Preparation of multifunctional silicon‐phosphorus acrylate particles for the simultaneous improvement of the flame retardancy and mechanical performance of polylactic acid
Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a multifunctional silicon‐phosphorus acrylic resin(P/Si‐ACR) is designed to endow both flame retardancy and toughness to PLA. P/Si‐ACR is prepared by see...
Saved in:
Published in | Journal of applied polymer science Vol. 140; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
20.01.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0021-8995 1097-4628 |
DOI | 10.1002/app.53380 |
Cover
Abstract | Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a multifunctional silicon‐phosphorus acrylic resin(P/Si‐ACR) is designed to endow both flame retardancy and toughness to PLA. P/Si‐ACR is prepared by seeded emulsion polymerization with polysiloxane as the core layer and diethyl methylphosphonate acrylate and 9, 10‐dihydro‐9‐oxa‐10‐phosphophenanthrene‐10‐oxide acrylate as the shell materials. P/Si‐ACR has a particle size of approximately 200 nm and glass transition temperatures of −38 and 152°C for the core and shell layers, respectively. Addition of 7 wt% P/Si‐ACR to PLA increases the notched impact strength and elongation at break by 124% and 46%, respectively. This improved mechanical performance is due to the elasticity of silicone rubber and the promotion of crystallization by P/Si‐ACR. Combustion testing revealed that the limiting oxygen index increases from 19.1% to 22.5%, while the peak heat release rate decreases by 36%. This enhanced flame retardancy is due to the synergistic effect of phosphorus and silicon, with the former promoting graphitization and inhibiting the free radical degradation of PLA, and the latter stabilizing the char residue. Therefore, P/Si‐ACR is a promising multifunctional modifier that can achieve an optimal balance among flame retardancy, crystallization performance, and toughness in polymers.
A multifunctional silicon‐phosphorus acrylic resin (P/Si‐ACR) with a core‐shell structure was synthesized as a modifier for polylactic acid (PLA). Experiments demonstrate that the addition of P/Si‐ACR to PLA increased the notched impact strength and elongation at break. The flame retardancy of PLA also improved significantly with the addition of P/Si‐ACR. |
---|---|
AbstractList | Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a multifunctional silicon‐phosphorus acrylic resin(P/Si‐ACR) is designed to endow both flame retardancy and toughness to PLA. P/Si‐ACR is prepared by seeded emulsion polymerization with polysiloxane as the core layer and diethyl methylphosphonate acrylate and 9, 10‐dihydro‐9‐oxa‐10‐phosphophenanthrene‐10‐oxide acrylate as the shell materials. P/Si‐ACR has a particle size of approximately 200 nm and glass transition temperatures of −38 and 152°C for the core and shell layers, respectively. Addition of 7 wt% P/Si‐ACR to PLA increases the notched impact strength and elongation at break by 124% and 46%, respectively. This improved mechanical performance is due to the elasticity of silicone rubber and the promotion of crystallization by P/Si‐ACR. Combustion testing revealed that the limiting oxygen index increases from 19.1% to 22.5%, while the peak heat release rate decreases by 36%. This enhanced flame retardancy is due to the synergistic effect of phosphorus and silicon, with the former promoting graphitization and inhibiting the free radical degradation of PLA, and the latter stabilizing the char residue. Therefore, P/Si‐ACR is a promising multifunctional modifier that can achieve an optimal balance among flame retardancy, crystallization performance, and toughness in polymers. Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a multifunctional silicon‐phosphorus acrylic resin(P/Si‐ACR) is designed to endow both flame retardancy and toughness to PLA. P/Si‐ACR is prepared by seeded emulsion polymerization with polysiloxane as the core layer and diethyl methylphosphonate acrylate and 9, 10‐dihydro‐9‐oxa‐10‐phosphophenanthrene‐10‐oxide acrylate as the shell materials. P/Si‐ACR has a particle size of approximately 200 nm and glass transition temperatures of −38 and 152°C for the core and shell layers, respectively. Addition of 7 wt% P/Si‐ACR to PLA increases the notched impact strength and elongation at break by 124% and 46%, respectively. This improved mechanical performance is due to the elasticity of silicone rubber and the promotion of crystallization by P/Si‐ACR. Combustion testing revealed that the limiting oxygen index increases from 19.1% to 22.5%, while the peak heat release rate decreases by 36%. This enhanced flame retardancy is due to the synergistic effect of phosphorus and silicon, with the former promoting graphitization and inhibiting the free radical degradation of PLA, and the latter stabilizing the char residue. Therefore, P/Si‐ACR is a promising multifunctional modifier that can achieve an optimal balance among flame retardancy, crystallization performance, and toughness in polymers. A multifunctional silicon‐phosphorus acrylic resin (P/Si‐ACR) with a core‐shell structure was synthesized as a modifier for polylactic acid (PLA). Experiments demonstrate that the addition of P/Si‐ACR to PLA increased the notched impact strength and elongation at break. The flame retardancy of PLA also improved significantly with the addition of P/Si‐ACR. Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a multifunctional silicon‐phosphorus acrylic resin(P/Si‐ACR) is designed to endow both flame retardancy and toughness to PLA. P/Si‐ACR is prepared by seeded emulsion polymerization with polysiloxane as the core layer and diethyl methylphosphonate acrylate and 9, 10‐dihydro‐9‐oxa‐10‐phosphophenanthrene‐10‐oxide acrylate as the shell materials. P/Si‐ACR has a particle size of approximately 200 nm and glass transition temperatures of −38 and 152°C for the core and shell layers, respectively. Addition of 7 wt% P/Si‐ACR to PLA increases the notched impact strength and elongation at break by 124% and 46%, respectively. This improved mechanical performance is due to the elasticity of silicone rubber and the promotion of crystallization by P/Si‐ACR. Combustion testing revealed that the limiting oxygen index increases from 19.1% to 22.5%, while the peak heat release rate decreases by 36%. This enhanced flame retardancy is due to the synergistic effect of phosphorus and silicon, with the former promoting graphitization and inhibiting the free radical degradation of PLA, and the latter stabilizing the char residue. Therefore, P/Si‐ACR is a promising multifunctional modifier that can achieve an optimal balance among flame retardancy, crystallization performance, and toughness in polymers. |
Author | Sang, Xiaoming Yan, Li Gao, Xueyu |
Author_xml | – sequence: 1 givenname: Xueyu surname: Gao fullname: Gao, Xueyu organization: North China University of Science and Technology – sequence: 2 givenname: Li orcidid: 0000-0003-0901-679X surname: Yan fullname: Yan, Li email: yl_dlut@126.com organization: North China University of Science and Technology – sequence: 3 givenname: Xiaoming surname: Sang fullname: Sang, Xiaoming organization: North China University of Science and Technology |
BookMark | eNp9UUtqHDEQFcGBjB0vfAOBV160Lalb_Vkakx8YMgt73dSoS4wGtdSW1AmzyxFyEV_KJ4l6xquAvRAFqvcp3jslJ847JOSCs2vOmLiBabqWZdmyD2TFWdcUVS3aE7LKO160XSc_kdMYd4xxLlm9Is_rgBMESMY76jUdZ5uMnp1aPsDSaKxR3r38-TttfcwvzJGCCnsLCWlmJqMsRqp9oGmLGb8ogEOfcWacgv-FI7q0aC97bWFEGjBBGMCpPQU30BHVFpxR2W_CkKXGvMKFMnmbnfIxKpua4TP5qMFGPH-dZ-Tx65eHu-_F_c9vP-5u7wslRMOKRpdlJcsaFLRMbqqOb0QD5aByALCpGzkIXUEz6LoTjeharWSJumMbzYSqsC3PyOVRN9__NGNM_c7PIecRe9HIqpK15Avq6ohSwccYUPdTMCOEfc9Zv7TR5zb6QxsZe_MfVpl0SD0FMPY9xm9jcf-2dH-7Xh8Z_wAXaaQ3 |
CitedBy_id | crossref_primary_10_1021_acsapm_4c00340 crossref_primary_10_1016_j_cej_2023_144986 crossref_primary_10_1016_j_ijbiomac_2024_130790 |
Cites_doi | 10.1016/j.reactfunctpolym.2021.105057 10.1016/j.tca.2016.07.006 10.1016/j.polymdegradstab.2017.04.024 10.1016/0141-3910(85)90035-7 10.3390/ma10070784 10.1016/j.polymdegradstab.2017.03.016 10.1016/j.cej.2021.128493 10.1016/j.ijbiomac.2019.11.226 10.1002/app.49649 10.1016/j.cej.2021.128737 10.1016/j.polymdegradstab.2021.109655 10.1002/app.48747 10.1002/app.35662 10.1016/j.polymdegradstab.2021.109684 10.1039/C8PY01236A 10.1016/B978-0-08-100136-3.00004-2 10.1016/j.indcrop.2021.114157 10.1016/j.polymdegradstab.2021.109705 10.1002/app.50987 10.1016/j.compositesa.2021.106317 10.1016/j.porgcoat.2021.106251 10.1016/j.polymertesting.2019.106287 10.1002/app.52390 10.1002/pat.1167 10.1016/j.polymertesting.2019.106268 10.1016/j.cclet.2009.01.036 10.1002/app.34482 10.1016/j.compositesb.2022.109913 10.1007/s10853-017-1354-5 10.1016/j.polymertesting.2017.12.028 10.1016/j.compositesb.2020.108192 10.1016/j.colsurfa.2012.01.003 10.1016/j.porgcoat.2022.106875 10.1002/app.31075 10.1021/acssuschemeng.9b01016 10.1016/j.polymer.2017.02.032 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. 2023 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. – notice: 2023 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1002/app.53380 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1097-4628 |
EndPage | n/a |
ExternalDocumentID | 10_1002_app_53380 APP53380 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Provincial Natural Science Foundation of Hebei in China funderid: E2019209446 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWB RWI RX1 RYL SUPJJ UB1 V2E V8K W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~KM ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c2270-7f334536aca805b491b27a3dc899ab675d2f4a7df6927298fc53ef90bf02c4e83 |
IEDL.DBID | DR2 |
ISSN | 0021-8995 |
IngestDate | Fri Jul 25 11:58:53 EDT 2025 Tue Jul 01 01:59:56 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Wed Jan 22 16:20:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2270-7f334536aca805b491b27a3dc899ab675d2f4a7df6927298fc53ef90bf02c4e83 |
Notes | Funding information Provincial Natural Science Foundation of Hebei in China, Grant/Award Number: E2019209446 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0901-679X |
PQID | 2754456518 |
PQPubID | 1006379 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2754456518 crossref_primary_10_1002_app_53380 crossref_citationtrail_10_1002_app_53380 wiley_primary_10_1002_app_53380_APP53380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 20, 2023 |
PublicationDateYYYYMMDD | 2023-01-20 |
PublicationDate_xml | – month: 01 year: 2023 text: January 20, 2023 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of applied polymer science |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2019; 7 2012; 123 2012; 124 2009; 20 2021; 168 2020; 143 2020; 82 2020; 81 2008; 19 2021; 144 2017; 112 2018; 65 2022; 139 2022; 238 2017; 139 2018; 9 2021; 38 2017; 52 2012; 396 2021; 156 2020; 197 2021; 412 2021; 411 2021; 138 2010; 115 2017; 10 2016; 639 2021; 193 2020; 137 2021; 173 2017 2017; 140 2020; 298 1985; 11 2022; 168 2021; 191 2018; 35 e_1_2_8_28_1 Kikuchi S. (e_1_2_8_27_1) 2020; 298 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 Li Q. (e_1_2_8_10_1) 2018; 35 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Xu W. (e_1_2_8_35_1) 2021; 38 e_1_2_8_30_1 |
References_xml | – volume: 38 start-page: 2848 year: 2021 publication-title: Acta Mater. Compos. Sin. – volume: 173 year: 2021 publication-title: Ind. Crop. Prod. – volume: 412 year: 2021 publication-title: Chem. Eng. J. – volume: 82 year: 2020 publication-title: Polym. Test. – volume: 138 year: 2021 publication-title: J. Appl. Polym. Sci. – volume: 144 year: 2021 publication-title: Composites, Part A – volume: 19 start-page: 710 year: 2008 publication-title: Polym. Adv. Technol. – volume: 10 start-page: 784 year: 2017 publication-title: Materials – volume: 140 start-page: 166 year: 2017 publication-title: Polym. Degrad. Stab. – volume: 411 year: 2021 publication-title: Chem. Eng. J. – volume: 123 start-page: 2609 year: 2012 publication-title: J. Appl. Polym. Sci. – volume: 168 year: 2021 publication-title: React. Funct. Polym. – volume: 11 start-page: 309 year: 1985 publication-title: Polym. Degrad. Stab. – volume: 137 year: 2020 publication-title: J. Appl. Polym. Sci. – volume: 115 start-page: 1032 year: 2010 publication-title: J. Appl. Polym. Sci. – volume: 168 year: 2022 publication-title: Prog. Org. Coat. – volume: 191 year: 2021 publication-title: Polym. Degrad. Stab. – volume: 156 year: 2021 publication-title: Prog. Org. Coat. – volume: 197 year: 2020 publication-title: Composites, Part B – volume: 124 start-page: 5113 year: 2012 publication-title: J. Appl. Polym. Sci. – volume: 193 year: 2021 publication-title: Polym. Degrad. Stab. – volume: 396 start-page: 251 year: 2012 publication-title: Colloids Surf., A – volume: 238 year: 2022 publication-title: Composites, Part B – volume: 9 start-page: 5359 year: 2018 publication-title: Polym. Chem. – volume: 112 start-page: 333 year: 2017 publication-title: Polymer – volume: 81 year: 2020 publication-title: Polym. Test. – volume: 143 start-page: 443 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 35 start-page: 118 year: 2018 publication-title: Fine Chem. – volume: 20 start-page: 881 year: 2009 publication-title: Chin. Chem. Lett. – volume: 7 start-page: 8954 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 139 start-page: 55 year: 2017 publication-title: Polym. Degrad. Stab. – volume: 139 year: 2022 publication-title: J. Appl. Polym. Sci. – volume: 298 start-page: 251 year: 2020 publication-title: Polym. Sci. – volume: 639 start-page: 84 year: 2016 publication-title: Thermochim. Acta – year: 2017 – volume: 65 start-page: 440 year: 2018 publication-title: Polym. Test. – volume: 52 year: 2017 publication-title: J. Mater. Sci. – ident: e_1_2_8_33_1 doi: 10.1016/j.reactfunctpolym.2021.105057 – ident: e_1_2_8_30_1 doi: 10.1016/j.tca.2016.07.006 – ident: e_1_2_8_31_1 doi: 10.1016/j.polymdegradstab.2017.04.024 – ident: e_1_2_8_37_1 doi: 10.1016/0141-3910(85)90035-7 – ident: e_1_2_8_29_1 doi: 10.3390/ma10070784 – ident: e_1_2_8_38_1 doi: 10.1016/j.polymdegradstab.2017.03.016 – ident: e_1_2_8_23_1 doi: 10.1016/j.cej.2021.128493 – ident: e_1_2_8_4_1 doi: 10.1016/j.ijbiomac.2019.11.226 – ident: e_1_2_8_18_1 doi: 10.1002/app.49649 – ident: e_1_2_8_20_1 doi: 10.1016/j.cej.2021.128737 – ident: e_1_2_8_32_1 doi: 10.1016/j.polymdegradstab.2021.109655 – ident: e_1_2_8_9_1 doi: 10.1002/app.48747 – ident: e_1_2_8_16_1 doi: 10.1002/app.35662 – ident: e_1_2_8_40_1 doi: 10.1016/j.polymdegradstab.2021.109684 – volume: 298 start-page: 251 year: 2020 ident: e_1_2_8_27_1 publication-title: Polym. Sci. – ident: e_1_2_8_8_1 doi: 10.1039/C8PY01236A – ident: e_1_2_8_17_1 doi: 10.1016/B978-0-08-100136-3.00004-2 – ident: e_1_2_8_36_1 doi: 10.1016/j.indcrop.2021.114157 – ident: e_1_2_8_3_1 doi: 10.1016/j.polymdegradstab.2021.109705 – ident: e_1_2_8_21_1 doi: 10.1002/app.50987 – ident: e_1_2_8_24_1 doi: 10.1016/j.compositesa.2021.106317 – ident: e_1_2_8_12_1 doi: 10.1016/j.porgcoat.2021.106251 – ident: e_1_2_8_15_1 doi: 10.1016/j.polymertesting.2019.106287 – ident: e_1_2_8_11_1 doi: 10.1002/app.52390 – ident: e_1_2_8_25_1 doi: 10.1002/pat.1167 – ident: e_1_2_8_5_1 doi: 10.1016/j.polymertesting.2019.106268 – ident: e_1_2_8_26_1 doi: 10.1016/j.cclet.2009.01.036 – ident: e_1_2_8_2_1 doi: 10.1002/app.34482 – ident: e_1_2_8_34_1 doi: 10.1016/j.compositesb.2022.109913 – volume: 35 start-page: 118 year: 2018 ident: e_1_2_8_10_1 publication-title: Fine Chem. – ident: e_1_2_8_22_1 doi: 10.1007/s10853-017-1354-5 – ident: e_1_2_8_6_1 doi: 10.1016/j.polymertesting.2017.12.028 – ident: e_1_2_8_19_1 doi: 10.1016/j.compositesb.2020.108192 – ident: e_1_2_8_7_1 doi: 10.1016/j.colsurfa.2012.01.003 – ident: e_1_2_8_13_1 doi: 10.1016/j.porgcoat.2022.106875 – ident: e_1_2_8_28_1 doi: 10.1002/app.31075 – volume: 38 start-page: 2848 year: 2021 ident: e_1_2_8_35_1 publication-title: Acta Mater. Compos. Sin. – ident: e_1_2_8_39_1 doi: 10.1021/acssuschemeng.9b01016 – ident: e_1_2_8_14_1 doi: 10.1016/j.polymer.2017.02.032 |
SSID | ssj0011506 |
Score | 2.41646 |
Snippet | Polylactic acid (PLA) is a biodegradable plastic that currently has limited application owing to its poor fire resistance and brittleness. Herein, a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acrylic resins Biodegradability Bioplastics core‐shell structures Crystallization Elongation Emulsion polymerization Fire resistance flame retardants Free radicals Glass transition temperature Graphitization Heat release rate Impact strength Materials science Mechanical properties Phosphorus Polylactic acid Polymers Polysiloxanes Silicon Silicone rubber silicon‐phosphorus acrylates Synergistic effect toughening agents Toughness |
Title | Preparation of multifunctional silicon‐phosphorus acrylate particles for the simultaneous improvement of the flame retardancy and mechanical performance of polylactic acid |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapp.53380 https://www.proquest.com/docview/2754456518 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhp_bQn6QlSdMiSg69OLF-bGvpKbRZlkLLUhrIoWD0S5dubGPvHpJTHiEv0pfqk3RGXu-mpYHSg8HGI8lmRtI3w8wnQo60C8oboxLplEukyFmilWRJJr1ILTgMgWOB88dP-eRcfrjILrbI26EWpueHWAfccGbE9RonuDbdyYY0FI_BAqyi0F9nIkfe_Pef19RRCHTyPr2DJeBTZAOrUMpP1i1_34s2APMuTI37zPgx-Tp8YZ9e8v14uTDH9voP8sb__IUn5NEKf9LT3mCeki1f7ZCHd1gJd8mPaet7RvC6onWgMecQ978-bEi72RzMp_p5c9t8qzu42mVHtW2v5oBbaTOk2lGAwxTgJchjD7ryNcjNYhAjxiSxb3wfwCg9xbzH1uFaT3Xl6KXHkmS0INpsahuwSVPPYSQs7YJBZ-4ZOR-ffXk3SVanOiSW8yJNiiCEzESurVZpZuSIGV5o4SxoSRvwXxwPUhcu5CMOyF8FmwkfRqkJKbfSK_GcbFd15fcIDUZqXQjm88xL5jN4cAXW6rKgtJZ2n7wZ9FvaFeU5nrwxL3uyZl6CBsqogX3yei3a9DwffxM6HIykXE31ruRIIQiwmCkYLmr7_g7K0-k03hz8u-gL8gCPuMewD08PyfaiXfqXAIQW5lW0-F81YgtO |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaq9gAcKBQQhVIs1AOXtIntJF6pl6o_WqCtVqiVekGRf8WKJYmyuwd66iP0RfpSfZLOOJvdFoGEOERKlLGdaMb2N6OZz4RsKeul01pGwkobCZ4lkZIiiVLheGzAYfAMC5xPTrP-ufh8kV4skd2uFqblh5gH3HBmhPUaJzgGpHcWrKF4DhaAFQkO-4oAoIGu18HXOXkUQp2sTfBIIvAq0o5XKGY786YPd6MFxLwPVMNOc7RKvnXf2CaY_NieTvS2ufyNvvF_f-IZeTqDoHSvtZnnZMmVa-TJPWLCF-Rm0LiWFLwqaeVpSDvELbCNHNLxcAQWVN5eXdffqzFczXRMlWl-jQC60rrLtqOAiCkgTJDHHlTpKpAbhjhGCEti3_jeg106iqmPjcXlnqrS0p8Oq5LRiGi9KG_AJnU1gpGwugsGHdqX5Pzo8Gy_H80OdogMY3kc5Z5zkfJMGSXjVIteolmuuDWgJqXBhbHMC5Vbn_UYgH_pTcqd78Xax8wIJ_krslxWpXtNqNdCqZwnLkudSFwKDzbHct3ES6WEWScfOwUXZsZ6jodvjIqWr5kVoIEiaGCdfJiL1i3Vx5-ENjorKWazfVwwZBEEZJxIGC6o--8dFHuDQbh58--i78mj_tnJcXH86fTLW_IYT7zHKBCLN8jypJm6d4CLJnozmP8dziYPbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhgdIekv7S_DQVpYdenNiSbGvpKbRZ0qQNS2kgh4DRL1m6sY1395Cc8gh5kb5UniQz8no3LQ2UHgw2Hkk2M5K-GWY-EfJeWS-d1jISVtpI8CyJlBRJlArHYwMOg2dY4PztODs4EYen6ekS-djVwrT8EPOAG86MsF7jBK-t312QhuIxWIBVJPjrKyIDJIGI6PucOwqRTtbmdyQROBVpRysUs9150983owXCvI9Tw0bTXyNn3Se2-SU_d6YTvWOu_mBv_M9_eEpWZwCU7rUW84wsufI5eXKPlvAF-TVoXEsJXpW08jQkHeIG2MYN6Xg4Avspb69v6vNqDFczHVNlmssRAFdad7l2FPAwBXwJ8tiDKl0FcsMQxQhBSewb33uwSkcx8bGxuNhTVVp64bAmGU2I1oviBmxSVyMYCWu7YNChfUlO-vs_Ph1Es2MdIsNYHke551ykPFNGyTjVopdolituDWhJaXBgLPNC5dZnPQbQX3qTcud7sfYxM8JJ_oosl1XpXhPqtVAq54nLUicSl8KDzbFYN_FSKWHWyYdOv4WZcZ7j0RujomVrZgVooAgaWCfv5qJ1S_TxN6GtzkiK2VwfFww5BAEXJxKGC9p-uINibzAINxv_LvqWPBp87hdfvxwfbZLHeNw9hoBYvEWWJ83UvQFQNNHbwfjvAKubDhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+multifunctional+silicon%E2%80%90phosphorus+acrylate+particles+for+the+simultaneous+improvement+of+the+flame+retardancy+and+mechanical+performance+of+polylactic+acid&rft.jtitle=Journal+of+applied+polymer+science&rft.au=Gao%2C+Xueyu&rft.au=Li%2C+Yan&rft.au=Sang%2C+Xiaoming&rft.date=2023-01-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-8995&rft.eissn=1097-4628&rft.volume=140&rft.issue=4&rft_id=info:doi/10.1002%2Fapp.53380&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8995&client=summon |