Hydro-Grain-Texture Modeling of Systematics of Propagation, Branching, and Coalescence of Fluid-Driven Fractures

The heterogeneity of the mineral grain structure and presence of pre-existing flaws significantly impacts fracture propagation within amorphous crystalline rocks. We explore the macro-mechanical response derived from microfracture evolution for fluid-driven fracturing (hydraulic fracturing) in a gra...

Full description

Saved in:
Bibliographic Details
Published inRock mechanics and rock engineering Vol. 58; no. 1; pp. 623 - 644
Main Authors Wang, Suifeng, Elsworth, Derek, Zhang, Liping, Zhao, Xianyu, Wang, Tao
Format Journal Article
LanguageEnglish
Published Wien Springer Nature B.V 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The heterogeneity of the mineral grain structure and presence of pre-existing flaws significantly impacts fracture propagation within amorphous crystalline rocks. We explore the macro-mechanical response derived from microfracture evolution for fluid-driven fracturing (hydraulic fracturing) in a granite with pre-existing flaws. We introduce a hydro-grain-texture model (HGTM) based on a “grain growth” algorithm that accurately characterizes the microscale granular structure of minerals subject to the influence of driven fluids. The single and double flaws of different geometries are introduced to investigate hydraulic fracture propagation in granites under combined influence of heterogeneity and anisotropy. The results demonstrate that the HGTM can consistently reproduce the principal features of fracture propagation and coalescence observed in experiments. It is found that the hydraulic fracturing results (fracture number, type, and tortuosity) and breakdown pressure are affected by the interactions of confining stress, mineral heterogeneity, and flaw geometry. Confining stress induces the extension of fluid-driven fractures in the direction of the maximum principal stress. While with absence of confining stress, fractures tend to extend along the long axis of the flaw and are more susceptible to grain boundaries and breakdown pressure is also primarily determined by the local strength at the flaw tip. In double flaw specimens, both the flaw bridging angles and confining stress jointly influence the patterns of fracture propagation and coalescence.HighlightsA novel hydro-grain-texture model (HGTM) is proposed to investigate the hydraulic fracturing behavior of crystalline rock.The combined influence of mineral heterogeneity, confining stress condition, and flaw geometry on hydraulic fracturing is investigated.Fluid-driven fracturing propagation, branching, and coalescence in granite containing single and double flaws are reproduced.The fracture tensile failure mode mechanism in hydraulic fracturing test is investigated.
AbstractList The heterogeneity of the mineral grain structure and presence of pre-existing flaws significantly impacts fracture propagation within amorphous crystalline rocks. We explore the macro-mechanical response derived from microfracture evolution for fluid-driven fracturing (hydraulic fracturing) in a granite with pre-existing flaws. We introduce a hydro-grain-texture model (HGTM) based on a “grain growth” algorithm that accurately characterizes the microscale granular structure of minerals subject to the influence of driven fluids. The single and double flaws of different geometries are introduced to investigate hydraulic fracture propagation in granites under combined influence of heterogeneity and anisotropy. The results demonstrate that the HGTM can consistently reproduce the principal features of fracture propagation and coalescence observed in experiments. It is found that the hydraulic fracturing results (fracture number, type, and tortuosity) and breakdown pressure are affected by the interactions of confining stress, mineral heterogeneity, and flaw geometry. Confining stress induces the extension of fluid-driven fractures in the direction of the maximum principal stress. While with absence of confining stress, fractures tend to extend along the long axis of the flaw and are more susceptible to grain boundaries and breakdown pressure is also primarily determined by the local strength at the flaw tip. In double flaw specimens, both the flaw bridging angles and confining stress jointly influence the patterns of fracture propagation and coalescence.HighlightsA novel hydro-grain-texture model (HGTM) is proposed to investigate the hydraulic fracturing behavior of crystalline rock.The combined influence of mineral heterogeneity, confining stress condition, and flaw geometry on hydraulic fracturing is investigated.Fluid-driven fracturing propagation, branching, and coalescence in granite containing single and double flaws are reproduced.The fracture tensile failure mode mechanism in hydraulic fracturing test is investigated.
Author Elsworth, Derek
Wang, Tao
Wang, Suifeng
Zhang, Liping
Zhao, Xianyu
Author_xml – sequence: 1
  givenname: Suifeng
  surname: Wang
  fullname: Wang, Suifeng
– sequence: 2
  givenname: Derek
  surname: Elsworth
  fullname: Elsworth, Derek
– sequence: 3
  givenname: Liping
  surname: Zhang
  fullname: Zhang, Liping
– sequence: 4
  givenname: Xianyu
  surname: Zhao
  fullname: Zhao, Xianyu
– sequence: 5
  givenname: Tao
  orcidid: 0000-0002-9013-8614
  surname: Wang
  fullname: Wang, Tao
BookMark eNotkF1LwzAUhoMouE3_gFcFbxfNR5OslzrdJkwUnOBdSNNkdnRJTVpx_97UeXV4OQ_v4TxjcOq8MwBcYXSDERK3ESGOKEQkhyjHnEF8AkY4pznMGf04BSMkCIWEU3IOxjHuEEpLMRuBdnWogofLoGoHN-an64PJnn1lmtptM2-zt0PszF51tY5DfA2-VdsUvZtm90E5_ZnAaaZclc29akzUxmkzoIumryv4EOpv47JFUHrojhfgzKommsv_OQHvi8fNfAXXL8un-d0aakJ4B7UtGKpoessyVFilOCkLK6qK5JRyWlSCIV7QUpSl1dhSRjkuGU2QQKpILibg-tjbBv_Vm9jJne-DSyclxSwnsxljIlHkSOngYwzGyjbUexUOEiM5mJVHszKZlX9mJaa_rxxtcw
Cites_doi 10.1093/gji/ggac203
10.1016/j.ijrmms.2004.09.011
10.1016/j.ijrmms.2008.03.006
10.1029/2009JB006496
10.1016/j.jrmge.2021.01.011
10.1007/s00603-019-01841-5
10.1016/j.ijrmms.2006.11.006
10.1080/19648189.2019.1579759
10.1093/gji/ggaa183
10.1007/s00603-021-02438-7
10.1007/s00603-023-03291-6
10.1016/j.coal.2013.10.012
10.1007/s00603-017-1316-x
10.1007/s00603-018-1566-2
10.1002/2016JB013469
10.1007/s00603-015-0890-z
10.1002/2017JB014581
10.1016/j.earscirev.2021.103580
10.1007/s00603-023-03374-4
10.1007/s00603-020-02170-8
10.1007/s00603-021-02433-y
10.1007/s00603-016-0998-9
10.1016/j.jrmge.2024.05.020
10.1016/j.engfracmech.2018.01.011
10.1016/j.ijrmms.2007.02.002
10.1016/j.petrol.2016.12.009
10.1007/s00603-008-0003-3
10.1016/S0148-9062(98)00005-9
10.1007/s00603-018-1431-3
10.1007/s00603-008-0002-4
10.1016/j.petrol.2018.02.047
10.1680/geot.1979.29.1.47
10.1016/j.engfracmech.2015.09.008
10.1016/j.geothermics.2014.06.005
10.1002/jgrb.50204
10.1002/nag.3040
10.1007/s10706-016-0132-5
10.1061/(ASCE)GM.1943-5622.0000773
10.1007/978-1-4020-8444-7
10.1007/s12517-015-2196-6
10.1115/1.321162
10.1007/s11440-018-0682-1
10.1016/S1365-1609(02)00027-8
10.1016/j.engfracmech.2018.07.008
10.1029/2019JB018376
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Jan 2025
DBID AAYXX
CITATION
7TN
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
DOI 10.1007/s00603-024-04165-1
DatabaseName CrossRef
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1434-453X
EndPage 644
ExternalDocumentID 10_1007_s00603_024_04165_1
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MK~
MM-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PCBAR
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
Y6R
YLTOR
Z45
Z8Z
ZMTXR
ZY4
~02
~EX
7TN
7UA
8FD
ABRTQ
C1K
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-c226t-cf950d3006f509faa62b9f7dd2433639d750693b7bbfc1f35361b532b970a9603
ISSN 0723-2632
IngestDate Thu Jul 24 04:21:01 EDT 2025
Tue Jul 01 03:35:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-cf950d3006f509faa62b9f7dd2433639d750693b7bbfc1f35361b532b970a9603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9013-8614
PQID 3154288557
PQPubID 60272
PageCount 22
ParticipantIDs proquest_journals_3154288557
crossref_primary_10_1007_s00603_024_04165_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationPlace Wien
PublicationPlace_xml – name: Wien
PublicationTitle Rock mechanics and rock engineering
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 4165_CR101
4165_CR102
Q Bai (4165_CR4) 2022; 231
BQ Li (4165_CR22) 2019; 124
JA Vallejos (4165_CR35) 2017
S Wang (4165_CR38) 2023; 56
Y Zhou (4165_CR51) 2024
T Wang (4165_CR37) 2017; 150
A Zang (4165_CR44) 2010
F Zhang (4165_CR47) 2013; 118
M Naoi (4165_CR27) 2020; 222
X Hu (4165_CR17) 2023; 56
X Zhao (4165_CR50) 2021; 148
4165_CR25
J Peng (4165_CR30) 2021; 13
M Sagong (4165_CR34) 2002; 39
LNY Wong (4165_CR41) 2009; 42
X Zhao (4165_CR49) 2018; 165
F Zhang (4165_CR46) 2018; 199
H Hofmann (4165_CR16) 2015; 147
4165_CR33
4165_CR32
L Kong (4165_CR19) 2021; 144
LNY Wong (4165_CR42) 2009; 46
DO Potyondy (4165_CR31) 2004; 41
D Garagash (4165_CR11) 2000; 67
M Li (4165_CR24) 2022; 275
G Gunarathna (4165_CR15) 2021; 54
G Gunarathna (4165_CR14) 2019; 52
J Peng (4165_CR29) 2018; 51
B Lei (4165_CR21) 2024; 167
SC Wu (4165_CR43) 2016; 49
Y Cheng (4165_CR6) 2018; 123
T Wang (4165_CR36) 2014; 121
A Bobet (4165_CR5) 1998; 35
H Lan (4165_CR20) 2010
Y Ji (4165_CR18) 2021; 54
G Liu (4165_CR26) 2019; 14
B Gonçalves Da Silva (4165_CR13) 2018; 191
A Zang (4165_CR45) 2014; 52
L Zhuang (4165_CR54) 2022; 157
L Zhuang (4165_CR52) 2021; 216
J Peng (4165_CR28) 2017; 122
S Wang (4165_CR39) 2024
B Gonçalves Da Silva (4165_CR12) 2016
N Cho (4165_CR9) 2007; 44
H Cheng (4165_CR8) 2016; 49
XF Li (4165_CR23) 2018; 51
L Zhuang (4165_CR53) 2020; 53
M Bahaaddini (4165_CR2) 2021; 25
J Adachi (4165_CR1) 2007; 44
PA Cundall (4165_CR10) 1979; 29
Y Cheng (4165_CR7) 2020; 44
C Zhang (4165_CR48) 2024; 169
LNY Wong (4165_CR40) 2009; 42
References_xml – volume: 148
  year: 2021
  ident: 4165_CR50
  publication-title: Int J Rock Mech Min
– volume: 231
  start-page: 552
  issue: 1
  year: 2022
  ident: 4165_CR4
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggac203
– volume: 41
  start-page: 1329
  year: 2004
  ident: 4165_CR31
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2004.09.011
– volume: 46
  start-page: 239
  issue: 2
  year: 2009
  ident: 4165_CR42
  publication-title: Int J Rock Mech Min
  doi: 10.1016/j.ijrmms.2008.03.006
– year: 2010
  ident: 4165_CR20
  publication-title: J Geophys Res
  doi: 10.1029/2009JB006496
– volume: 13
  start-page: 755
  issue: 4
  year: 2021
  ident: 4165_CR30
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2021.01.011
– volume: 52
  start-page: 4835
  issue: 11
  year: 2019
  ident: 4165_CR14
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-019-01841-5
– volume: 167
  year: 2024
  ident: 4165_CR21
  publication-title: Comput Geotech
– volume: 44
  start-page: 739
  issue: 1
  year: 2007
  ident: 4165_CR1
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2006.11.006
– volume: 25
  start-page: 1427
  issue: 8
  year: 2021
  ident: 4165_CR2
  publication-title: Eur J Environ Civ Eng
  doi: 10.1080/19648189.2019.1579759
– volume: 222
  start-page: 769
  issue: 2
  year: 2020
  ident: 4165_CR27
  publication-title: Geophys J Int
  doi: 10.1093/gji/ggaa183
– volume: 54
  start-page: 5389
  issue: 10
  year: 2021
  ident: 4165_CR18
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-021-02438-7
– ident: 4165_CR25
– volume: 56
  start-page: 4799
  issue: 7
  year: 2023
  ident: 4165_CR17
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-023-03291-6
– volume: 121
  start-page: 1
  year: 2014
  ident: 4165_CR36
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2013.10.012
– volume: 51
  start-page: 135
  issue: 1
  year: 2018
  ident: 4165_CR29
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-017-1316-x
– volume: 51
  start-page: 3785
  issue: 12
  year: 2018
  ident: 4165_CR23
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1566-2
– volume: 122
  start-page: 1054
  issue: 2
  year: 2017
  ident: 4165_CR28
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2016JB013469
– volume: 49
  start-page: 1813
  issue: 5
  year: 2016
  ident: 4165_CR43
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-015-0890-z
– volume: 123
  start-page: 204
  issue: 1
  year: 2018
  ident: 4165_CR6
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2017JB014581
– volume: 216
  year: 2021
  ident: 4165_CR52
  publication-title: Earth-Sci Rev
  doi: 10.1016/j.earscirev.2021.103580
– volume: 56
  start-page: 5781
  issue: 8
  year: 2023
  ident: 4165_CR38
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-023-03374-4
– volume: 53
  start-page: 4329
  issue: 10
  year: 2020
  ident: 4165_CR53
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-020-02170-8
– volume: 54
  start-page: 2903
  issue: 6
  year: 2021
  ident: 4165_CR15
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-021-02433-y
– volume: 144
  year: 2021
  ident: 4165_CR19
  publication-title: Int J Rock Mech Min
– volume: 49
  start-page: 3481
  issue: 9
  year: 2016
  ident: 4165_CR8
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-0998-9
– year: 2024
  ident: 4165_CR39
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2024.05.020
– ident: 4165_CR32
– volume: 191
  start-page: 125
  year: 2018
  ident: 4165_CR13
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2018.01.011
– volume: 44
  start-page: 997
  issue: 7
  year: 2007
  ident: 4165_CR9
  publication-title: Int J Rock Mech Min
  doi: 10.1016/j.ijrmms.2007.02.002
– volume: 150
  start-page: 180
  year: 2017
  ident: 4165_CR37
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2016.12.009
– volume: 42
  start-page: 513
  issue: 3
  year: 2009
  ident: 4165_CR40
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-008-0003-3
– volume: 35
  start-page: 863
  issue: 7
  year: 1998
  ident: 4165_CR5
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S0148-9062(98)00005-9
– ident: 4165_CR101
  doi: 10.1007/s00603-018-1431-3
– volume-title: Fracturing processes and induced seismicity due to the hydraulic fracturing of rocks
  year: 2016
  ident: 4165_CR12
– volume: 42
  start-page: 475
  issue: 3
  year: 2009
  ident: 4165_CR41
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-008-0002-4
– volume: 275
  year: 2022
  ident: 4165_CR24
  publication-title: Eng Fract Mech
– volume: 165
  start-page: 616
  year: 2018
  ident: 4165_CR49
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2018.02.047
– volume: 29
  start-page: 47
  issue: 1
  year: 1979
  ident: 4165_CR10
  publication-title: Geotechnique
  doi: 10.1680/geot.1979.29.1.47
– volume: 147
  start-page: 261
  year: 2015
  ident: 4165_CR16
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2015.09.008
– volume: 52
  start-page: 6
  year: 2014
  ident: 4165_CR45
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2014.06.005
– volume: 118
  start-page: 2703
  issue: 6
  year: 2013
  ident: 4165_CR47
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/jgrb.50204
– volume: 44
  start-page: 803
  issue: 6
  year: 2020
  ident: 4165_CR7
  publication-title: Int J Numer Anal Met
  doi: 10.1002/nag.3040
– ident: 4165_CR33
– ident: 4165_CR102
  doi: 10.1007/s10706-016-0132-5
– year: 2017
  ident: 4165_CR35
  doi: 10.1061/(ASCE)GM.1943-5622.0000773
– volume-title: Stress field of the earth’s crust
  year: 2010
  ident: 4165_CR44
  doi: 10.1007/978-1-4020-8444-7
– volume: 169
  year: 2024
  ident: 4165_CR48
  publication-title: Comput Geotech
– year: 2024
  ident: 4165_CR51
  publication-title: Int J Numer Anal Met
  doi: 10.1007/s12517-015-2196-6
– volume: 157
  year: 2022
  ident: 4165_CR54
  publication-title: Int J Rock Mech Min
– volume: 67
  start-page: 183
  issue: 1
  year: 2000
  ident: 4165_CR11
  publication-title: J Appl Mech
  doi: 10.1115/1.321162
– volume: 14
  start-page: 843
  issue: 3
  year: 2019
  ident: 4165_CR26
  publication-title: Acta Geotech
  doi: 10.1007/s11440-018-0682-1
– volume: 39
  start-page: 229
  issue: 2
  year: 2002
  ident: 4165_CR34
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S1365-1609(02)00027-8
– volume: 199
  start-page: 705
  year: 2018
  ident: 4165_CR46
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2018.07.008
– volume: 124
  start-page: 11900
  issue: 11
  year: 2019
  ident: 4165_CR22
  publication-title: J Geophys Res Solid Earth
  doi: 10.1029/2019JB018376
SSID ssj0014378
Score 2.4117122
Snippet The heterogeneity of the mineral grain structure and presence of pre-existing flaws significantly impacts fracture propagation within amorphous crystalline...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 623
SubjectTerms Algorithms
Anisotropy
Branching
Breakdown
Coalescence
Confining
Crack propagation
Crystalline rocks
Failure modes
Fluids
Fracture mechanics
Grain boundaries
Grain growth
Grain structure
Granite
Heterogeneity
Hydraulic fracturing
Mechanical analysis
Microfracture
Minerals
Propagation
Rocks
Stress propagation
Systematics
Texture
Tortuosity
Title Hydro-Grain-Texture Modeling of Systematics of Propagation, Branching, and Coalescence of Fluid-Driven Fractures
URI https://www.proquest.com/docview/3154288557
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKJyQ4IBggBgP5wG0zavyV5thtdGVAhVgn7WbFcTyQRjtl7WH89bxnJ2lGJwRcotaN3NTv1_d-fn4fhLy1POe6ECUTWZ4yWVjJwAwnLHfeCz1wQLnRD_l5qidn8uRcnfd6J52opdXSvit-3plX8j9ShTGQK2bJ_oNk20lhAF6DfOEKEobrX8l4cuOqBTvGLg9sBloWDwOwudllHcp82pZpjrFuFeyQL2I4RxArSPxb3dME_eeHizxWdyqCI2F8ufru2FGF-hAJbjhsuO6y2a-gTPd-lJg83BR7rnCoXBc57HoVuPrNq9B4FTFkGp-9zXoJiinlgmGd92hDouKUQjKpQm_fVrOq4QaCoprUMce4trg6VoDcUOYxfgM7tmPMF8eAmUQrlqxNV3NcPxmdmi9HY_Ppw_TjPbLFYcvA-2RrND44mLZnSlJEu9w8fZ1CFRIpN77jNk25baUD9Zg9Jo_qPQMdRQA8Ib1yvk0edipJbpP7x6FD881TcnUHKGgDCrrwtAMKfNsBxT5tIbFPQZi0Awi8tQsI2gLiGTkbv58dTljdVoMVwLWXrPCZGjgBP9kDW_R5rrnNfOocl0IAYXVAInUmbGqtLxIvlNCJVQJuSgc5bHjFc9KfL-blC0Itl6nkPoGZnLSwVy1LBTNl-aAY5lbaHbLXrKK5itVTTFsnO6y5gTU3Yc1NskN2m4U29b_s2gjg-Hw4VCp9-eePX5EHayDvkv6yWpWvgTAu7ZsaCb8AQylqoQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydro-Grain-Texture+Modeling+of+Systematics+of+Propagation%2C+Branching%2C+and+Coalescence+of+Fluid-Driven+Fractures&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=58&rft.issue=1&rft.spage=623&rft.epage=644&rft_id=info:doi/10.1007%2Fs00603-024-04165-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon