Magnetic ground state of plutonium dioxide: DFT+U calculations
The magnetic states of the strongly correlated system plutonium dioxide (PuO 2 ) are studied based on the density functional theory (DFT) plus Hubbard U (DFT+ U ) method with spin–orbit coupling (SOC) included. A series of typical magnetic structures including the multiple- k types are simulated and...
Saved in:
Published in | Chinese physics B Vol. 32; no. 2; pp. 27103 - 488 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.02.2023
School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China Institute of Applied Physics and Computational Mathematics,Beijing 100088,China%Beijing University of Chemical Technology,Beijing 100029,China%Institute of Applied Physics and Computational Mathematics,Beijing 100088,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The magnetic states of the strongly correlated system plutonium dioxide (PuO
2
) are studied based on the density functional theory (DFT) plus Hubbard
U
(DFT+
U
) method with spin–orbit coupling (SOC) included. A series of typical magnetic structures including the multiple-
k
types are simulated and compared in the aspect of atomic structure and total energy. We test LDA, PBE, and SCAN exchange–correlation functionals on PuO
2
and a longitudinal 3
k
antiferromagnetic (AFM) ground state is theoretically determined. This magnetic structure has been identified to be the most stable one by the former computational work using the hybrid functional. Our DFT+
U
+ SOC calculations for the longitudinal 3
k
AFM ground state suggest a direct gap which is in good agreement with the experimental value. In addition, a genetic algorithm is employed and proved to be effective in predicting magnetic ground state of PuO
2
. Finally, a comparison between the results of two extensively used DFT+
U
approaches to this system is made. |
---|---|
AbstractList | The magnetic states of the strongly correlated system plutonium dioxide (PuO
2
) are studied based on the density functional theory (DFT) plus Hubbard
U
(DFT+
U
) method with spin–orbit coupling (SOC) included. A series of typical magnetic structures including the multiple-
k
types are simulated and compared in the aspect of atomic structure and total energy. We test LDA, PBE, and SCAN exchange–correlation functionals on PuO
2
and a longitudinal 3
k
antiferromagnetic (AFM) ground state is theoretically determined. This magnetic structure has been identified to be the most stable one by the former computational work using the hybrid functional. Our DFT+
U
+ SOC calculations for the longitudinal 3
k
AFM ground state suggest a direct gap which is in good agreement with the experimental value. In addition, a genetic algorithm is employed and proved to be effective in predicting magnetic ground state of PuO
2
. Finally, a comparison between the results of two extensively used DFT+
U
approaches to this system is made. The magnetic states of the strongly correlated system plutonium dioxide(PuO2)are studied based on the density functional theory(DFT)plus Hubbard U(DFT+U)method with spin-orbit coupling(SOC)included.A series of typical magnetic structures including the multiple-k types are simulated and compared in the aspect of atomic structure and total energy.We test LDA,PBE,and SCAN exchange-correlation functionals on PuO2 and a longitudinal 3k antiferromagnetic(AFM)ground state is theoretically determined.This magnetic structure has been identified to be the most stable one by the former computational work using the hybrid functional.Our DFT+U+SOC calculations for the longitudinal 3k AFM ground state suggest a direct gap which is in good agreement with the experimental value.In addition,a genetic algorithm is employed and proved to be effective in predicting magnetic ground state of PuO2.Finally,a comparison between the results of two extensively used DFT+U approaches to this system is made. |
Author | Li, Shu-Jing Hou, Yue-Fei Fu, Zhen-Guo Jiang, Wei Zhang, Ping |
AuthorAffiliation | Institute of Applied Physics and Computational Mathematics,Beijing 100088,China%Beijing University of Chemical Technology,Beijing 100029,China%Institute of Applied Physics and Computational Mathematics,Beijing 100088,China;School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China |
AuthorAffiliation_xml | – name: Institute of Applied Physics and Computational Mathematics,Beijing 100088,China%Beijing University of Chemical Technology,Beijing 100029,China%Institute of Applied Physics and Computational Mathematics,Beijing 100088,China;School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China |
Author_xml | – sequence: 1 givenname: Yue-Fei surname: Hou fullname: Hou, Yue-Fei organization: Institute of Applied Physics and Computational Mathematics , China – sequence: 2 givenname: Wei surname: Jiang fullname: Jiang, Wei organization: Institute of Applied Physics and Computational Mathematics , China – sequence: 3 givenname: Shu-Jing surname: Li fullname: Li, Shu-Jing organization: Beijing University of Chemical Technology , China – sequence: 4 givenname: Zhen-Guo surname: Fu fullname: Fu, Zhen-Guo organization: Institute of Applied Physics and Computational Mathematics , China – sequence: 5 givenname: Ping surname: Zhang fullname: Zhang, Ping organization: School of Physics and Physical Engineering, Qufu Normal University , China |
BookMark | eNp9kMFLwzAUxnOY4Da9e8zNg9YlXZo2HgSZToWJl-0c0iQtGV0ykpSpf72tFQVBL-_B4_u9975vAkbWWQ3AGUZXGBXFDNOcJBhldCYk04yOwPh7dAwmIWwRohil8zG4eRa11dFIWHvXWgVDFFFDV8F900ZnTbuDyrhXo_Q1vFuuLzZQika2jYjG2XACjirRBH361adgs7xfLx6T1cvD0-J2lcg0zVFCJCuwyhglRJaU4EqVMk8JLecZzbDAeVEJlhHdFS2IRrnWCjNWKlFi1dX5FJwPew_CVsLWfOtab7uL_L0-NFynnRmUIoo6JRqU0rsQvK743pud8G8cI96nw_soeB8FH9LpEPoLkSZ--otemOY_8HIAjdv_fPSn_ANCjnsr |
CitedBy_id | crossref_primary_10_1103_PhysRevB_110_224421 crossref_primary_10_1016_j_jssc_2024_125080 |
Cites_doi | 10.1016/j.jnucmat.2010.02.024 10.1016/j.commatsci.2010.05.010 10.1016/j.biochi.2006.06.011 10.1103/PhysRevB.88.195146 10.1103/PhysRevB.65.195102 10.1103/PhysRevLett.97.207203 10.1016/j.jallcom.2014.12.204 10.1103/PhysRevB.52.R5467 10.1016/j.jallcom.2007.03.082 10.1016/j.cpc.2020.107659 10.1103/PhysRevB.59.104 10.1016/j.jnucmat.2008.10.024 10.1103/PhysRevB.54.11169 10.1063/1.2833553 10.1103/PhysRevB.59.1758 10.1126/science.1220801 10.1103/PhysRevLett.94.137209 10.1016/S0022-3115(96)00750-7 10.1103/PhysRevB.50.17953 10.1126/science.287.5451.285 10.1103/PhysRevLett.115.036402 10.1103/PhysRevB.89.041109 10.1103/PhysRevMaterials.3.083802 10.1080/000187399243419 10.1021/acs.inorgchem.6b02111 10.1021/ic5007555 10.1007/BF02712785 10.1063/1.1709662 10.1039/D0CP06497A 10.1063/1.4772595 10.1103/PhysRevB.82.155131 10.1063/1.1953427 10.1103/PhysRev.108.948 10.1103/PhysRevB.82.144110 10.1103/PhysRevB.14.1151 10.1039/C8CP03583K 10.1103/PhysRevB.72.184411 10.1103/PhysRevB.80.235109 10.1103/PhysRevLett.97.257601 10.1063/1.1904565 10.1103/PhysRevB.54.16533 10.1016/j.jnucmat.2015.11.009 10.1103/PhysRevB.103.045113 10.1103/PhysRevB.57.1505 10.1103/PhysRevB.70.214402 10.1103/PhysRevB.78.075125 10.1103/PhysRev.140.A1133 10.1103/PhysRevB.84.195469 10.1016/0038-1098(68)90162-2 10.1016/0020-1650(74)80211-4 10.1103/PhysRevB.59.4699 10.1016/j.jnucmat.2012.02.029 10.1021/acs.jpclett.6b02968 |
ContentType | Journal Article |
Copyright | 2023 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ac9e96 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EndPage | 488 |
ExternalDocumentID | zgwl_e202302060 10_1088_1674_1056_ac9e96 cpb_32_2_027103 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c2270-4c981d59644cb641fdbc7246b35651a178fa954ea95ea4e07eed199bdab1dbda3 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:17 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Tue Jul 01 02:13:07 EDT 2025 Wed Aug 21 03:35:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | strongly correlated system magnetic ground state MagGene noncollinear |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2270-4c981d59644cb641fdbc7246b35651a178fa954ea95ea4e07eed199bdab1dbda3 |
PageCount | 8 |
ParticipantIDs | iop_journals_10_1088_1674_1056_ac9e96 wanfang_journals_zgwl_e202302060 crossref_primary_10_1088_1674_1056_ac9e96 crossref_citationtrail_10_1088_1674_1056_ac9e96 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2023 |
Publisher | Chinese Physical Society and IOP Publishing Ltd School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China Institute of Applied Physics and Computational Mathematics,Beijing 100088,China%Beijing University of Chemical Technology,Beijing 100029,China%Institute of Applied Physics and Computational Mathematics,Beijing 100088,China |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd – name: Institute of Applied Physics and Computational Mathematics,Beijing 100088,China%Beijing University of Chemical Technology,Beijing 100029,China%Institute of Applied Physics and Computational Mathematics,Beijing 100088,China – name: School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China |
References | Tokunaga (cpb_32_2_027103bib7) 2005; 94 Neilson (cpb_32_2_027103bib47) 2021; 23 Ansoborlo (cpb_32_2_027103bib22) 2006; 88 Desgranges (cpb_32_2_027103bib4) 2017; 56 Tokunaga (cpb_32_2_027103bib23) 2007; 444–445 Dudarev (cpb_32_2_027103bib52) 1998; 57 Morée (cpb_32_2_027103bib45) 2021; 103 Haschke (cpb_32_2_027103bib1) 2000; 287 Yasuoka (cpb_32_2_027103bib13) 2012; 33 Faber (cpb_32_2_027103bib3) 1976; 14 Minamoto (cpb_32_2_027103bib31) 2009; 385 Jollet (cpb_32_2_027103bib28) 2009; 80 Wang (cpb_32_2_027103bib30) 2015; 628 Blöchl (cpb_32_2_027103bib42) 1994; 50 Shi (cpb_32_2_027103bib29) 2010; 400 Santini (cpb_32_2_027103bib8) 2006; 97 Raphael (cpb_32_2_027103bib12) 1968; 6 Kohn (cpb_32_2_027103bib37) 1965; 140 Arrott (cpb_32_2_027103bib10) 1957; 108 Kern (cpb_32_2_027103bib16) 1999; 59 Nakamura (cpb_32_2_027103bib35) 2010; 82 Martel (cpb_32_2_027103bib15) 2014; 53 Sun (cpb_32_2_027103bib26) 2008; 128 Jansen (cpb_32_2_027103bib48) 1999; 59 Yamashita (cpb_32_2_027103bib54) 1997; 245 Suzuki (cpb_32_2_027103bib36) 2013; 88 Zheng (cpb_32_2_027103bib49) 2021; 259 Jomard (cpb_32_2_027103bib27) 2008; 78 Sun (cpb_32_2_027103bib32) 2012; 426 Pegg (cpb_32_2_027103bib20) 2019; 20 Jomard (cpb_32_2_027103bib34) 2011; 84 Tokunaga (cpb_32_2_027103bib9) 2006; 97 Setyawan (cpb_32_2_027103bib50) 2010; 49 Ross (cpb_32_2_027103bib11) 1967; 38 Perdew (cpb_32_2_027103bib38) 1996; 54 Moten (cpb_32_2_027103bib33) 2016; 468 Colarieti-Tosti (cpb_32_2_027103bib17) 2002; 65 Shick (cpb_32_2_027103bib18) 2014; 89 Blöchl (cpb_32_2_027103bib44) 2003; 26 Dudarev (cpb_32_2_027103bib53) 2019; 3 Tokunaga (cpb_32_2_027103bib14) 2007; 444–445 Wilkins (cpb_32_2_027103bib6) 2004; 70 Kresse (cpb_32_2_027103bib43) 1999; 59 Santini (cpb_32_2_027103bib2) 1999; 48 Blackburn (cpb_32_2_027103bib5) 2005; 72 Sun (cpb_32_2_027103bib39) 2015; 115 Zhang (cpb_32_2_027103bib24) 2010; 82 Prodan (cpb_32_2_027103bib25) 2005; 123 Kresse (cpb_32_2_027103bib41) 1996; 54 Perdew (cpb_32_2_027103bib40) 2005; 123 Liechtenstein (cpb_32_2_027103bib46) 1995; 52 Gendron (cpb_32_2_027103bib19) 2017; 8 McCleskey (cpb_32_2_027103bib51) 2013; 113 Noe (cpb_32_2_027103bib21) 1974; 10 |
References_xml | – volume: 400 start-page: 151 year: 2010 ident: cpb_32_2_027103bib29 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2010.02.024 – volume: 49 start-page: 299 year: 2010 ident: cpb_32_2_027103bib50 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2010.05.010 – volume: 88 start-page: 1605 year: 2006 ident: cpb_32_2_027103bib22 publication-title: Biochimie doi: 10.1016/j.biochi.2006.06.011 – volume: 88 year: 2013 ident: cpb_32_2_027103bib36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.195146 – volume: 65 year: 2002 ident: cpb_32_2_027103bib17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.195102 – volume: 97 year: 2006 ident: cpb_32_2_027103bib8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.207203 – volume: 628 start-page: 267 year: 2015 ident: cpb_32_2_027103bib30 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.12.204 – volume: 52 start-page: R5467 year: 1995 ident: cpb_32_2_027103bib46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.52.R5467 – volume: 444–445 start-page: 241 year: 2007 ident: cpb_32_2_027103bib23 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.03.082 – volume: 259 year: 2021 ident: cpb_32_2_027103bib49 publication-title: Compt. Phys. Commun. doi: 10.1016/j.cpc.2020.107659 – volume: 59 start-page: 104 year: 1999 ident: cpb_32_2_027103bib16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.104 – volume: 385 start-page: 18 year: 2009 ident: cpb_32_2_027103bib31 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2008.10.024 – volume: 54 year: 1996 ident: cpb_32_2_027103bib41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 128 year: 2008 ident: cpb_32_2_027103bib26 publication-title: J. Chem. Phys. doi: 10.1063/1.2833553 – volume: 59 start-page: 1758 year: 1999 ident: cpb_32_2_027103bib43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 33 start-page: 6083 year: 2012 ident: cpb_32_2_027103bib13 publication-title: Science doi: 10.1126/science.1220801 – volume: 94 year: 2005 ident: cpb_32_2_027103bib7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.137209 – volume: 245 start-page: 72 year: 1997 ident: cpb_32_2_027103bib54 publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(96)00750-7 – volume: 50 year: 1994 ident: cpb_32_2_027103bib42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 287 start-page: 285 year: 2000 ident: cpb_32_2_027103bib1 publication-title: Science doi: 10.1126/science.287.5451.285 – volume: 115 year: 2015 ident: cpb_32_2_027103bib39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.036402 – volume: 89 year: 2014 ident: cpb_32_2_027103bib18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.041109 – volume: 3 year: 2019 ident: cpb_32_2_027103bib53 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.083802 – volume: 48 start-page: 537 year: 1999 ident: cpb_32_2_027103bib2 publication-title: Adv. Phys. doi: 10.1080/000187399243419 – volume: 56 start-page: 321 year: 2017 ident: cpb_32_2_027103bib4 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02111 – volume: 53 start-page: 6928 year: 2014 ident: cpb_32_2_027103bib15 publication-title: Inorg. Chem. doi: 10.1021/ic5007555 – volume: 26 start-page: 33 year: 2003 ident: cpb_32_2_027103bib44 publication-title: Bull. Mater. Sci. doi: 10.1007/BF02712785 – volume: 38 start-page: 1451 year: 1967 ident: cpb_32_2_027103bib11 publication-title: J. Appl. Phys. doi: 10.1063/1.1709662 – volume: 23 start-page: 4544 year: 2021 ident: cpb_32_2_027103bib47 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP06497A – volume: 113 year: 2013 ident: cpb_32_2_027103bib51 publication-title: J. Phys. Appl. doi: 10.1063/1.4772595 – volume: 82 year: 2010 ident: cpb_32_2_027103bib35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.155131 – volume: 123 year: 2005 ident: cpb_32_2_027103bib25 publication-title: J. Chem. Phys. doi: 10.1063/1.1953427 – volume: 108 start-page: 948 year: 1957 ident: cpb_32_2_027103bib10 publication-title: Phys. Rev. doi: 10.1103/PhysRev.108.948 – volume: 82 year: 2010 ident: cpb_32_2_027103bib24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.144110 – volume: 14 start-page: 1151 year: 1976 ident: cpb_32_2_027103bib3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.14.1151 – volume: 20 year: 2019 ident: cpb_32_2_027103bib20 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP03583K – volume: 72 year: 2005 ident: cpb_32_2_027103bib5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.184411 – volume: 80 year: 2009 ident: cpb_32_2_027103bib28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.235109 – volume: 97 year: 2006 ident: cpb_32_2_027103bib9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.257601 – volume: 123 year: 2005 ident: cpb_32_2_027103bib40 publication-title: J. Chem. Phys. doi: 10.1063/1.1904565 – volume: 54 year: 1996 ident: cpb_32_2_027103bib38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.16533 – volume: 468 start-page: 37 year: 2016 ident: cpb_32_2_027103bib33 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2015.11.009 – volume: 103 year: 2021 ident: cpb_32_2_027103bib45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.045113 – volume: 57 start-page: 1505 year: 1998 ident: cpb_32_2_027103bib52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.1505 – volume: 70 year: 2004 ident: cpb_32_2_027103bib6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.214402 – volume: 78 year: 2008 ident: cpb_32_2_027103bib27 publication-title: Phys. Fev. B doi: 10.1103/PhysRevB.78.075125 – volume: 140 start-page: A1133 year: 1965 ident: cpb_32_2_027103bib37 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 84 year: 2011 ident: cpb_32_2_027103bib34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.195469 – volume: 6 start-page: 383 year: 1968 ident: cpb_32_2_027103bib12 publication-title: Solid State Commun. doi: 10.1016/0038-1098(68)90162-2 – volume: 10 start-page: 7 year: 1974 ident: cpb_32_2_027103bib21 publication-title: Inorg. Nucl. Chem. Lett. doi: 10.1016/0020-1650(74)80211-4 – volume: 59 start-page: 4699 year: 1999 ident: cpb_32_2_027103bib48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.4699 – volume: 426 start-page: 139 year: 2012 ident: cpb_32_2_027103bib32 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2012.02.029 – volume: 444–445 start-page: 241 year: 2007 ident: cpb_32_2_027103bib14 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.03.082 – volume: 8 start-page: 673 year: 2017 ident: cpb_32_2_027103bib19 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02968 |
SSID | ssj0061023 |
Score | 2.288622 |
Snippet | The magnetic states of the strongly correlated system plutonium dioxide (PuO
2
) are studied based on the density functional theory (DFT) plus Hubbard
U
(DFT+... The magnetic states of the strongly correlated system plutonium dioxide(PuO2)are studied based on the density functional theory(DFT)plus Hubbard U(DFT+U)method... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 27103 |
SubjectTerms | MagGene magnetic ground state noncollinear strongly correlated system |
Title | Magnetic ground state of plutonium dioxide: DFT+U calculations |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ac9e96 https://d.wanfangdata.com.cn/periodical/zgwl-e202302060 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRfDiW6wv9qAHkbTdZptkFQRRSxWqHlroQQj7SinWpNgWpb_e2WRTH0gRL0sOs5PszGb2G3YeCB35ruBESeaoqEod6gvlcEHAWXG5cIWgEfdNgnPr3mt26F233i2g81kuTDK0pr8Mj1mh4EyENiAuqJi4ecc0jK9wyTTzFtCiG3ieaV9w-_CYm2HP1CQw3lZObe8of-Pw7UxagPemGTxxxOPel8OmsYqe8s_MYkyey5OxKMvpjwqO_1zHGlqxIBRfZqTrqKDjDbSUBoPK0Sa6aPFebJIbscn5iBVOs45wEuEh7FMwApMXrPrJe1_pM3zdaJ92MGha2kZgoy3Uady0r5qO7bPgyFrNrzpUMkCtdQbQSAqPkkgJ6deoJ1xAe4QTP4g4q1MNg-ZUV304VwljQoFWFYzuNirGSax3EA4CBVpW4FMRBp6pL4A_4VwwxbSp1FNClVzSobRFyE0vjEGYXoYHQWikEhqphJlUSuhkNmOYFeCYQ3sMwg7tXziaQ4etej9pp723QahNM3kA0F5194-s9tCymZPFce-j4vh1og8ApozFYbodPwDQaN4b |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4IRuPFtxGfe9CDMaWULm3Xg4kRCaggB0i41X2VELEQgWj49c62i68YYuJl08PstjuznUd25huETnyXM0cKasmoQCzic2kx7kCw4jLuck4i5usC53rDq7bJbafUMX1Ok1qYwdCo_jw8pkDBKQtNQlxg67x5SzeMt5mginr2UEYZtFhyPVeD59cemjNV7GlcAh1xzWaYe8rfVvlmlzLw7qSKJ45Y3P1icCpr6HH2qWmeyVN-MuZ5Mf2B4viPvayjVeOM4quUfAMtqHgTLSVJoWK0hS7rrBvrIkesaz9iiZPqIzyI8BDOKyiDyTOWvcFbT6oLXK60ztsYJC5MQ7DRNmpXblrXVcv0W7BEsegXLCIoeK8lCi6S4B5xIsmFXyQed8Hrc5jjBxGjJaJgUIyogg_21aGUS5CuhNHdQdl4EKtdhINAgrQlxFYOhQjV57C-wxinkiqN2JND9ozboTBg5LonRj9MLsWDINScCTVnwpQzOXT2MWOYAnHMoT0FhofmbxzNocNGxJ-00-5rP1S6qTw40l5h749LHaPlZrkS3tcad_toRU9PU7sPUHb8MlGH4LmM-VFyOt8BvhDjfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+ground+state+of+plutonium+dioxide%3A+DFT%2BU+calculations&rft.jtitle=Chinese+physics+B&rft.au=Hou%2C+Yue-Fei&rft.au=Jiang%2C+Wei&rft.au=Li%2C+Shu-Jing&rft.au=Fu%2C+Zhen-Guo&rft.date=2023-02-01&rft.issn=1674-1056&rft.volume=32&rft.issue=2&rft.spage=27103&rft_id=info:doi/10.1088%2F1674-1056%2Fac9e96&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ac9e96 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |