3D thermally laminated MHD non-Newtonian nanofluids across a stretched sheet: intelligent computing paradigm
The primary subject of this article is the study of the viscous flow of nanofluids consisting of copper-methanol and water in the presence of a three-dimensional stretched sheet, which is subjected to magnetohydrodynamic effects (3D-MHD-NF) by employing artificial recurrent neural networks that are...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 150; no. 1; pp. 479 - 504 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Nature B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1388-6150 1588-2926 |
DOI | 10.1007/s10973-024-13747-8 |
Cover
Loading…
Abstract | The primary subject of this article is the study of the viscous flow of nanofluids consisting of copper-methanol and water in the presence of a three-dimensional stretched sheet, which is subjected to magnetohydrodynamic effects (3D-MHD-NF) by employing artificial recurrent neural networks that are optimized using a Bayesian regularization technique (ARNN-BR). The viscosity effect is recognized to be dependent on temperature, with methanol and water being used as the base fluid. The presented model is employed in the manipulation and creation of surfaces within the field of nanotechnology. Its applications include stretching, shrinking, wrapping, and painting devices. The Adams method was employed to generate a dataset for the 3D-MHD-NF model for four scenarios by varying the Hartmann number (H), volume fraction of nanoparticle (φ), and viscosity parameter (α). The ARNN-BR technique employed a random selection of data 70% for training, 20% for testing, and 10% for validity. It has been found that boundary layer becomes thinner as the volume percentage of nanoparticle increases. Additionally, it is observed that augmentation in the viscosity parameter results in a proportional rise in temperature. Moreover, it is observed that increment in the variables H, φ, and α have an impact on the velocity boundary thickness in both the x- and y-directions. The newly introduced ARNN-BR technique's dependability, stability, and convergence were assessed using a fitness measure based on mean squares errors, histogram drawings, regression, input-error cross-correlation, and autocorrelation analysis for each scenario of the 3D-MHD-NF model. |
---|---|
AbstractList | The primary subject of this article is the study of the viscous flow of nanofluids consisting of copper-methanol and water in the presence of a three-dimensional stretched sheet, which is subjected to magnetohydrodynamic effects (3D-MHD-NF) by employing artificial recurrent neural networks that are optimized using a Bayesian regularization technique (ARNN-BR). The viscosity effect is recognized to be dependent on temperature, with methanol and water being used as the base fluid. The presented model is employed in the manipulation and creation of surfaces within the field of nanotechnology. Its applications include stretching, shrinking, wrapping, and painting devices. The Adams method was employed to generate a dataset for the 3D-MHD-NF model for four scenarios by varying the Hartmann number (H), volume fraction of nanoparticle (φ), and viscosity parameter (α). The ARNN-BR technique employed a random selection of data 70% for training, 20% for testing, and 10% for validity. It has been found that boundary layer becomes thinner as the volume percentage of nanoparticle increases. Additionally, it is observed that augmentation in the viscosity parameter results in a proportional rise in temperature. Moreover, it is observed that increment in the variables H, φ, and α have an impact on the velocity boundary thickness in both the x- and y-directions. The newly introduced ARNN-BR technique's dependability, stability, and convergence were assessed using a fitness measure based on mean squares errors, histogram drawings, regression, input-error cross-correlation, and autocorrelation analysis for each scenario of the 3D-MHD-NF model. |
Author | Ilyas, Hira Raja, Muhammad Asif Zahoor Shoaib, Muhammad Ahmad, Iftikhar Nisar, Kottakkaran Sooppy Shahbaz, Hafiz Muhammad |
Author_xml | – sequence: 1 givenname: Hafiz Muhammad surname: Shahbaz fullname: Shahbaz, Hafiz Muhammad – sequence: 2 givenname: Iftikhar surname: Ahmad fullname: Ahmad, Iftikhar – sequence: 3 givenname: Muhammad Asif Zahoor surname: Raja fullname: Raja, Muhammad Asif Zahoor – sequence: 4 givenname: Hira surname: Ilyas fullname: Ilyas, Hira – sequence: 5 givenname: Kottakkaran Sooppy orcidid: 0000-0001-5769-4320 surname: Nisar fullname: Nisar, Kottakkaran Sooppy – sequence: 6 givenname: Muhammad surname: Shoaib fullname: Shoaib, Muhammad |
BookMark | eNotkD1PwzAYhC0EEm3hDzBZYg74I4ltNtQCRSqwwGw5jtO6cpxgO0L995iW6W64e0_vMwfnfvAGgBuM7jBC7D5iJBgtECkLTFnJCn4GZrjivCCC1OfZ0-xrXKFLMI9xjxASAuEZcHQF086EXjl3gE711qtkWvi2XsG8UbybnzR4qzz0yg-dm2wbodJhiFlgTMEkvcv5uDMmPUDrk3HObo1PUA_9OCXrt3BUQbV221-Bi065aK7_dQG-np8-l-ti8_HyunzcFJqQOhUtU6okmhMhKlqpRpW8ZESrqq6r0mjcNRxr0RrdNbikouVYUIUbVtWNbhlv6QLcnu6OYfieTExyP0zB50lJcc1oLnGSU-SUOn4TTCfHYHsVDhIj-UdVnqjKTFUeqUpOfwG_923h |
Cites_doi | 10.1115/1.4054595 10.1016/j.surfin.2021.101107 10.1002/zamm.202400104 10.1002/htj.22157 10.1016/j.jtusci.2015.12.001 10.1016/j.matcom.2020.01.005 10.1016/j.jics.2022.100716 10.1080/10407782.2023.2273458 10.1016/j.rinma.2023.100453 10.3390/app13179510 10.1108/HFF-04-2019-0346 10.48048/tis.2022.6314 10.3390/math10122007 10.1038/s41598-021-97458-2 10.1016/j.jmmm.2023.170352 10.1016/j.mtcomm.2023.107844 10.1007/s10973-020-09850-1 10.1007/s10973-021-10681-x 10.4028/www.scientific.net/DDF.401.25 10.1016/j.jppr.2022.09.002 10.1063/5.0180414 10.3390/lubricants11080339 10.1016/j.apm.2012.04.004 10.1016/j.matchemphys.2022.126890 10.1007/s11771-023-5300-1 10.1007/s13369-021-05830-1 10.1016/j.cjph.2021.11.011 10.1016/j.icheatmasstransfer.2022.106069 10.1140/epjp/s13360-019-00066-3 10.1016/j.tsep.2020.100801 10.1016/j.chaos.2022.112285 10.1016/j.icheatmasstransfer.2022.106241 10.1177/09544089221136692 10.1016/j.icheatmasstransfer.2021.105196 10.1016/j.apenergy.2020.115098 10.1038/s41598-023-30233-7 10.1016/j.est.2022.105198 10.1371/journal.pntd.0010509 10.1016/j.cplett.2016.08.043 10.1007/s10973-019-08348-9 10.1021/acs.langmuir.8b03922 10.1080/00986445.2012.703148 10.1007/s10973-019-09111-w 10.1007/s10973-023-12565-8 10.1016/j.aej.2021.06.060 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10973-024-13747-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1588-2926 |
EndPage | 504 |
ExternalDocumentID | 10_1007_s10973_024_13747_8 |
GroupedDBID | .86 .VR 06C 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBS EIOEI ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ ISR ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNS ROL RPX RSV S16 S27 S3B SAP SCG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 ZMTXR ~02 ABRTQ ACUHS S1Z |
ID | FETCH-LOGICAL-c226t-d7aa42c8299535aba48472ca56654ec1fb81c9decfb1439d8193a1b756bcd78d3 |
ISSN | 1388-6150 |
IngestDate | Fri Jul 25 11:07:23 EDT 2025 Tue Jul 01 02:44:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c226t-d7aa42c8299535aba48472ca56654ec1fb81c9decfb1439d8193a1b756bcd78d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5769-4320 |
PQID | 3167343982 |
PQPubID | 2043843 |
PageCount | 26 |
ParticipantIDs | proquest_journals_3167343982 crossref_primary_10_1007_s10973_024_13747_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of thermal analysis and calorimetry |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | LA Khan (13747_CR6) 2020; 140 R Ellahi (13747_CR15) 2013; 37 HM Shahbaz (13747_CR42) 2024 N Sarwar (13747_CR26) 2022; 11 NS Akbar (13747_CR44) 2023; 13 R Khan (13747_CR27) 2023; 30 W Cao (13747_CR7) 2022; 135 A Sahreen (13747_CR31) 2023; 11 IC Liu (13747_CR47) 2013; 200 T Sajid (13747_CR5) 2022; 77 VH Nguyen (13747_CR32) 2022; 16 Y Muhammad (13747_CR39) 2022; 161 N Acharya (13747_CR1) 2022; 53 S Murtaza (13747_CR17) 2024 N Acharya (13747_CR13) 2020; 141 F Ishtiaq (13747_CR18) 2022 R Khan (13747_CR30) 2023 S Mandal (13747_CR25) 2023; 293 F Faisal (13747_CR41) 2020; 135 V Makkar (13747_CR24) 2022; 63 Z Sabir (13747_CR35) 2020; 172 Z Ahmed (13747_CR22) 2019; 29 J Mathews (13747_CR21) 2023; 237 S Shaheen (13747_CR9) 2021; 144 F Shahid (13747_CR40) 2020; 269 M Shoaib (13747_CR43) 2022; 61 N Acharya (13747_CR14) 2022; 144 N Acharya (13747_CR8) 2021; 50 H Ilyas (13747_CR33) 2021; 123 A Rizwan (13747_CR38) 2021; 46 D Qaiser (13747_CR16) 2021; 22 A Dawar (13747_CR11) 2022; 99 13747_CR4 X Huang (13747_CR45) 2019; 35 N Acharya (13747_CR2) 2024; 38 A Zeeshan (13747_CR34) 2023; 13 R Khan (13747_CR28) 2023; 567 AB Disu (13747_CR46) 2017; 11 I Uddin (13747_CR37) 2021; 11 NS Akbar (13747_CR29) 2016; 661 I Uddin (13747_CR36) 2021; 24 V Makkar (13747_CR19) 2022; 19 N Acharya (13747_CR10) 2021; 143 MM Bhatti (13747_CR3) 2023; 148 EO Fatunmbi (13747_CR23) 2023; 19 W Xiu (13747_CR12) 2022; 137 13747_CR20 |
References_xml | – volume: 144 issue: 9 year: 2022 ident: 13747_CR14 publication-title: J Heat Transf doi: 10.1115/1.4054595 – volume: 24 year: 2021 ident: 13747_CR36 publication-title: Surf Interfaces doi: 10.1016/j.surfin.2021.101107 – year: 2024 ident: 13747_CR42 publication-title: ZAMM J Appl Math Mech doi: 10.1002/zamm.202400104 – volume: 50 start-page: 5951 issue: 6 year: 2021 ident: 13747_CR8 publication-title: Heat Transfer doi: 10.1002/htj.22157 – volume: 11 start-page: 548 issue: 4 year: 2017 ident: 13747_CR46 publication-title: J Taibah Univ Sci doi: 10.1016/j.jtusci.2015.12.001 – volume: 172 start-page: 1 year: 2020 ident: 13747_CR35 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2020.01.005 – volume: 99 start-page: 100716 issue: 10 year: 2022 ident: 13747_CR11 publication-title: J Indian Chem Soc doi: 10.1016/j.jics.2022.100716 – volume: 63 start-page: 283 year: 2022 ident: 13747_CR24 publication-title: Mater Today: Proc – year: 2023 ident: 13747_CR30 publication-title: Numer Heat Transf Part A: Appl doi: 10.1080/10407782.2023.2273458 – volume: 19 year: 2023 ident: 13747_CR23 publication-title: Results Mater doi: 10.1016/j.rinma.2023.100453 – volume: 13 start-page: 9510 issue: 17 year: 2023 ident: 13747_CR34 publication-title: Appl Sci doi: 10.3390/app13179510 – volume: 29 start-page: 4607 issue: 12 year: 2019 ident: 13747_CR22 publication-title: Int J Numer Methods Heat Fluid Flow doi: 10.1108/HFF-04-2019-0346 – volume: 19 start-page: 6314 issue: 21 year: 2022 ident: 13747_CR19 publication-title: Trends Sci doi: 10.48048/tis.2022.6314 – year: 2022 ident: 13747_CR18 publication-title: Mathematics doi: 10.3390/math10122007 – volume: 11 start-page: 19239 issue: 1 year: 2021 ident: 13747_CR37 publication-title: Sci Rep doi: 10.1038/s41598-021-97458-2 – volume: 567 year: 2023 ident: 13747_CR28 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2023.170352 – volume: 38 start-page: 107844 year: 2024 ident: 13747_CR2 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2023.107844 – volume: 143 start-page: 1273 issue: 2 year: 2021 ident: 13747_CR10 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-020-09850-1 – volume: 144 start-page: 2337 year: 2021 ident: 13747_CR9 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-021-10681-x – ident: 13747_CR20 doi: 10.4028/www.scientific.net/DDF.401.25 – volume: 11 start-page: 565 issue: 4 year: 2022 ident: 13747_CR26 publication-title: Propul Power Res doi: 10.1016/j.jppr.2022.09.002 – year: 2024 ident: 13747_CR17 publication-title: AIP Adv doi: 10.1063/5.0180414 – volume: 11 start-page: 339 issue: 8 year: 2023 ident: 13747_CR31 publication-title: Lubricants doi: 10.3390/lubricants11080339 – volume: 37 start-page: 1451 issue: 3 year: 2013 ident: 13747_CR15 publication-title: Appl Math Model doi: 10.1016/j.apm.2012.04.004 – volume: 293 year: 2023 ident: 13747_CR25 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2022.126890 – volume: 30 start-page: 1246 issue: 4 year: 2023 ident: 13747_CR27 publication-title: J Central South Univ doi: 10.1007/s11771-023-5300-1 – volume: 46 start-page: 9279 issue: 9 year: 2021 ident: 13747_CR38 publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-05830-1 – volume: 77 start-page: 1387 year: 2022 ident: 13747_CR5 publication-title: Chin J Phys doi: 10.1016/j.cjph.2021.11.011 – volume: 135 year: 2022 ident: 13747_CR7 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2022.106069 – volume: 135 start-page: 55 issue: 1 year: 2020 ident: 13747_CR41 publication-title: Eur Phys J Plus doi: 10.1140/epjp/s13360-019-00066-3 – volume: 22 year: 2021 ident: 13747_CR16 publication-title: Therm Sci Eng Progr doi: 10.1016/j.tsep.2020.100801 – volume: 161 year: 2022 ident: 13747_CR39 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2022.112285 – volume: 137 year: 2022 ident: 13747_CR12 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2022.106241 – volume: 237 start-page: 1064 issue: 3 year: 2023 ident: 13747_CR21 publication-title: Proc Inst Mech Eng Part E: J Process Mech Eng doi: 10.1177/09544089221136692 – volume: 123 year: 2021 ident: 13747_CR33 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2021.105196 – volume: 269 year: 2020 ident: 13747_CR40 publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115098 – volume: 13 start-page: 3231 issue: 1 year: 2023 ident: 13747_CR44 publication-title: Sci Rep doi: 10.1038/s41598-023-30233-7 – volume: 53 start-page: 105198 year: 2022 ident: 13747_CR1 publication-title: J Energy Storage doi: 10.1016/j.est.2022.105198 – volume: 16 issue: 6 year: 2022 ident: 13747_CR32 publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0010509 – volume: 661 start-page: 20 year: 2016 ident: 13747_CR29 publication-title: Chem Phys Lett doi: 10.1016/j.cplett.2016.08.043 – volume: 140 start-page: 879 year: 2020 ident: 13747_CR6 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08348-9 – ident: 13747_CR4 – volume: 35 start-page: 5442 issue: 16 year: 2019 ident: 13747_CR45 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03922 – volume: 200 start-page: 253 issue: 2 year: 2013 ident: 13747_CR47 publication-title: Chem Eng Commun doi: 10.1080/00986445.2012.703148 – volume: 141 start-page: 1425 issue: 4 year: 2020 ident: 13747_CR13 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-09111-w – volume: 148 start-page: 14261 issue: 24 year: 2023 ident: 13747_CR3 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-023-12565-8 – volume: 61 start-page: 1607 issue: 2 year: 2022 ident: 13747_CR43 publication-title: Alex Eng J doi: 10.1016/j.aej.2021.06.060 |
SSID | ssj0009901 |
Score | 2.413878 |
Snippet | The primary subject of this article is the study of the viscous flow of nanofluids consisting of copper-methanol and water in the presence of a... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 479 |
SubjectTerms | Boundary layers Cross correlation Error analysis Hartmann number Magnetohydrodynamics Methanol Nanofluids Nanoparticles Parameters Recurrent neural networks Regularization Temperature dependence Three dimensional flow Viscosity Viscous flow |
Title | 3D thermally laminated MHD non-Newtonian nanofluids across a stretched sheet: intelligent computing paradigm |
URI | https://www.proquest.com/docview/3167343982 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BeoALYhWFgubAzRrkWRzb3NqmUYTacEmk3Eaz2BApDYg4B_j1vNnspiwCLlZkR_bovW_e-2b53iD0RjEFWZlSogW1RDBqSK1ETkRLS211qRV1Auer-Xi2FO9XxWo43sqrSzr91nz_pa7kf7wK98CvTiX7D57tXwo34Df4F67gYbj-lY_5xPFGCK2bzbcMXLveKkcgr2aTDEb1BAIYMDvXg7dq-7nd7Nd2lymfFzPlVSLOZTbbfWoaP0O47utzdn6v-d7viXbVwe364_VveGxsQaZSeROvlFNuZ991E3dRp3kFVtyaV0jzim7TtFvK6HUvPkxy8IQrJR-ySAydXs8R9O99bI1_uQmiEClFOEMmJt0inEH8UzzPk765Lt1ysyCUw_iHVEP2Siv28w9yury8lIuL1eIuOmIwashH6Oh0enY2H6ow13kYgcfmRxVV1FLe-sYhUzlM1J59LB6iB9Hc-DRg4BG602wfo3vn6bS-J2jDJ7jHAu6xgAEL-AALeMACDljACvdYwB4L7_ANJOAeCTgh4SlaTi8W5zMST9IgBuh1R2yplGCmAu5R8EJpJYCUMAPddFyIxtBWV9TUtjGtBv5cW6CJXFFdFmNtbFlZ_gyNoK3Nc4SrQjNmqJs71IK1tc5bw5QpG14bWo3zY5Qlq8kvoWCKHEpjOxtLsLH0NpbVMTpJhpWxY-2kK87AoRkVe_Hnxy_R_QG5J2jUfd03r4Ajdvp19PwP6yJp2g |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+thermally+laminated+MHD+non-Newtonian+nanofluids+across+a+stretched+sheet%3A+intelligent+computing+paradigm&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=150&rft.issue=1&rft.spage=479&rft.epage=504&rft_id=info:doi/10.1007%2Fs10973-024-13747-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |