with the former promoting graphitization and inhibiting the free radical degradation of PLA, and the latter stabilizing the char residue. Therefore, P/Si‐ACR is a promising multifunctional modifier that can achieve an optimal balance among flame retardancy, crystallization performance, and toughness in polymers.
Author Sang, Xiaoming
Yan, Li
Gao, Xueyu
Author_xml – sequence: 1
  givenname: Xueyu
  surname: Gao
  fullname: Gao, Xueyu
  organization: North China University of Science and Technology
– sequence: 2
  givenname: Li
  orcidid: 0000-0003-0901-679X
  surname: Yan
  fullname: Yan, Li
  email: yl_dlut@126.com
  organization: North China University of Science and Technology
– sequence: 3
  givenname: Xiaoming
  surname: Sang
  fullname: Sang, Xiaoming
  organization: North China University of Science and Technology
BookMark eNp9UUtqHDEQFcGBjB0vfAOBV160Lalb_Vkakx8YMgt73dSoS4wGtdSW1AmzyxFyEV_KJ4l6xquAvRAFqvcp3jslJ847JOSCs2vOmLiBabqWZdmyD2TFWdcUVS3aE7LKO160XSc_kdMYd4xxLlm9Is_rgBMESMY76jUdZ5uMnp1aPsDSaKxR3r38-TttfcwvzJGCCnsLCWlmJqMsRqp9oGmLGb8ogEOfcWacgv-FI7q0aC97bWFEGjBBGMCpPQU30BHVFpxR2W_CkKXGvMKFMnmbnfIxKpua4TP5qMFGPH-dZ-Tx65eHu-_F_c9vP-5u7wslRMOKRpdlJcsaFLRMbqqOb0QD5aByALCpGzkIXUEz6LoTjeharWSJumMbzYSqsC3PyOVRN9__NGNM_c7PIecRe9HIqpK15Avq6ohSwccYUPdTMCOEfc9Zv7TR5zb6QxsZe_MfVpl0SD0FMPY9xm9jcf-2dH-7Xh8Z_wAXaaQ3
CitedBy_id crossref_primary_10_1021_acsapm_4c00340
crossref_primary_10_1016_j_cej_2023_144986
crossref_primary_10_1016_j_ijbiomac_2024_130790
Cites_doi 10.1016/j.reactfunctpolym.2021.105057
10.1016/j.tca.2016.07.006
10.1016/j.polymdegradstab.2017.04.024
10.1016/0141-3910(85)90035-7
10.3390/ma10070784
10.1016/j.polymdegradstab.2017.03.016
10.1016/j.cej.2021.128493
10.1016/j.ijbiomac.2019.11.226
10.1002/app.49649
10.1016/j.cej.2021.128737
10.1016/j.polymdegradstab.2021.109655
10.1002/app.48747
10.1002/app.35662
10.1016/j.polymdegradstab.2021.109684
10.1039/C8PY01236A
10.1016/B978-0-08-100136-3.00004-2
10.1016/j.indcrop.2021.114157
10.1016/j.polymdegradstab.2021.109705
10.1002/app.50987
10.1016/j.compositesa.2021.106317
10.1016/j.porgcoat.2021.106251
10.1016/j.polymertesting.2019.106287
10.1002/app.52390
10.1002/pat.1167
10.1016/j.polymertesting.2019.106268
10.1016/j.cclet.2009.01.036
10.1002/app.34482
10.1016/j.compositesb.2022.109913
10.1007/s10853-017-1354-5
10.1016/j.polymertesting.2017.12.028
10.1016/j.compositesb.2020.108192
10.1016/j.colsurfa.2012.01.003
10.1016/j.porgcoat.2022.106875
10.1002/app.31075
10.1021/acssuschemeng.9b01016
10.1016/j.polymer.2017.02.032
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1002/app.53380
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1097-4628
EndPage n/a
ExternalDocumentID 10_1002_app_53380
APP53380
Genre researchArticle
GrantInformation_xml – fundername: Provincial Natural Science Foundation of Hebei in China
  funderid: E2019209446
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWB
RWI
RX1
RYL
SUPJJ
UB1
V2E
V8K
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c2270-7f334536aca805b491b27a3dc899ab675d2f4a7df6927298fc53ef90bf02c4e83
IEDL.DBID DR2
ISSN 0021-8995
IngestDate Fri Jul 25 11:58:53 EDT 2025
Tue Jul 01 01:59:56 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Wed Jan 22 16:20:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2270-7f334536aca805b491b27a3dc899ab675d2f4a7df6927298fc53ef90bf02c4e83
Notes Funding information
Provincial Natural Science Foundation of Hebei in China, Grant/Award Number: E2019209446
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0901-679X
PQID 2754456518
PQPubID 1006379
PageCount 11
ParticipantIDs proquest_journals_2754456518
crossref_primary_10_1002_app_53380
crossref_citationtrail_10_1002_app_53380
wiley_primary_10_1002_app_53380_APP53380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 20, 2023
PublicationDateYYYYMMDD 2023-01-20
PublicationDate_xml – month: 01
  year: 2023
  text: January 20, 2023
  day: 20
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of applied polymer science
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 7
2012; 123
2012; 124
2009; 20
2021; 168
2020; 143
2020; 82
2020; 81
2008; 19
2021; 144
2017; 112
2018; 65
2022; 139
2022; 238
2017; 139
2018; 9
2021; 38
2017; 52
2012; 396
2021; 156
2020; 197
2021; 412
2021; 411
2021; 138
2010; 115
2017; 10
2016; 639
2021; 193
2020; 137
2021; 173
2017
2017; 140
2020; 298
1985; 11
2022; 168
2021; 191
2018; 35
e_1_2_8_28_1
Kikuchi S. (e_1_2_8_27_1) 2020; 298
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Li Q. (e_1_2_8_10_1) 2018; 35
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Xu W. (e_1_2_8_35_1) 2021; 38
e_1_2_8_30_1
References_xml – volume: 38
  start-page: 2848
  year: 2021
  publication-title: Acta Mater. Compos. Sin.
– volume: 173
  year: 2021
  publication-title: Ind. Crop. Prod.
– volume: 412
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 82
  year: 2020
  publication-title: Polym. Test.
– volume: 138
  year: 2021
  publication-title: J. Appl. Polym. Sci.
– volume: 144
  year: 2021
  publication-title: Composites, Part A
– volume: 19
  start-page: 710
  year: 2008
  publication-title: Polym. Adv. Technol.
– volume: 10
  start-page: 784
  year: 2017
  publication-title: Materials
– volume: 140
  start-page: 166
  year: 2017
  publication-title: Polym. Degrad. Stab.
– volume: 411
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 123
  start-page: 2609
  year: 2012
  publication-title: J. Appl. Polym. Sci.
– volume: 168
  year: 2021
  publication-title: React. Funct. Polym.
– volume: 11
  start-page: 309
  year: 1985
  publication-title: Polym. Degrad. Stab.
– volume: 137
  year: 2020
  publication-title: J. Appl. Polym. Sci.
– volume: 115
  start-page: 1032
  year: 2010
  publication-title: J. Appl. Polym. Sci.
– volume: 168
  year: 2022
  publication-title: Prog. Org. Coat.
– volume: 191
  year: 2021
  publication-title: Polym. Degrad. Stab.
– volume: 156
  year: 2021
  publication-title: Prog. Org. Coat.
– volume: 197
  year: 2020
  publication-title: Composites, Part B
– volume: 124
  start-page: 5113
  year: 2012
  publication-title: J. Appl. Polym. Sci.
– volume: 193
  year: 2021
  publication-title: Polym. Degrad. Stab.
– volume: 396
  start-page: 251
  year: 2012
  publication-title: Colloids Surf., A
– volume: 238
  year: 2022
  publication-title: Composites, Part B
– volume: 9
  start-page: 5359
  year: 2018
  publication-title: Polym. Chem.
– volume: 112
  start-page: 333
  year: 2017
  publication-title: Polymer
– volume: 81
  year: 2020
  publication-title: Polym. Test.
– volume: 143
  start-page: 443
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 35
  start-page: 118
  year: 2018
  publication-title: Fine Chem.
– volume: 20
  start-page: 881
  year: 2009
  publication-title: Chin. Chem. Lett.
– volume: 7
  start-page: 8954
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 139
  start-page: 55
  year: 2017
  publication-title: Polym. Degrad. Stab.
– volume: 139
  year: 2022
  publication-title: J. Appl. Polym. Sci.
– volume: 298
  start-page: 251
  year: 2020
  publication-title: Polym. Sci.
– volume: 639
  start-page: 84
  year: 2016
  publication-title: Thermochim. Acta
– year: 2017
– volume: 65
  start-page: 440
  year: 2018
  publication-title: Polym. Test.
– volume: 52
  year: 2017
  publication-title: J. Mater. Sci.
– ident: e_1_2_8_33_1
  doi: 10.1016/j.reactfunctpolym.2021.105057
– ident: e_1_2_8_30_1
  doi: 10.1016/j.tca.2016.07.006
– ident: e_1_2_8_31_1
  doi: 10.1016/j.polymdegradstab.2017.04.024
– ident: e_1_2_8_37_1
  doi: 10.1016/0141-3910(85)90035-7
– ident: e_1_2_8_29_1
  doi: 10.3390/ma10070784
– ident: e_1_2_8_38_1
  doi: 10.1016/j.polymdegradstab.2017.03.016
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cej.2021.128493
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ijbiomac.2019.11.226
– ident: e_1_2_8_18_1
  doi: 10.1002/app.49649
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cej.2021.128737
– ident: e_1_2_8_32_1
  doi: 10.1016/j.polymdegradstab.2021.109655
– ident: e_1_2_8_9_1
  doi: 10.1002/app.48747
– ident: e_1_2_8_16_1
  doi: 10.1002/app.35662
– ident: e_1_2_8_40_1
  doi: 10.1016/j.polymdegradstab.2021.109684
– volume: 298
  start-page: 251
  year: 2020
  ident: e_1_2_8_27_1
  publication-title: Polym. Sci.
– ident: e_1_2_8_8_1
  doi: 10.1039/C8PY01236A
– ident: e_1_2_8_17_1
  doi: 10.1016/B978-0-08-100136-3.00004-2
– ident: e_1_2_8_36_1
  doi: 10.1016/j.indcrop.2021.114157
– ident: e_1_2_8_3_1
  doi: 10.1016/j.polymdegradstab.2021.109705
– ident: e_1_2_8_21_1
  doi: 10.1002/app.50987
– ident: e_1_2_8_24_1
  doi: 10.1016/j.compositesa.2021.106317
– ident: e_1_2_8_12_1
  doi: 10.1016/j.porgcoat.2021.106251
– ident: e_1_2_8_15_1
  doi: 10.1016/j.polymertesting.2019.106287
– ident: e_1_2_8_11_1
  doi: 10.1002/app.52390
– ident: e_1_2_8_25_1
  doi: 10.1002/pat.1167
– ident: e_1_2_8_5_1
  doi: 10.1016/j.polymertesting.2019.106268
– ident: e_1_2_8_26_1
  doi: 10.1016/j.cclet.2009.01.036
– ident: e_1_2_8_2_1
  doi: 10.1002/app.34482
– ident: e_1_2_8_34_1
  doi: 10.1016/j.compositesb.2022.109913
– volume: 35
  start-page: 118
  year: 2018
  ident: e_1_2_8_10_1
  publication-title: Fine Chem.
– ident: e_1_2_8_22_1
  doi: 10.1007/s10853-017-1354-5
– ident: e_1_2_8_6_1
  doi: 10.1016/j.polymertesting.2017.12.028
– ident: e_1_2_8_19_1
  doi: 10.1016/j.compositesb.2020.108192
– ident: e_1_2_8_7_1
  doi: 10.1016/j.colsurfa.2012.01.003
– ident: e_1_2_8_13_1
  doi: 10.1016/j.porgcoat.2022.106875
– ident: e_1_2_8_28_1
  doi: 10.1002/app.31075
– volume: 38
  start-page: 2848
  year: 2021
  ident: e_1_2_8_35_1
  publication-title: Acta Mater. Compos. Sin.
– ident: e_1_2_8_39_1
  doi: 10.1021/acssuschemeng.9b01016
– ident: e_1_2_8_14_1
  doi: 10.1016/j.polymer.2017.02.032
SSID ssj0011506
Score 2.41646
Snippet Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acrylic resins
Biodegradability
Bioplastics
core‐shell structures
Crystallization
Elongation
Emulsion polymerization
Fire resistance
flame retardants
Free radicals
Glass transition temperature
Graphitization
Heat release rate
Impact strength
Materials science
Mechanical properties
Phosphorus
Polylactic acid
Polymers
Polysiloxanes
Silicon
Silicone rubber
silicon‐phosphorus acrylates
Synergistic effect
toughening agents
Toughness
Title Preparation of multifunctional silicon‐phosphorus acrylate particles for the simultaneous improvement of the flame retardancy and mechanical performance of polylactic acid
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.53380
https://www.proquest.com/docview/2754456518
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhp_bQn6QlSdMiSg69OLF-bGvpKbRZlkLLUhrIoWD0S5dubGPvHpJTHiEv0pfqk3RGXu-mpYHSg8HGI8lmRtI3w8wnQo60C8oboxLplEukyFmilWRJJr1ILTgMgWOB88dP-eRcfrjILrbI26EWpueHWAfccGbE9RonuDbdyYY0FI_BAqyi0F9nIkfe_Pef19RRCHTyPr2DJeBTZAOrUMpP1i1_34s2APMuTI37zPgx-Tp8YZ9e8v14uTDH9voP8sb__IUn5NEKf9LT3mCeki1f7ZCHd1gJd8mPaet7RvC6onWgMecQ978-bEi72RzMp_p5c9t8qzu42mVHtW2v5oBbaTOk2lGAwxTgJchjD7ryNcjNYhAjxiSxb3wfwCg9xbzH1uFaT3Xl6KXHkmS0INpsahuwSVPPYSQs7YJBZ-4ZOR-ffXk3SVanOiSW8yJNiiCEzESurVZpZuSIGV5o4SxoSRvwXxwPUhcu5CMOyF8FmwkfRqkJKbfSK_GcbFd15fcIDUZqXQjm88xL5jN4cAXW6rKgtJZ2n7wZ9FvaFeU5nrwxL3uyZl6CBsqogX3yei3a9DwffxM6HIykXE31ruRIIQiwmCkYLmr7_g7K0-k03hz8u-gL8gCPuMewD08PyfaiXfqXAIQW5lW0-F81YgtO
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaq9gAcKBQQhVIs1AOXtIntJF6pl6o_WqCtVqiVekGRf8WKJYmyuwd66iP0RfpSfZLOOJvdFoGEOERKlLGdaMb2N6OZz4RsKeul01pGwkobCZ4lkZIiiVLheGzAYfAMC5xPTrP-ufh8kV4skd2uFqblh5gH3HBmhPUaJzgGpHcWrKF4DhaAFQkO-4oAoIGu18HXOXkUQp2sTfBIIvAq0o5XKGY786YPd6MFxLwPVMNOc7RKvnXf2CaY_NieTvS2ufyNvvF_f-IZeTqDoHSvtZnnZMmVa-TJPWLCF-Rm0LiWFLwqaeVpSDvELbCNHNLxcAQWVN5eXdffqzFczXRMlWl-jQC60rrLtqOAiCkgTJDHHlTpKpAbhjhGCEti3_jeg106iqmPjcXlnqrS0p8Oq5LRiGi9KG_AJnU1gpGwugsGHdqX5Pzo8Gy_H80OdogMY3kc5Z5zkfJMGSXjVIteolmuuDWgJqXBhbHMC5Vbn_UYgH_pTcqd78Xax8wIJ_krslxWpXtNqNdCqZwnLkudSFwKDzbHct3ES6WEWScfOwUXZsZ6jodvjIqWr5kVoIEiaGCdfJiL1i3Vx5-ENjorKWazfVwwZBEEZJxIGC6o--8dFHuDQbh58--i78mj_tnJcXH86fTLW_IYT7zHKBCLN8jypJm6d4CLJnozmP8dziYPbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhgdIekv7S_DQVpYdenNiSbGvpKbRZ0qQNS2kgh4DRL1m6sY1395Cc8gh5kb5UniQz8no3LQ2UHgw2Hkk2M5K-GWY-EfJeWS-d1jISVtpI8CyJlBRJlArHYwMOg2dY4PztODs4EYen6ekS-djVwrT8EPOAG86MsF7jBK-t312QhuIxWIBVJPjrKyIDJIGI6PucOwqRTtbmdyQROBVpRysUs9150983owXCvI9Tw0bTXyNn3Se2-SU_d6YTvWOu_mBv_M9_eEpWZwCU7rUW84wsufI5eXKPlvAF-TVoXEsJXpW08jQkHeIG2MYN6Xg4Avspb69v6vNqDFczHVNlmssRAFdad7l2FPAwBXwJ8tiDKl0FcsMQxQhBSewb33uwSkcx8bGxuNhTVVp64bAmGU2I1oviBmxSVyMYCWu7YNChfUlO-vs_Ph1Es2MdIsNYHke551ykPFNGyTjVopdolituDWhJaXBgLPNC5dZnPQbQX3qTcud7sfYxM8JJ_oosl1XpXhPqtVAq54nLUicSl8KDzbFYN_FSKWHWyYdOv4WZcZ7j0RujomVrZgVooAgaWCfv5qJ1S_TxN6GtzkiK2VwfFww5BAEXJxKGC9p-uINibzAINxv_LvqWPBp87hdfvxwfbZLHeNw9hoBYvEWWJ83UvQFQNNHbwfjvAKubDhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+multifunctional+silicon%E2%80%90phosphorus+acrylate+particles+for+the+simultaneous+improvement+of+the+flame+retardancy+and+mechanical+performance+of+polylactic+acid&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Gao%2C+Xueyu&rft.au=Li%2C+Yan&rft.au=Sang%2C+Xiaoming&rft.date=2023-01-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=140&rft.issue=4&rft_id=info:doi/10.1002%2Fapp.53380&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon