3D thermally laminated MHD non-Newtonian nanofluids across a stretched sheet: intelligent computing paradigm

The primary subject of this article is the study of the viscous flow of nanofluids consisting of copper-methanol and water in the presence of a three-dimensional stretched sheet, which is subjected to magnetohydrodynamic effects (3D-MHD-NF) by employing artificial recurrent neural networks that are...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 150; no. 1; pp. 479 - 504
Main Authors Shahbaz, Hafiz Muhammad, Ahmad, Iftikhar, Raja, Muhammad Asif Zahoor, Ilyas, Hira, Nisar, Kottakkaran Sooppy, Shoaib, Muhammad
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Nature B.V 01.01.2025
Subjects
Online AccessGet full text
ISSN1388-6150
1588-2926
DOI10.1007/s10973-024-13747-8

Cover

Loading…
Abstract The primary subject of this article is the study of the viscous flow of nanofluids consisting of copper-methanol and water in the presence of a three-dimensional stretched sheet, which is subjected to magnetohydrodynamic effects (3D-MHD-NF) by employing artificial recurrent neural networks that are optimized using a Bayesian regularization technique (ARNN-BR). The viscosity effect is recognized to be dependent on temperature, with methanol and water being used as the base fluid. The presented model is employed in the manipulation and creation of surfaces within the field of nanotechnology. Its applications include stretching, shrinking, wrapping, and painting devices. The Adams method was employed to generate a dataset for the 3D-MHD-NF model for four scenarios by varying the Hartmann number (H), volume fraction of nanoparticle (φ), and viscosity parameter (α). The ARNN-BR technique employed a random selection of data 70% for training, 20% for testing, and 10% for validity. It has been found that boundary layer becomes thinner as the volume percentage of nanoparticle increases. Additionally, it is observed that augmentation in the viscosity parameter results in a proportional rise in temperature. Moreover, it is observed that increment in the variables H, φ, and α have an impact on the velocity boundary thickness in both the x- and y-directions. The newly introduced ARNN-BR technique's dependability, stability, and convergence were assessed using a fitness measure based on mean squares errors, histogram drawings, regression, input-error cross-correlation, and autocorrelation analysis for each scenario of the 3D-MHD-NF model.
AbstractList The primary subject of this article is the study of the viscous flow of nanofluids consisting of copper-methanol and water in the presence of a three-dimensional stretched sheet, which is subjected to magnetohydrodynamic effects (3D-MHD-NF) by employing artificial recurrent neural networks that are optimized using a Bayesian regularization technique (ARNN-BR). The viscosity effect is recognized to be dependent on temperature, with methanol and water being used as the base fluid. The presented model is employed in the manipulation and creation of surfaces within the field of nanotechnology. Its applications include stretching, shrinking, wrapping, and painting devices. The Adams method was employed to generate a dataset for the 3D-MHD-NF model for four scenarios by varying the Hartmann number (H), volume fraction of nanoparticle (φ), and viscosity parameter (α). The ARNN-BR technique employed a random selection of data 70% for training, 20% for testing, and 10% for validity. It has been found that boundary layer becomes thinner as the volume percentage of nanoparticle increases. Additionally, it is observed that augmentation in the viscosity parameter results in a proportional rise in temperature. Moreover, it is observed that increment in the variables H, φ, and α have an impact on the velocity boundary thickness in both the x- and y-directions. The newly introduced ARNN-BR technique's dependability, stability, and convergence were assessed using a fitness measure based on mean squares errors, histogram drawings, regression, input-error cross-correlation, and autocorrelation analysis for each scenario of the 3D-MHD-NF model.
Author Ilyas, Hira
Raja, Muhammad Asif Zahoor
Shoaib, Muhammad
Ahmad, Iftikhar
Nisar, Kottakkaran Sooppy
Shahbaz, Hafiz Muhammad
Author_xml – sequence: 1
  givenname: Hafiz Muhammad
  surname: Shahbaz
  fullname: Shahbaz, Hafiz Muhammad
– sequence: 2
  givenname: Iftikhar
  surname: Ahmad
  fullname: Ahmad, Iftikhar
– sequence: 3
  givenname: Muhammad Asif Zahoor
  surname: Raja
  fullname: Raja, Muhammad Asif Zahoor
– sequence: 4
  givenname: Hira
  surname: Ilyas
  fullname: Ilyas, Hira
– sequence: 5
  givenname: Kottakkaran Sooppy
  orcidid: 0000-0001-5769-4320
  surname: Nisar
  fullname: Nisar, Kottakkaran Sooppy
– sequence: 6
  givenname: Muhammad
  surname: Shoaib
  fullname: Shoaib, Muhammad
BookMark eNotkD1PwzAYhC0EEm3hDzBZYg74I4ltNtQCRSqwwGw5jtO6cpxgO0L995iW6W64e0_vMwfnfvAGgBuM7jBC7D5iJBgtECkLTFnJCn4GZrjivCCC1OfZ0-xrXKFLMI9xjxASAuEZcHQF086EXjl3gE711qtkWvi2XsG8UbybnzR4qzz0yg-dm2wbodJhiFlgTMEkvcv5uDMmPUDrk3HObo1PUA_9OCXrt3BUQbV221-Bi065aK7_dQG-np8-l-ti8_HyunzcFJqQOhUtU6okmhMhKlqpRpW8ZESrqq6r0mjcNRxr0RrdNbikouVYUIUbVtWNbhlv6QLcnu6OYfieTExyP0zB50lJcc1oLnGSU-SUOn4TTCfHYHsVDhIj-UdVnqjKTFUeqUpOfwG_923h
Cites_doi 10.1115/1.4054595
10.1016/j.surfin.2021.101107
10.1002/zamm.202400104
10.1002/htj.22157
10.1016/j.jtusci.2015.12.001
10.1016/j.matcom.2020.01.005
10.1016/j.jics.2022.100716
10.1080/10407782.2023.2273458
10.1016/j.rinma.2023.100453
10.3390/app13179510
10.1108/HFF-04-2019-0346
10.48048/tis.2022.6314
10.3390/math10122007
10.1038/s41598-021-97458-2
10.1016/j.jmmm.2023.170352
10.1016/j.mtcomm.2023.107844
10.1007/s10973-020-09850-1
10.1007/s10973-021-10681-x
10.4028/www.scientific.net/DDF.401.25
10.1016/j.jppr.2022.09.002
10.1063/5.0180414
10.3390/lubricants11080339
10.1016/j.apm.2012.04.004
10.1016/j.matchemphys.2022.126890
10.1007/s11771-023-5300-1
10.1007/s13369-021-05830-1
10.1016/j.cjph.2021.11.011
10.1016/j.icheatmasstransfer.2022.106069
10.1140/epjp/s13360-019-00066-3
10.1016/j.tsep.2020.100801
10.1016/j.chaos.2022.112285
10.1016/j.icheatmasstransfer.2022.106241
10.1177/09544089221136692
10.1016/j.icheatmasstransfer.2021.105196
10.1016/j.apenergy.2020.115098
10.1038/s41598-023-30233-7
10.1016/j.est.2022.105198
10.1371/journal.pntd.0010509
10.1016/j.cplett.2016.08.043
10.1007/s10973-019-08348-9
10.1021/acs.langmuir.8b03922
10.1080/00986445.2012.703148
10.1007/s10973-019-09111-w
10.1007/s10973-023-12565-8
10.1016/j.aej.2021.06.060
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s10973-024-13747-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1588-2926
EndPage 504
ExternalDocumentID 10_1007_s10973_024_13747_8
GroupedDBID .86
.VR
06C
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CITATION
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
ISR
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
~02
ABRTQ
ACUHS
S1Z
ID FETCH-LOGICAL-c226t-d7aa42c8299535aba48472ca56654ec1fb81c9decfb1439d8193a1b756bcd78d3
ISSN 1388-6150
IngestDate Fri Jul 25 11:07:23 EDT 2025
Tue Jul 01 02:44:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-d7aa42c8299535aba48472ca56654ec1fb81c9decfb1439d8193a1b756bcd78d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5769-4320
PQID 3167343982
PQPubID 2043843
PageCount 26
ParticipantIDs proquest_journals_3167343982
crossref_primary_10_1007_s10973_024_13747_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of thermal analysis and calorimetry
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References LA Khan (13747_CR6) 2020; 140
R Ellahi (13747_CR15) 2013; 37
HM Shahbaz (13747_CR42) 2024
N Sarwar (13747_CR26) 2022; 11
NS Akbar (13747_CR44) 2023; 13
R Khan (13747_CR27) 2023; 30
W Cao (13747_CR7) 2022; 135
A Sahreen (13747_CR31) 2023; 11
IC Liu (13747_CR47) 2013; 200
T Sajid (13747_CR5) 2022; 77
VH Nguyen (13747_CR32) 2022; 16
Y Muhammad (13747_CR39) 2022; 161
N Acharya (13747_CR1) 2022; 53
S Murtaza (13747_CR17) 2024
N Acharya (13747_CR13) 2020; 141
F Ishtiaq (13747_CR18) 2022
R Khan (13747_CR30) 2023
S Mandal (13747_CR25) 2023; 293
F Faisal (13747_CR41) 2020; 135
V Makkar (13747_CR24) 2022; 63
Z Sabir (13747_CR35) 2020; 172
Z Ahmed (13747_CR22) 2019; 29
J Mathews (13747_CR21) 2023; 237
S Shaheen (13747_CR9) 2021; 144
F Shahid (13747_CR40) 2020; 269
M Shoaib (13747_CR43) 2022; 61
N Acharya (13747_CR14) 2022; 144
N Acharya (13747_CR8) 2021; 50
H Ilyas (13747_CR33) 2021; 123
A Rizwan (13747_CR38) 2021; 46
D Qaiser (13747_CR16) 2021; 22
A Dawar (13747_CR11) 2022; 99
13747_CR4
X Huang (13747_CR45) 2019; 35
N Acharya (13747_CR2) 2024; 38
A Zeeshan (13747_CR34) 2023; 13
R Khan (13747_CR28) 2023; 567
AB Disu (13747_CR46) 2017; 11
I Uddin (13747_CR37) 2021; 11
NS Akbar (13747_CR29) 2016; 661
I Uddin (13747_CR36) 2021; 24
V Makkar (13747_CR19) 2022; 19
N Acharya (13747_CR10) 2021; 143
MM Bhatti (13747_CR3) 2023; 148
EO Fatunmbi (13747_CR23) 2023; 19
W Xiu (13747_CR12) 2022; 137
13747_CR20
References_xml – volume: 144
  issue: 9
  year: 2022
  ident: 13747_CR14
  publication-title: J Heat Transf
  doi: 10.1115/1.4054595
– volume: 24
  year: 2021
  ident: 13747_CR36
  publication-title: Surf Interfaces
  doi: 10.1016/j.surfin.2021.101107
– year: 2024
  ident: 13747_CR42
  publication-title: ZAMM J Appl Math Mech
  doi: 10.1002/zamm.202400104
– volume: 50
  start-page: 5951
  issue: 6
  year: 2021
  ident: 13747_CR8
  publication-title: Heat Transfer
  doi: 10.1002/htj.22157
– volume: 11
  start-page: 548
  issue: 4
  year: 2017
  ident: 13747_CR46
  publication-title: J Taibah Univ Sci
  doi: 10.1016/j.jtusci.2015.12.001
– volume: 172
  start-page: 1
  year: 2020
  ident: 13747_CR35
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2020.01.005
– volume: 99
  start-page: 100716
  issue: 10
  year: 2022
  ident: 13747_CR11
  publication-title: J Indian Chem Soc
  doi: 10.1016/j.jics.2022.100716
– volume: 63
  start-page: 283
  year: 2022
  ident: 13747_CR24
  publication-title: Mater Today: Proc
– year: 2023
  ident: 13747_CR30
  publication-title: Numer Heat Transf Part A: Appl
  doi: 10.1080/10407782.2023.2273458
– volume: 19
  year: 2023
  ident: 13747_CR23
  publication-title: Results Mater
  doi: 10.1016/j.rinma.2023.100453
– volume: 13
  start-page: 9510
  issue: 17
  year: 2023
  ident: 13747_CR34
  publication-title: Appl Sci
  doi: 10.3390/app13179510
– volume: 29
  start-page: 4607
  issue: 12
  year: 2019
  ident: 13747_CR22
  publication-title: Int J Numer Methods Heat Fluid Flow
  doi: 10.1108/HFF-04-2019-0346
– volume: 19
  start-page: 6314
  issue: 21
  year: 2022
  ident: 13747_CR19
  publication-title: Trends Sci
  doi: 10.48048/tis.2022.6314
– year: 2022
  ident: 13747_CR18
  publication-title: Mathematics
  doi: 10.3390/math10122007
– volume: 11
  start-page: 19239
  issue: 1
  year: 2021
  ident: 13747_CR37
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-97458-2
– volume: 567
  year: 2023
  ident: 13747_CR28
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2023.170352
– volume: 38
  start-page: 107844
  year: 2024
  ident: 13747_CR2
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2023.107844
– volume: 143
  start-page: 1273
  issue: 2
  year: 2021
  ident: 13747_CR10
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-020-09850-1
– volume: 144
  start-page: 2337
  year: 2021
  ident: 13747_CR9
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-021-10681-x
– ident: 13747_CR20
  doi: 10.4028/www.scientific.net/DDF.401.25
– volume: 11
  start-page: 565
  issue: 4
  year: 2022
  ident: 13747_CR26
  publication-title: Propul Power Res
  doi: 10.1016/j.jppr.2022.09.002
– year: 2024
  ident: 13747_CR17
  publication-title: AIP Adv
  doi: 10.1063/5.0180414
– volume: 11
  start-page: 339
  issue: 8
  year: 2023
  ident: 13747_CR31
  publication-title: Lubricants
  doi: 10.3390/lubricants11080339
– volume: 37
  start-page: 1451
  issue: 3
  year: 2013
  ident: 13747_CR15
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2012.04.004
– volume: 293
  year: 2023
  ident: 13747_CR25
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2022.126890
– volume: 30
  start-page: 1246
  issue: 4
  year: 2023
  ident: 13747_CR27
  publication-title: J Central South Univ
  doi: 10.1007/s11771-023-5300-1
– volume: 46
  start-page: 9279
  issue: 9
  year: 2021
  ident: 13747_CR38
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-021-05830-1
– volume: 77
  start-page: 1387
  year: 2022
  ident: 13747_CR5
  publication-title: Chin J Phys
  doi: 10.1016/j.cjph.2021.11.011
– volume: 135
  year: 2022
  ident: 13747_CR7
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.106069
– volume: 135
  start-page: 55
  issue: 1
  year: 2020
  ident: 13747_CR41
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/s13360-019-00066-3
– volume: 22
  year: 2021
  ident: 13747_CR16
  publication-title: Therm Sci Eng Progr
  doi: 10.1016/j.tsep.2020.100801
– volume: 161
  year: 2022
  ident: 13747_CR39
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2022.112285
– volume: 137
  year: 2022
  ident: 13747_CR12
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.106241
– volume: 237
  start-page: 1064
  issue: 3
  year: 2023
  ident: 13747_CR21
  publication-title: Proc Inst Mech Eng Part E: J Process Mech Eng
  doi: 10.1177/09544089221136692
– volume: 123
  year: 2021
  ident: 13747_CR33
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2021.105196
– volume: 269
  year: 2020
  ident: 13747_CR40
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115098
– volume: 13
  start-page: 3231
  issue: 1
  year: 2023
  ident: 13747_CR44
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-30233-7
– volume: 53
  start-page: 105198
  year: 2022
  ident: 13747_CR1
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.105198
– volume: 16
  issue: 6
  year: 2022
  ident: 13747_CR32
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0010509
– volume: 661
  start-page: 20
  year: 2016
  ident: 13747_CR29
  publication-title: Chem Phys Lett
  doi: 10.1016/j.cplett.2016.08.043
– volume: 140
  start-page: 879
  year: 2020
  ident: 13747_CR6
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-08348-9
– ident: 13747_CR4
– volume: 35
  start-page: 5442
  issue: 16
  year: 2019
  ident: 13747_CR45
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b03922
– volume: 200
  start-page: 253
  issue: 2
  year: 2013
  ident: 13747_CR47
  publication-title: Chem Eng Commun
  doi: 10.1080/00986445.2012.703148
– volume: 141
  start-page: 1425
  issue: 4
  year: 2020
  ident: 13747_CR13
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-09111-w
– volume: 148
  start-page: 14261
  issue: 24
  year: 2023
  ident: 13747_CR3
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-023-12565-8
– volume: 61
  start-page: 1607
  issue: 2
  year: 2022
  ident: 13747_CR43
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2021.06.060
SSID ssj0009901
Score 2.413878
Snippet The primary subject of this article is the study of the viscous flow of nanofluids consisting of copper-methanol and water in the presence of a...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 479
SubjectTerms Boundary layers
Cross correlation
Error analysis
Hartmann number
Magnetohydrodynamics
Methanol
Nanofluids
Nanoparticles
Parameters
Recurrent neural networks
Regularization
Temperature dependence
Three dimensional flow
Viscosity
Viscous flow
Title 3D thermally laminated MHD non-Newtonian nanofluids across a stretched sheet: intelligent computing paradigm
URI https://www.proquest.com/docview/3167343982
Volume 150
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BeoALYhWFgubAzRrkWRzb3NqmUYTacEmk3Eaz2BApDYg4B_j1vNnspiwCLlZkR_bovW_e-2b53iD0RjEFWZlSogW1RDBqSK1ETkRLS211qRV1Auer-Xi2FO9XxWo43sqrSzr91nz_pa7kf7wK98CvTiX7D57tXwo34Df4F67gYbj-lY_5xPFGCK2bzbcMXLveKkcgr2aTDEb1BAIYMDvXg7dq-7nd7Nd2lymfFzPlVSLOZTbbfWoaP0O47utzdn6v-d7viXbVwe364_VveGxsQaZSeROvlFNuZ991E3dRp3kFVtyaV0jzim7TtFvK6HUvPkxy8IQrJR-ySAydXs8R9O99bI1_uQmiEClFOEMmJt0inEH8UzzPk765Lt1ysyCUw_iHVEP2Siv28w9yury8lIuL1eIuOmIwashH6Oh0enY2H6ow13kYgcfmRxVV1FLe-sYhUzlM1J59LB6iB9Hc-DRg4BG602wfo3vn6bS-J2jDJ7jHAu6xgAEL-AALeMACDljACvdYwB4L7_ANJOAeCTgh4SlaTi8W5zMST9IgBuh1R2yplGCmAu5R8EJpJYCUMAPddFyIxtBWV9TUtjGtBv5cW6CJXFFdFmNtbFlZ_gyNoK3Nc4SrQjNmqJs71IK1tc5bw5QpG14bWo3zY5Qlq8kvoWCKHEpjOxtLsLH0NpbVMTpJhpWxY-2kK87AoRkVe_Hnxy_R_QG5J2jUfd03r4Ajdvp19PwP6yJp2g
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+thermally+laminated+MHD+non-Newtonian+nanofluids+across+a+stretched+sheet%3A+intelligent+computing+paradigm&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=150&rft.issue=1&rft.spage=479&rft.epage=504&rft_id=info:doi/10.1007%2Fs10973-024-13747-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon