Hydro-Grain-Texture Modeling of Systematics of Propagation, Branching, and Coalescence of Fluid-Driven Fractures
The heterogeneity of the mineral grain structure and presence of pre-existing flaws significantly impacts fracture propagation within amorphous crystalline rocks. We explore the macro-mechanical response derived from microfracture evolution for fluid-driven fracturing (hydraulic fracturing) in a gra...
Saved in:
Published in | Rock mechanics and rock engineering Vol. 58; no. 1; pp. 623 - 644 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wien
Springer Nature B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The heterogeneity of the mineral grain structure and presence of pre-existing flaws significantly impacts fracture propagation within amorphous crystalline rocks. We explore the macro-mechanical response derived from microfracture evolution for fluid-driven fracturing (hydraulic fracturing) in a granite with pre-existing flaws. We introduce a hydro-grain-texture model (HGTM) based on a “grain growth” algorithm that accurately characterizes the microscale granular structure of minerals subject to the influence of driven fluids. The single and double flaws of different geometries are introduced to investigate hydraulic fracture propagation in granites under combined influence of heterogeneity and anisotropy. The results demonstrate that the HGTM can consistently reproduce the principal features of fracture propagation and coalescence observed in experiments. It is found that the hydraulic fracturing results (fracture number, type, and tortuosity) and breakdown pressure are affected by the interactions of confining stress, mineral heterogeneity, and flaw geometry. Confining stress induces the extension of fluid-driven fractures in the direction of the maximum principal stress. While with absence of confining stress, fractures tend to extend along the long axis of the flaw and are more susceptible to grain boundaries and breakdown pressure is also primarily determined by the local strength at the flaw tip. In double flaw specimens, both the flaw bridging angles and confining stress jointly influence the patterns of fracture propagation and coalescence.HighlightsA novel hydro-grain-texture model (HGTM) is proposed to investigate the hydraulic fracturing behavior of crystalline rock.The combined influence of mineral heterogeneity, confining stress condition, and flaw geometry on hydraulic fracturing is investigated.Fluid-driven fracturing propagation, branching, and coalescence in granite containing single and double flaws are reproduced.The fracture tensile failure mode mechanism in hydraulic fracturing test is investigated. |
---|---|
AbstractList | The heterogeneity of the mineral grain structure and presence of pre-existing flaws significantly impacts fracture propagation within amorphous crystalline rocks. We explore the macro-mechanical response derived from microfracture evolution for fluid-driven fracturing (hydraulic fracturing) in a granite with pre-existing flaws. We introduce a hydro-grain-texture model (HGTM) based on a “grain growth” algorithm that accurately characterizes the microscale granular structure of minerals subject to the influence of driven fluids. The single and double flaws of different geometries are introduced to investigate hydraulic fracture propagation in granites under combined influence of heterogeneity and anisotropy. The results demonstrate that the HGTM can consistently reproduce the principal features of fracture propagation and coalescence observed in experiments. It is found that the hydraulic fracturing results (fracture number, type, and tortuosity) and breakdown pressure are affected by the interactions of confining stress, mineral heterogeneity, and flaw geometry. Confining stress induces the extension of fluid-driven fractures in the direction of the maximum principal stress. While with absence of confining stress, fractures tend to extend along the long axis of the flaw and are more susceptible to grain boundaries and breakdown pressure is also primarily determined by the local strength at the flaw tip. In double flaw specimens, both the flaw bridging angles and confining stress jointly influence the patterns of fracture propagation and coalescence.HighlightsA novel hydro-grain-texture model (HGTM) is proposed to investigate the hydraulic fracturing behavior of crystalline rock.The combined influence of mineral heterogeneity, confining stress condition, and flaw geometry on hydraulic fracturing is investigated.Fluid-driven fracturing propagation, branching, and coalescence in granite containing single and double flaws are reproduced.The fracture tensile failure mode mechanism in hydraulic fracturing test is investigated. |
Author | Elsworth, Derek Wang, Tao Wang, Suifeng Zhang, Liping Zhao, Xianyu |
Author_xml | – sequence: 1 givenname: Suifeng surname: Wang fullname: Wang, Suifeng – sequence: 2 givenname: Derek surname: Elsworth fullname: Elsworth, Derek – sequence: 3 givenname: Liping surname: Zhang fullname: Zhang, Liping – sequence: 4 givenname: Xianyu surname: Zhao fullname: Zhao, Xianyu – sequence: 5 givenname: Tao orcidid: 0000-0002-9013-8614 surname: Wang fullname: Wang, Tao |
BookMark | eNotkF1LwzAUhoMouE3_gFcFbxfNR5OslzrdJkwUnOBdSNNkdnRJTVpx_97UeXV4OQ_v4TxjcOq8MwBcYXSDERK3ESGOKEQkhyjHnEF8AkY4pznMGf04BSMkCIWEU3IOxjHuEEpLMRuBdnWogofLoGoHN-an64PJnn1lmtptM2-zt0PszF51tY5DfA2-VdsUvZtm90E5_ZnAaaZclc29akzUxmkzoIumryv4EOpv47JFUHrojhfgzKommsv_OQHvi8fNfAXXL8un-d0aakJ4B7UtGKpoessyVFilOCkLK6qK5JRyWlSCIV7QUpSl1dhSRjkuGU2QQKpILibg-tjbBv_Vm9jJne-DSyclxSwnsxljIlHkSOngYwzGyjbUexUOEiM5mJVHszKZlX9mJaa_rxxtcw |
Cites_doi | 10.1093/gji/ggac203 10.1016/j.ijrmms.2004.09.011 10.1016/j.ijrmms.2008.03.006 10.1029/2009JB006496 10.1016/j.jrmge.2021.01.011 10.1007/s00603-019-01841-5 10.1016/j.ijrmms.2006.11.006 10.1080/19648189.2019.1579759 10.1093/gji/ggaa183 10.1007/s00603-021-02438-7 10.1007/s00603-023-03291-6 10.1016/j.coal.2013.10.012 10.1007/s00603-017-1316-x 10.1007/s00603-018-1566-2 10.1002/2016JB013469 10.1007/s00603-015-0890-z 10.1002/2017JB014581 10.1016/j.earscirev.2021.103580 10.1007/s00603-023-03374-4 10.1007/s00603-020-02170-8 10.1007/s00603-021-02433-y 10.1007/s00603-016-0998-9 10.1016/j.jrmge.2024.05.020 10.1016/j.engfracmech.2018.01.011 10.1016/j.ijrmms.2007.02.002 10.1016/j.petrol.2016.12.009 10.1007/s00603-008-0003-3 10.1016/S0148-9062(98)00005-9 10.1007/s00603-018-1431-3 10.1007/s00603-008-0002-4 10.1016/j.petrol.2018.02.047 10.1680/geot.1979.29.1.47 10.1016/j.engfracmech.2015.09.008 10.1016/j.geothermics.2014.06.005 10.1002/jgrb.50204 10.1002/nag.3040 10.1007/s10706-016-0132-5 10.1061/(ASCE)GM.1943-5622.0000773 10.1007/978-1-4020-8444-7 10.1007/s12517-015-2196-6 10.1115/1.321162 10.1007/s11440-018-0682-1 10.1016/S1365-1609(02)00027-8 10.1016/j.engfracmech.2018.07.008 10.1029/2019JB018376 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. Jan 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. Jan 2025 |
DBID | AAYXX CITATION 7TN 7UA 8FD C1K F1W FR3 H96 KR7 L.G |
DOI | 10.1007/s00603-024-04165-1 |
DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1434-453X |
EndPage | 644 |
ExternalDocumentID | 10_1007_s00603_024_04165_1 |
GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V L8X LAS LK5 LLZTM M2P M4Y M7R M7S MA- MK~ MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PCBAR PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 Y6R YLTOR Z45 Z8Z ZMTXR ZY4 ~02 ~EX 7TN 7UA 8FD ABRTQ C1K F1W FR3 H96 KR7 L.G |
ID | FETCH-LOGICAL-c226t-cf950d3006f509faa62b9f7dd2433639d750693b7bbfc1f35361b532b970a9603 |
ISSN | 0723-2632 |
IngestDate | Thu Jul 24 04:21:01 EDT 2025 Tue Jul 01 03:35:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c226t-cf950d3006f509faa62b9f7dd2433639d750693b7bbfc1f35361b532b970a9603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9013-8614 |
PQID | 3154288557 |
PQPubID | 60272 |
PageCount | 22 |
ParticipantIDs | proquest_journals_3154288557 crossref_primary_10_1007_s00603_024_04165_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
PublicationDecade | 2020 |
PublicationPlace | Wien |
PublicationPlace_xml | – name: Wien |
PublicationTitle | Rock mechanics and rock engineering |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 4165_CR101 4165_CR102 Q Bai (4165_CR4) 2022; 231 BQ Li (4165_CR22) 2019; 124 JA Vallejos (4165_CR35) 2017 S Wang (4165_CR38) 2023; 56 Y Zhou (4165_CR51) 2024 T Wang (4165_CR37) 2017; 150 A Zang (4165_CR44) 2010 F Zhang (4165_CR47) 2013; 118 M Naoi (4165_CR27) 2020; 222 X Hu (4165_CR17) 2023; 56 X Zhao (4165_CR50) 2021; 148 4165_CR25 J Peng (4165_CR30) 2021; 13 M Sagong (4165_CR34) 2002; 39 LNY Wong (4165_CR41) 2009; 42 X Zhao (4165_CR49) 2018; 165 F Zhang (4165_CR46) 2018; 199 H Hofmann (4165_CR16) 2015; 147 4165_CR33 4165_CR32 L Kong (4165_CR19) 2021; 144 LNY Wong (4165_CR42) 2009; 46 DO Potyondy (4165_CR31) 2004; 41 D Garagash (4165_CR11) 2000; 67 M Li (4165_CR24) 2022; 275 G Gunarathna (4165_CR15) 2021; 54 G Gunarathna (4165_CR14) 2019; 52 J Peng (4165_CR29) 2018; 51 B Lei (4165_CR21) 2024; 167 SC Wu (4165_CR43) 2016; 49 Y Cheng (4165_CR6) 2018; 123 T Wang (4165_CR36) 2014; 121 A Bobet (4165_CR5) 1998; 35 H Lan (4165_CR20) 2010 Y Ji (4165_CR18) 2021; 54 G Liu (4165_CR26) 2019; 14 B Gonçalves Da Silva (4165_CR13) 2018; 191 A Zang (4165_CR45) 2014; 52 L Zhuang (4165_CR54) 2022; 157 L Zhuang (4165_CR52) 2021; 216 J Peng (4165_CR28) 2017; 122 S Wang (4165_CR39) 2024 B Gonçalves Da Silva (4165_CR12) 2016 N Cho (4165_CR9) 2007; 44 H Cheng (4165_CR8) 2016; 49 XF Li (4165_CR23) 2018; 51 L Zhuang (4165_CR53) 2020; 53 M Bahaaddini (4165_CR2) 2021; 25 J Adachi (4165_CR1) 2007; 44 PA Cundall (4165_CR10) 1979; 29 Y Cheng (4165_CR7) 2020; 44 C Zhang (4165_CR48) 2024; 169 LNY Wong (4165_CR40) 2009; 42 |
References_xml | – volume: 148 year: 2021 ident: 4165_CR50 publication-title: Int J Rock Mech Min – volume: 231 start-page: 552 issue: 1 year: 2022 ident: 4165_CR4 publication-title: Geophys J Int doi: 10.1093/gji/ggac203 – volume: 41 start-page: 1329 year: 2004 ident: 4165_CR31 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2004.09.011 – volume: 46 start-page: 239 issue: 2 year: 2009 ident: 4165_CR42 publication-title: Int J Rock Mech Min doi: 10.1016/j.ijrmms.2008.03.006 – year: 2010 ident: 4165_CR20 publication-title: J Geophys Res doi: 10.1029/2009JB006496 – volume: 13 start-page: 755 issue: 4 year: 2021 ident: 4165_CR30 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2021.01.011 – volume: 52 start-page: 4835 issue: 11 year: 2019 ident: 4165_CR14 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-019-01841-5 – volume: 167 year: 2024 ident: 4165_CR21 publication-title: Comput Geotech – volume: 44 start-page: 739 issue: 1 year: 2007 ident: 4165_CR1 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2006.11.006 – volume: 25 start-page: 1427 issue: 8 year: 2021 ident: 4165_CR2 publication-title: Eur J Environ Civ Eng doi: 10.1080/19648189.2019.1579759 – volume: 222 start-page: 769 issue: 2 year: 2020 ident: 4165_CR27 publication-title: Geophys J Int doi: 10.1093/gji/ggaa183 – volume: 54 start-page: 5389 issue: 10 year: 2021 ident: 4165_CR18 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-021-02438-7 – ident: 4165_CR25 – volume: 56 start-page: 4799 issue: 7 year: 2023 ident: 4165_CR17 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-023-03291-6 – volume: 121 start-page: 1 year: 2014 ident: 4165_CR36 publication-title: Int J Coal Geol doi: 10.1016/j.coal.2013.10.012 – volume: 51 start-page: 135 issue: 1 year: 2018 ident: 4165_CR29 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-017-1316-x – volume: 51 start-page: 3785 issue: 12 year: 2018 ident: 4165_CR23 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-018-1566-2 – volume: 122 start-page: 1054 issue: 2 year: 2017 ident: 4165_CR28 publication-title: J Geophys Res Solid Earth doi: 10.1002/2016JB013469 – volume: 49 start-page: 1813 issue: 5 year: 2016 ident: 4165_CR43 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-015-0890-z – volume: 123 start-page: 204 issue: 1 year: 2018 ident: 4165_CR6 publication-title: J Geophys Res Solid Earth doi: 10.1002/2017JB014581 – volume: 216 year: 2021 ident: 4165_CR52 publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2021.103580 – volume: 56 start-page: 5781 issue: 8 year: 2023 ident: 4165_CR38 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-023-03374-4 – volume: 53 start-page: 4329 issue: 10 year: 2020 ident: 4165_CR53 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-020-02170-8 – volume: 54 start-page: 2903 issue: 6 year: 2021 ident: 4165_CR15 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-021-02433-y – volume: 144 year: 2021 ident: 4165_CR19 publication-title: Int J Rock Mech Min – volume: 49 start-page: 3481 issue: 9 year: 2016 ident: 4165_CR8 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-0998-9 – year: 2024 ident: 4165_CR39 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2024.05.020 – ident: 4165_CR32 – volume: 191 start-page: 125 year: 2018 ident: 4165_CR13 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2018.01.011 – volume: 44 start-page: 997 issue: 7 year: 2007 ident: 4165_CR9 publication-title: Int J Rock Mech Min doi: 10.1016/j.ijrmms.2007.02.002 – volume: 150 start-page: 180 year: 2017 ident: 4165_CR37 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2016.12.009 – volume: 42 start-page: 513 issue: 3 year: 2009 ident: 4165_CR40 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-008-0003-3 – volume: 35 start-page: 863 issue: 7 year: 1998 ident: 4165_CR5 publication-title: Int J Rock Mech Min Sci doi: 10.1016/S0148-9062(98)00005-9 – ident: 4165_CR101 doi: 10.1007/s00603-018-1431-3 – volume-title: Fracturing processes and induced seismicity due to the hydraulic fracturing of rocks year: 2016 ident: 4165_CR12 – volume: 42 start-page: 475 issue: 3 year: 2009 ident: 4165_CR41 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-008-0002-4 – volume: 275 year: 2022 ident: 4165_CR24 publication-title: Eng Fract Mech – volume: 165 start-page: 616 year: 2018 ident: 4165_CR49 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2018.02.047 – volume: 29 start-page: 47 issue: 1 year: 1979 ident: 4165_CR10 publication-title: Geotechnique doi: 10.1680/geot.1979.29.1.47 – volume: 147 start-page: 261 year: 2015 ident: 4165_CR16 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2015.09.008 – volume: 52 start-page: 6 year: 2014 ident: 4165_CR45 publication-title: Geothermics doi: 10.1016/j.geothermics.2014.06.005 – volume: 118 start-page: 2703 issue: 6 year: 2013 ident: 4165_CR47 publication-title: J Geophys Res Solid Earth doi: 10.1002/jgrb.50204 – volume: 44 start-page: 803 issue: 6 year: 2020 ident: 4165_CR7 publication-title: Int J Numer Anal Met doi: 10.1002/nag.3040 – ident: 4165_CR33 – ident: 4165_CR102 doi: 10.1007/s10706-016-0132-5 – year: 2017 ident: 4165_CR35 doi: 10.1061/(ASCE)GM.1943-5622.0000773 – volume-title: Stress field of the earth’s crust year: 2010 ident: 4165_CR44 doi: 10.1007/978-1-4020-8444-7 – volume: 169 year: 2024 ident: 4165_CR48 publication-title: Comput Geotech – year: 2024 ident: 4165_CR51 publication-title: Int J Numer Anal Met doi: 10.1007/s12517-015-2196-6 – volume: 157 year: 2022 ident: 4165_CR54 publication-title: Int J Rock Mech Min – volume: 67 start-page: 183 issue: 1 year: 2000 ident: 4165_CR11 publication-title: J Appl Mech doi: 10.1115/1.321162 – volume: 14 start-page: 843 issue: 3 year: 2019 ident: 4165_CR26 publication-title: Acta Geotech doi: 10.1007/s11440-018-0682-1 – volume: 39 start-page: 229 issue: 2 year: 2002 ident: 4165_CR34 publication-title: Int J Rock Mech Min Sci doi: 10.1016/S1365-1609(02)00027-8 – volume: 199 start-page: 705 year: 2018 ident: 4165_CR46 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2018.07.008 – volume: 124 start-page: 11900 issue: 11 year: 2019 ident: 4165_CR22 publication-title: J Geophys Res Solid Earth doi: 10.1029/2019JB018376 |
SSID | ssj0014378 |
Score | 2.4117122 |
Snippet | The heterogeneity of the mineral grain structure and presence of pre-existing flaws significantly impacts fracture propagation within amorphous crystalline... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 623 |
SubjectTerms | Algorithms Anisotropy Branching Breakdown Coalescence Confining Crack propagation Crystalline rocks Failure modes Fluids Fracture mechanics Grain boundaries Grain growth Grain structure Granite Heterogeneity Hydraulic fracturing Mechanical analysis Microfracture Minerals Propagation Rocks Stress propagation Systematics Texture Tortuosity |
Title | Hydro-Grain-Texture Modeling of Systematics of Propagation, Branching, and Coalescence of Fluid-Driven Fractures |
URI | https://www.proquest.com/docview/3154288557 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKJyQ4IBggBgP5wG0zavyV5thtdGVAhVgn7WbFcTyQRjtl7WH89bxnJ2lGJwRcotaN3NTv1_d-fn4fhLy1POe6ECUTWZ4yWVjJwAwnLHfeCz1wQLnRD_l5qidn8uRcnfd6J52opdXSvit-3plX8j9ShTGQK2bJ_oNk20lhAF6DfOEKEobrX8l4cuOqBTvGLg9sBloWDwOwudllHcp82pZpjrFuFeyQL2I4RxArSPxb3dME_eeHizxWdyqCI2F8ufru2FGF-hAJbjhsuO6y2a-gTPd-lJg83BR7rnCoXBc57HoVuPrNq9B4FTFkGp-9zXoJiinlgmGd92hDouKUQjKpQm_fVrOq4QaCoprUMce4trg6VoDcUOYxfgM7tmPMF8eAmUQrlqxNV3NcPxmdmi9HY_Ppw_TjPbLFYcvA-2RrND44mLZnSlJEu9w8fZ1CFRIpN77jNk25baUD9Zg9Jo_qPQMdRQA8Ib1yvk0edipJbpP7x6FD881TcnUHKGgDCrrwtAMKfNsBxT5tIbFPQZi0Awi8tQsI2gLiGTkbv58dTljdVoMVwLWXrPCZGjgBP9kDW_R5rrnNfOocl0IAYXVAInUmbGqtLxIvlNCJVQJuSgc5bHjFc9KfL-blC0Itl6nkPoGZnLSwVy1LBTNl-aAY5lbaHbLXrKK5itVTTFsnO6y5gTU3Yc1NskN2m4U29b_s2gjg-Hw4VCp9-eePX5EHayDvkv6yWpWvgTAu7ZsaCb8AQylqoQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydro-Grain-Texture+Modeling+of+Systematics+of+Propagation%2C+Branching%2C+and+Coalescence+of+Fluid-Driven+Fractures&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=58&rft.issue=1&rft.spage=623&rft.epage=644&rft_id=info:doi/10.1007%2Fs00603-024-04165-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon |