Microfluidic viscometers for biochemical and biomedical applications: A review

Saved in:
Bibliographic Details
Published inEngineering Research Express Vol. 3; no. 2; pp. 22003 - 22031
Main Authors Puneeth, S B, Kulkarni, Madhusudan B, Goel, Sanket
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Author Kulkarni, Madhusudan B
Puneeth, S B
Goel, Sanket
Author_xml – sequence: 1
  givenname: S B
  surname: Puneeth
  fullname: Puneeth, S B
  organization: MEMS, Microfluidics, and Nano Electronics (MMNE) Research Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad-580078, Telangana, India
– sequence: 2
  givenname: Madhusudan B
  orcidid: 0000-0002-2911-3784
  surname: Kulkarni
  fullname: Kulkarni, Madhusudan B
  organization: MEMS, Microfluidics, and Nano Electronics (MMNE) Research Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad-580078, Telangana, India
– sequence: 3
  givenname: Sanket
  surname: Goel
  fullname: Goel, Sanket
  organization: MEMS, Microfluidics, and Nano Electronics (MMNE) Research Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad-580078, Telangana, India
BookMark eNp9UMtOwzAQtFCRKKV3jjlxItSP1HG4VRUvqcAFzlZsr4VREkd2WuDvSQhCCKGedmY1s5rZYzRpfAMInRJ8QbAQC8oZSQUvlotSWZPlB2j6s5r8wkdoHqNTOOOc8JzkU_Rw73Twtto643Syc1H7GjoIMbE-JMp5_QK102WVlI0ZeA1mpG1b9aBzvomXySoJsHPwdoIObVlFmH_PGXq-vnpa36abx5u79WqTakp5lxbWlFwRRbhQNLcsM2AyTTAVhWIFZ4IqYFoD0AwLawuOe2pBGAy6WArNZgiPd_vwMQawsg2uLsOHJFgOL5FDZzl0luNLegv_Y9Gu-8rfhdJV-4zno9H5Vr76bWj6ZvvkZ__IIbxLJqnElGLMZGss-wSFyYVe
CODEN ERENBL
CitedBy_id crossref_primary_10_1007_s10404_021_02473_4
crossref_primary_10_3390_bios13020246
crossref_primary_10_1016_j_sna_2023_114385
crossref_primary_10_1080_10408347_2022_2099222
crossref_primary_10_1016_j_sna_2022_113590
crossref_primary_10_1109_TNB_2021_3092292
crossref_primary_10_35848_1347_4065_ad81d8
crossref_primary_10_1007_s00542_023_05530_w
crossref_primary_10_1016_j_bej_2023_109027
crossref_primary_10_3390_bios12100892
crossref_primary_10_1016_j_talanta_2024_125817
crossref_primary_10_1039_D5LC00144G
crossref_primary_10_1109_TIM_2021_3097861
crossref_primary_10_1063_5_0207764
crossref_primary_10_1007_s10544_021_00567_y
crossref_primary_10_1039_D3LC00101F
crossref_primary_10_1039_D3LC00062A
crossref_primary_10_1088_1402_4896_acc7d8
crossref_primary_10_1088_2631_8695_adabba
crossref_primary_10_1088_1742_6596_2839_1_012018
crossref_primary_10_1109_JSEN_2023_3309757
crossref_primary_10_1016_j_cej_2025_159741
crossref_primary_10_3390_bios12070543
crossref_primary_10_3390_bios13030412
crossref_primary_10_3390_bios13060666
crossref_primary_10_3390_bios13020183
crossref_primary_10_3390_bios14070346
Cites_doi 10.1016/j.bios.2020.112447
10.1002/biot.201500278
10.1016/j.optlaseng.2017.05.016
10.1016/j.aca.2003.09.019
10.1007/s00408-012-9427-3
10.1063/1.1699894
10.1109/TED.2019.2913851
10.1016/j.mee.2014.09.024
10.1039/c2lc40331e
10.1021/ac0202435
10.1002/elps.200800121
10.1039/C6LC00387G
10.1007/s13204-020-01480-1
10.1039/b516317j
10.1016/j.trac.2017.07.013
10.3390/s20092492
10.1146/annurev.biophys.36.040306.132646
10.1088/1758-5082/5/2/022001
10.1021/ac203496c
10.1007/s10404-012-1085-5
10.1088/1757-899X/381/1/012191
10.1016/j.sna.2017.10.041
10.1002/smll.201702323
10.1021/ac0203950
10.1016/j.sna.2015.02.007
10.1002/elps.201000029
10.1371/journal.pone.0175089
10.1016/j.snb.2016.04.126
10.1109/JSEN.2017.2752371
10.1088/1361-6528/ab9ed8
10.1016/0090-3019(93)90186-5
10.1016/0002-9343(81)90827-5
10.1039/C5LC00661A
10.1016/j.fuel.2014.08.053
10.1172/JCI107644
10.1109/JSEN.2020.3024837
10.1039/c2cs15344k
10.1002/anie.200603817
10.1016/j.jfoodeng.2004.05.062
10.3389/fbioe.2019.00395
10.1039/C4LC00716F
10.1088/0960-1317/17/4/N01
10.1115/1.4030975
10.3109/08037059709061932
10.1002/adma.201705759
10.1021/acs.analchem.9b00624
10.1109/JSEN.2020.2977694
10.1016/j.addr.2009.11.016
10.1016/0925-4005(95)85167-4
10.1016/S0140-6736(76)92595-2
10.1021/ac9022764
10.2494/photopolymer.31.425
10.1039/b314469k
ISSN: 1311-8080
10.1088/2631-8695/abd287
10.1002/smll.201903388
10.1016/j.sna.2014.04.020
10.1016/j.aca.2005.12.037
10.3109/02656736.2013.775355
10.1088/0960-1317/14/6/R01
10.1016/j.aca.2018.05.036
10.1515/arh-2009-0007
10.1088/1361-6439/ab92ea
10.1080/03091929308203563
10.3390/mi11100934
10.1109/SENSOR.1995.717344
10.1146/annurev-bioeng-071114-040538
10.1016/j.sna.2020.112176
10.1109/TED.2020.2989727
10.1103/PhysRevA.61.040301
10.1109/LSENS.2019.2894623
10.1039/b403341h
10.1115/1.2920234
10.1017/S0022112094002326
10.1016/j.snb.2020.128240
10.1016/j.snb.2009.07.028
10.1007/s10544-019-0426-5
10.1007/s10404-006-0114-7
10.1016/j.bios.2013.03.073
10.1016/0021-9673(92)80293-4
10.1016/j.ymeth.2013.07.009
10.1039/C6LC00895J
10.1016/S0009-8981(02)00093-1
10.1016/j.snb.2015.09.084
10.1016/j.bios.2005.11.017
10.1166/sl.2019.3998
10.1109/TDMR.2019.2927448
10.1063/1.4990134
10.1016/j.sna.2007.08.007
10.3390/bios4010076
10.1021/acs.analchem.7b04779
10.1109/MEMS46641.2020.9056273
10.1109/MEMSYS.2012.6170308
10.1016/j.optcom.2003.11.062
10.3390/bios6030041
10.1109/TIM.2018.2810698
10.1039/C5LC01159K
10.1146/annurev.fl.22.010190.000245
10.1063/5.0002929
10.1021/ac901307q
10.1002/eng2.12315
10.1109/IMTC.2010.5488156
10.1111/j.1467-2494.1992.tb00045.x
10.1016/j.biotechadv.2011.06.017
10.1155/2008/697062
10.1046/j.1365-2141.1997.8532481.x
10.1073/pnas.0704958104
10.1007/s00542-019-04357-8
10.1016/j.compscitech.2008.01.006
10.3390/inventions3030060
10.1177/0040517511424524
10.1039/b905844c
10.1088/1742-6596/1386/1/012120
10.1039/C9LC00276F
10.1007/s10544-017-0206-z
10.1016/j.bios.2012.10.035
10.1021/acs.analchem.5b02930
10.1017/S0022112004008626
10.1016/j.matpr.2019.12.302
10.1007/s00542-012-1469-1
10.1088/2632-959X/abcca6
10.1016/0009-2509(78)85181-1
10.1016/j.aca.2017.11.010
10.1016/j.mechrescom.2008.08.009
10.1016/j.aca.2021.338303
10.1080/00016359850142817
10.1016/S0924-2244(01)00034-6
10.1109/TBME.2020.3013519
10.1088/1742-6596/979/1/012083
10.1109/JSEN.2016.2527921
10.1016/j.snb.2011.05.035
10.1063/1.5128255
10.1109/JMEMS.2011.2167669
10.1088/0960-1317/15/12/006
10.1109/TNB.2019.2941196
10.1016/j.sna.2015.05.024
10.1111/j.1748-1716.1971.tb04899.x
10.1109/JSEN.2021.3053642
10.1021/ac0494681
10.1002/elps.200305584
10.1016/S0049-3848(01)00359-0
10.1109/TIM.2018.2866357
10.1007/s10404-016-1800-8
10.1016/j.aca.2020.07.039
10.1177/2211068215581349
10.1016/0002-9149(84)90255-8
10.1016/j.jns.2006.11.009
10.1117/12.874299
10.1115/1.2920946
10.1016/j.sna.2012.03.009
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
Copyright_xml – notice: 2021 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/2631-8695/abfd47
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2631-8695
ExternalDocumentID 10_1088_2631_8695_abfd47
erxabfd47
GroupedDBID AAYXX
ABJNI
ALMA_UNASSIGNED_HOLDINGS
CITATION
ID FETCH-LOGICAL-c226t-9fda6b1b168b27f34ded4c10289b396382be3ccee2408ff960e3cfe8d0ec958c3
IEDL.DBID O3W
ISSN 2631-8695
IngestDate Thu Apr 24 22:51:14 EDT 2025
Tue Jul 01 02:33:20 EDT 2025
Wed Aug 21 03:32:57 EDT 2024
Tue Aug 20 22:16:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c226t-9fda6b1b168b27f34ded4c10289b396382be3ccee2408ff960e3cfe8d0ec958c3
Notes ERX-100930.R1
ORCID 0000-0002-2911-3784
PageCount 29
ParticipantIDs crossref_primary_10_1088_2631_8695_abfd47
crossref_citationtrail_10_1088_2631_8695_abfd47
iop_journals_10_1088_2631_8695_abfd47
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering Research Express
PublicationTitleAbbrev ERX
PublicationTitleAlternate Eng. Res. Express
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Duan (erxabfd47bib60) 2017; 13
Lowe (erxabfd47bib146) 1997; 96
Kulkarni (erxabfd47bib24) 2020; 2
Fachin (erxabfd47bib59) 2011; 20
Wang (erxabfd47bib102) 1995; 25
Kwakye (erxabfd47bib28) 2006; 21
Kulkarni (erxabfd47bib33) 2021
Pipe (erxabfd47bib50) 2009; 36
Reyes (erxabfd47bib16) 2002; 74
Brummell (erxabfd47bib66) 1993; 68
Kamaly (erxabfd47bib12) 2012; 41
Nayak (erxabfd47bib77) 2012; 82
Kampmann (erxabfd47bib143) 1971; 81
Higashino (erxabfd47bib90) 2015; 137
Li (erxabfd47bib71) 2008; 68
Melin (erxabfd47bib7) 2007; 36
Lee (erxabfd47bib134) 2020; 313
Puneeth (erxabfd47bib124) 2019; 66
Andersson (erxabfd47bib11) 2004; 4
Mehmood (erxabfd47bib54) 2018; 381
Heinisch (erxabfd47bib95) 2015; 226
Akyazi (erxabfd47bib40) 2018; 1001
Barnes (erxabfd47bib57) 2019; 9
Laser (erxabfd47bib81) 2004; 14
Khan (erxabfd47bib34) 2018; 30
Ober (erxabfd47bib70) 2018; 31
Koc (erxabfd47bib78) 1992; 114
Ding (erxabfd47bib38) 2015; 20
Srikanth (erxabfd47bib72) 2020; 30
Northrup (erxabfd47bib53) 1995; 1
Martinez (erxabfd47bib112) 2007; 46
Zhao (erxabfd47bib92) 2020; 166
Toraldo (erxabfd47bib141) 2013; 191
Oliveira (erxabfd47bib108) 2011; 157
McMillan (erxabfd47bib61) 1974; 53
Buosciolo (erxabfd47bib105) 2004; 230
Puneeth (erxabfd47bib98) 2018; 68
TADROS (erxabfd47bib46) 1992; 14
Gross (erxabfd47bib10) 2007; 252
Lazar (erxabfd47bib20) 2002; 74
Cakmak (erxabfd47bib109) 2015; 232
Juang (erxabfd47bib9) 2016; 11
Sia (erxabfd47bib49) 2003; 24
Manz (erxabfd47bib56) 1992; 593
Kim (erxabfd47bib27) 2009; 1
Chen (erxabfd47bib2) 2020; 16
Park (erxabfd47bib25) 2011; 29
Rayaprolu (erxabfd47bib122) 2018
Mohammadi Aria (erxabfd47bib51) 2019; 7
Lee (erxabfd47bib133) 2018; 90
Goel (erxabfd47bib107) 2015; 139
Zhong (erxabfd47bib113) 2012; 18
Rajakumar (erxabfd47bib58) 2018; 06
Cui (erxabfd47bib19) 2015; 17
Terhal (erxabfd47bib65) 2000; 61
Jang (erxabfd47bib125) 2020; 319
Zang (erxabfd47bib17) 2016; 16
Nguyen (erxabfd47bib83) 2015; 15
Puneeth (erxabfd47bib121) 2019; 3
Devereux (erxabfd47bib144) 1984; 54
Letcher (erxabfd47bib145) 1981; 70
Halder (erxabfd47bib147) 2017; 17
Inman (erxabfd47bib42) 2013; 29
Yi (erxabfd47bib4) 2006; 560
Li (erxabfd47bib6) 2020; 20
Angelone (erxabfd47bib47) 2019; 1386
Galambos (erxabfd47bib104) 1998; 66
Hegener (erxabfd47bib148) 2017; 19
Puneeth (erxabfd47bib126) 2020; 67
Kang (erxabfd47bib101) 2013; 14
Bowen (erxabfd47bib80) 2010; 31
Mohan (erxabfd47bib52) 2020; 10
Kothuru (erxabfd47bib73) 2020; 20
Shih (erxabfd47bib26) 2013; 42
Hecht (erxabfd47bib150) 2013; 48
Heinisch (erxabfd47bib93) 2014; 214
Chen (erxabfd47bib14) 2010; 82
Lee (erxabfd47bib3) 2010; 62
Tabilo-Munizaga (erxabfd47bib45) 2005; 67
Samiei (erxabfd47bib35) 2016; 16
Bircher (erxabfd47bib96) 2016; 223
Cullen (erxabfd47bib44) 2000; 11
Hintermuller (erxabfd47bib136) 2020; 21
Mankar (erxabfd47bib74) 2019; 17
Dudala (erxabfd47bib75) 2019; 28
Rewatkar (erxabfd47bib76) 2020; 19
Puneeth (erxabfd47bib123) 2019; 19
Doolittle (erxabfd47bib39) 1951; 22
Kulkarni (erxabfd47bib31) 2020; 1
Cakmak (erxabfd47bib100) 2013; 63
Li (erxabfd47bib149) 2014; 4
Prakash (erxabfd47bib5) 2007; 3
Martin (erxabfd47bib64) 1978; 33
Kang (erxabfd47bib127) 2019; 91
Nour (erxabfd47bib132) 2020; 3
Schulte (erxabfd47bib22) 2002; 321
Venkateswaran (erxabfd47bib106) 2016; 16
Heinisch (erxabfd47bib94) 2012; 186
Cho (erxabfd47bib99) 2020
Rott (erxabfd47bib63) 1990; 22
(erxabfd47bib82) 2001
Etchart (erxabfd47bib87) 2008; 141
Maurya (erxabfd47bib91) 2019; 25
Ohno (erxabfd47bib13) 2008; 29
Li (erxabfd47bib118) 2014; 14
Rantonen (erxabfd47bib43) 1998; 56
Srivastava (erxabfd47bib153) 2005; 77
Fossum (erxabfd47bib41) 1997; 6
Andrews (erxabfd47bib142) 1993; 39
Yunus (erxabfd47bib88) 2018; 979
Lewis (erxabfd47bib117) 2012; 12
Erickson (erxabfd47bib15) 2004; 507
Erdi (erxabfd47bib139) 1976; 308
Khnouf (erxabfd47bib152) 2019; 21
Fukui (erxabfd47bib62) 1990; 112
Kishor Bhaskarrao (erxabfd47bib55) 2018; 67
Sadr (erxabfd47bib68) 2004; 506
Ellerbee (erxabfd47bib116) 2009; 81
Nott (erxabfd47bib67) 1994; 275
Lake (erxabfd47bib79) 2017; 12
Zeng (erxabfd47bib131) 2020; 32
Liu (erxabfd47bib138) 2020; 11
Srivastava (erxabfd47bib151) 2006; 6
Wang (erxabfd47bib84) 2017; 267
Riesch (erxabfd47bib85) 2008; 2008
Choi (erxabfd47bib97) 2012
Suk (erxabfd47bib69) 2007; 17
Puneeth (erxabfd47bib128) 2021; 1153
Berry (erxabfd47bib119) 2016; 16
Di Carlo (erxabfd47bib30) 2007; 104
Arosio (erxabfd47bib48) 2016; 88
Fedorchenko (erxabfd47bib103) 2009; 142
Nie (erxabfd47bib115) 2012; 84
Hitosugi (erxabfd47bib140) 2001; 104
Grafton (erxabfd47bib23) 2011; 7929
Beaulieu (erxabfd47bib111) 2017; 88
Mustafa (erxabfd47bib129) 2020; 1135
Zhang (erxabfd47bib37) 2017; 94
Srinivasan (erxabfd47bib29) 2004; 4
Carrilho (erxabfd47bib114) 2012
Rodriguez-Villarreal (erxabfd47bib135) 2020; 9294
Kim (erxabfd47bib137) 2018; 104
Bruijns (erxabfd47bib1) 2016; 6
Gale (erxabfd47bib8) 2018; 3
Sandberg (erxabfd47bib86) 2005; 15
Kim (erxabfd47bib110) 2016; 234
Mena (erxabfd47bib130) 2020; 14
Brassard (erxabfd47bib18) 2019; 19
Kulkarni (erxabfd47bib32) 2020; 31
Yun (erxabfd47bib21) 2013; 5
Jung (erxabfd47bib36) 2015; 132
Brunetto (erxabfd47bib89) 2010
Elizalde (erxabfd47bib120) 2016; 20
References_xml – volume: 166
  start-page: 112447
  year: 2020
  ident: erxabfd47bib92
  article-title: Applications of fiber-optic biochemical sensor in microfluidic chips: A review
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112447
– volume: 11
  start-page: 327
  year: 2016
  ident: erxabfd47bib9
  article-title: Applications of microfluidics in microalgae biotechnology: A review
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201500278
– volume: 104
  start-page: 237
  year: 2018
  ident: erxabfd47bib137
  article-title: Microfluidic method for measuring viscosity using images from smartphone
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2017.05.016
– volume: 507
  start-page: 11
  year: 2004
  ident: erxabfd47bib15
  article-title: Integrated microfluidic devices,
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2003.09.019
– volume: 191
  start-page: 1
  year: 2013
  ident: erxabfd47bib141
  article-title: Obstructive sleep apnea syndrome: Blood viscosity, blood coagulation abnormalities, and early atherosclerosis
  publication-title: Lung
  doi: 10.1007/s00408-012-9427-3
– volume: 22
  start-page: 1471
  year: 1951
  ident: erxabfd47bib39
  article-title: Studies in newtonian flow. II. the dependence of the viscosity of liquids on free-space
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1699894
– volume: 66
  start-page: 3196
  year: 2019
  ident: erxabfd47bib124
  article-title: Novel 3D Printed Microfluidic Paper-Based Analytical Device with Integrated Screen-Printed Electrodes for Automated Viscosity Measurements,
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2913851
– volume: 132
  start-page: 46
  year: 2015
  ident: erxabfd47bib36
  article-title: Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2014.09.024
– volume: 12
  start-page: 2630
  year: 2012
  ident: erxabfd47bib117
  article-title: High throughput method for prototyping three-dimensional, paper-based microfluidic devices,
  publication-title: Lab Chip
  doi: 10.1039/c2lc40331e
– volume: 74
  start-page: 2623
  year: 2002
  ident: erxabfd47bib16
  article-title: Micro total analysis systems . 1 . introduction , theory , and technology
  doi: 10.1021/ac0202435
– volume: 29
  start-page: 4443
  year: 2008
  ident: erxabfd47bib13
  article-title: Microfluidics: Applications for analytical purposes in chemistry and biochemistry,
  publication-title: Electrophoresis
  doi: 10.1002/elps.200800121
– volume: 16
  start-page: 2376
  year: 2016
  ident: erxabfd47bib35
  article-title: A review of digital microfluidics as portable platforms for lab-on a-chip applications
  publication-title: Lab Chip
  doi: 10.1039/C6LC00387G
– volume: 10
  start-page: 3745-3755
  year: 2020
  ident: erxabfd47bib52
  article-title: Miniaturized electrochemical platform with ink-jetted electrodes for multiplexed and interference mitigated biochemical sensing
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01480-1
– volume: 6
  start-page: 744
  year: 2006
  ident: erxabfd47bib151
  article-title: Electronic drop sensing in microfluidic devices: Automated operation of a nanoliter viscometer
  publication-title: Lab Chip
  doi: 10.1039/b516317j
– volume: 94
  start-page: 106
  year: 2017
  ident: erxabfd47bib37
  article-title: Point-of-care-testing of nucleic acids by microfluidics
  publication-title: TrAC - Trends Anal. Chem.
  doi: 10.1016/j.trac.2017.07.013
– volume: 20
  start-page: 1
  year: 2020
  ident: erxabfd47bib6
  article-title: Miniaturized continuous-flow digital PCR for clinical-level serum sample based on the 3D microfluidics and CMOS imaging device
  publication-title: MDPI Sensors
  doi: 10.3390/s20092492
– volume: 36
  start-page: 213
  year: 2007
  ident: erxabfd47bib7
  article-title: Microfluidic large-scale integration: the evolution of design rules for biological automation,
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.36.040306.132646
– volume: 5
  year: 2013
  ident: erxabfd47bib21
  article-title: Cell manipulation in microfluidics
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/5/2/022001
– volume: 84
  start-page: 6331
  year: 2012
  ident: erxabfd47bib115
  article-title: Low-cost fabrication of paper-based microfluidic devices by one-step plotting,
  publication-title: Anal. Chem.
  doi: 10.1021/ac203496c
– volume: 14
  start-page: 657
  year: 2013
  ident: erxabfd47bib101
  article-title: Integrated microfluidic viscometer equipped with fluid temperature controller for measurement of viscosity in complex fluids,
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-012-1085-5
– volume: 381
  start-page: 012191
  year: 2018
  ident: erxabfd47bib54
  article-title: A pump based microfluidic image processing system for droplet detection and counting,’
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
  doi: 10.1088/1757-899X/381/1/012191
– volume: 267
  start-page: 401
  year: 2017
  ident: erxabfd47bib84
  article-title: A contact resonance viscometer based on the electromechanical impedance of a piezoelectric cantilever,
  publication-title: Sensors Actuators A. Phys.
  doi: 10.1016/j.sna.2017.10.041
– volume: 13
  start-page: 1
  year: 2017
  ident: erxabfd47bib60
  article-title: Optimizing multiplexed detections of diabetes antibodies via quantitative microfluidic droplet array
  publication-title: Small
  doi: 10.1002/smll.201702323
– volume: 74
  start-page: 6259
  year: 2002
  ident: erxabfd47bib20
  article-title: Multiple open-channel electroosmotic pumping system for microfluidic sample handling
  publication-title: Anal. Chem.
  doi: 10.1021/ac0203950
– volume: 226
  start-page: 163
  year: 2015
  ident: erxabfd47bib95
  article-title: Application of resonant steel tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurements,
  publication-title: Sensors Actuators, A Phys.
  doi: 10.1016/j.sna.2015.02.007
– volume: 31
  start-page: 2534
  year: 2010
  ident: erxabfd47bib80
  article-title: Integration of on-chip peristaltic pumps and injection valves with microchip electrophoresis and electrochemical detection,
  publication-title: Electrophoresis
  doi: 10.1002/elps.201000029
– volume: 12
  start-page: 1
  year: 2017
  ident: erxabfd47bib79
  article-title: Low-cost feedback-controlled syringe pressure pumps for microfluidics applications,
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0175089
– volume: 234
  start-page: 239
  year: 2016
  ident: erxabfd47bib110
  article-title: A novel hand-held viscometer applicable for point-of-care,
  publication-title: Sensors Actuators, B Chem.
  doi: 10.1016/j.snb.2016.04.126
– volume: 17
  start-page: 7149
  year: 2017
  ident: erxabfd47bib147
  article-title: Digital Camera-Based Spectrometry for the Development of Point-of-Care Anemia Detection on Ultra-Low Volume Whole Blood Sample
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2752371
– volume: 31
  start-page: 1
  year: 2020
  ident: erxabfd47bib32
  article-title: Internet of things enabled portable thermal management system with microfluidic platform to synthesize MnO2 nanoparticles for electrochemical sensing
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab9ed8
– volume: 39
  start-page: 218
  year: 1993
  ident: erxabfd47bib142
  article-title: Effects of mannitol on cerebral blood flow, blood pressure, blood viscosity, hematocrit, sodium, and potassium
  publication-title: Surg. Neurol.
  doi: 10.1016/0090-3019(93)90186-5
– volume: 70
  start-page: 1195
  year: 1981
  ident: erxabfd47bib145
  article-title: Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects. Role of fibrinogen and concentration
  publication-title: Am. J. Med.
  doi: 10.1016/0002-9343(81)90827-5
– volume: 15
  start-page: 3670
  year: 2015
  ident: erxabfd47bib83
  article-title: Viscosity measurement based on the tapping-induced free vibration of sessile droplets using MEMS-based piezoresistive cantilevers,
  publication-title: Lab Chip
  doi: 10.1039/C5LC00661A
– volume: 139
  start-page: 213
  year: 2015
  ident: erxabfd47bib107
  article-title: Rapid and automated measurement of biofuel blending using a microfluidic viscometer,
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.08.053
– volume: 53
  start-page: 1071
  year: 1974
  ident: erxabfd47bib61
  article-title: Disturbance of serum viscosity in diabetes mellitus
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI107644
– volume: 21
  start-page: 2565 –72
  year: 2020
  ident: erxabfd47bib136
  article-title: A Microfluidic viscometer with capacitive readout using screen-printed electrodes
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3024837
– volume: 41
  start-page: 2971
  year: 2012
  ident: erxabfd47bib12
  article-title: Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation,
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15344k
– volume: 46
  start-page: 1318
  year: 2007
  ident: erxabfd47bib112
  article-title: Patterned paper as a platform for inexpensive, low-volume, portable bioassays
  publication-title: Angew. Chemie - Int. Ed.
  doi: 10.1002/anie.200603817
– volume: 67
  start-page: 147
  year: 2005
  ident: erxabfd47bib45
  article-title: Rheology for the food industry
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2004.05.062
– volume: 7
  start-page: 1
  year: 2019
  ident: erxabfd47bib51
  article-title: Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00395
– volume: 14
  start-page: 4035
  year: 2014
  ident: erxabfd47bib118
  article-title: Blood coagulation screening using a paper-based microfluidic lateral flow device,
  publication-title: Lab Chip
  doi: 10.1039/C4LC00716F
– volume: 17
  start-page: 11-15
  year: 2007
  ident: erxabfd47bib69
  article-title: Capillary flow control using hydrophobic patterns
  publication-title: J. Micromechanics Microengineering
  doi: 10.1088/0960-1317/17/4/N01
– volume: 137
  year: 2015
  ident: erxabfd47bib90
  article-title: Self-excited vibrational cantilever-type viscometer driven by piezo-actuator
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4030975
– volume: 6
  start-page: 161
  year: 1997
  ident: erxabfd47bib41
  article-title: Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors
  publication-title: Blood Press.
  doi: 10.3109/08037059709061932
– volume: 30
  start-page: 1
  year: 2018
  ident: erxabfd47bib34
  article-title: CMOS enabled microfluidic systems for healthcare based applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705759
– volume: 91
  start-page: 4868
  year: 2019
  ident: erxabfd47bib127
  article-title: Development of a paper-based viscometer for blood plasma using colorimetric analysis,
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b00624
– volume: 20
  start-page: 7392
  year: 2020
  ident: erxabfd47bib73
  article-title: Laser-induced flexible electronics (LIFE) for resistive, capacitive and electrochemical sensing applications
  publication-title: IEEE Sensors
  doi: 10.1109/JSEN.2020.2977694
– volume: 62
  start-page: 449
  year: 2010
  ident: erxabfd47bib3
  article-title: Nano/microfluidics for diagnosis of infectious diseases in developing countries
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2009.11.016
– volume: 25
  start-page: 753
  year: 1995
  ident: erxabfd47bib102
  article-title: Optical viscosity sensor using forward light scattering,
  publication-title: Sensors Actuators B. Chem.
  doi: 10.1016/0925-4005(95)85167-4
– volume: 308
  start-page: 342
  year: 1976
  ident: erxabfd47bib139
  article-title: Effect of Low-Dose Subcutaneous Heparin on Whole-Blood Viscosity,
  publication-title: Lancet
  doi: 10.1016/S0140-6736(76)92595-2
– volume: 82
  start-page: 1012
  year: 2010
  ident: erxabfd47bib14
  article-title: Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels,
  publication-title: Anal. Chem.
  doi: 10.1021/ac9022764
– volume: 31
  start-page: 425–9
  year: 2018
  ident: erxabfd47bib70
  article-title: Materials Overview for 2-Photon 3D Printing Applications
  publication-title: Journal of Photopolymer Science and Technology
  doi: 10.2494/photopolymer.31.425
– volume: 4
  start-page: 98
  year: 2004
  ident: erxabfd47bib11
  article-title: Microfabrication and microfluidics for tissue engineering: State of the art and future opportunities
  publication-title: Lab Chip
  doi: 10.1039/b314469k
– volume: 06
  start-page: 163
  year: 2018
  ident: erxabfd47bib58
  article-title: IOT based milk monitoring system for detection of milk adulteration
  publication-title: Int. J. Comput. Sci. Eng.
  doi: ISSN: 1311-8080
– volume: 2
  start-page: 0
  year: 2020
  ident: erxabfd47bib24
  article-title: Advances in continuous-flow based microfluidic PCR devices – A review
  publication-title: Eng. Res. Express
  doi: 10.1088/2631-8695/abd287
– volume: 16
  start-page: 1
  year: 2020
  ident: erxabfd47bib2
  article-title: Microfluidics-Implemented Biochemical Assays: from the perspective of readout,
  publication-title: Small
  doi: 10.1002/smll.201903388
– volume: 214
  start-page: 245
  year: 2014
  ident: erxabfd47bib93
  article-title: A U-shaped wire for viscosity and mass density sensing,
  publication-title: Sensors Actuators, A Phys.
  doi: 10.1016/j.sna.2014.04.020
– volume: 560
  start-page: 1
  year: 2006
  ident: erxabfd47bib4
  article-title: Microfluidics technology for manipulation and analysis of biological cells
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2005.12.037
– volume: 29
  start-page: 206
  year: 2013
  ident: erxabfd47bib42
  article-title: The impact of temperature and urinary constituents on urine viscosity and its relevance to bladder hyperthermia treatment
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2013.775355
– volume: 14
  start-page: 35
  year: 2004
  ident: erxabfd47bib81
  article-title: A review of micropumps,
  publication-title: J. Micromechanics Microengineering
  doi: 10.1088/0960-1317/14/6/R01
– year: 2001
  ident: erxabfd47bib82
– start-page: 1
  year: 2018
  ident: erxabfd47bib122
  article-title: Fabrication of cost-effective and efficient paper-based device for viscosity measurement,
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.05.036
– volume: 9
  start-page: 102
  year: 2019
  ident: erxabfd47bib57
  article-title: On-line or process viscometry – a review
  publication-title: Appl. Rheol.
  doi: 10.1515/arh-2009-0007
– volume: 30
  year: 2020
  ident: erxabfd47bib72
  article-title: Optimization and characterization of direct UV laser writing system for microscale applications,
  publication-title: J. Micromechanics Microengineering
  doi: 10.1088/1361-6439/ab92ea
– volume: 68
  start-page: 85
  year: 1993
  ident: erxabfd47bib66
  article-title: High rayleigh number β-convection,
  publication-title: Geophys. Astrophys. Fluid Dyn.
  doi: 10.1080/03091929308203563
– volume: 11
  start-page: 1
  year: 2020
  ident: erxabfd47bib138
  article-title: Microfluidic viscometer using a suspending micromembrane for measurement of biosamples
  publication-title: Micromachines
  doi: 10.3390/mi11100934
– volume: 1
  start-page: 764
  year: 1995
  ident: erxabfd47bib53
  article-title: MEMS-based miniature DNA analysis system
  publication-title: Int. Conf. Solid-State Sensors Actuators, Eurosensors IX, Proc.
  doi: 10.1109/SENSOR.1995.717344
– volume: 17
  start-page: 267
  year: 2015
  ident: erxabfd47bib19
  article-title: Microfluidic Sample Preparation for Medical Diagnostics
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071114-040538
– volume: 313
  start-page: 112176
  year: 2020
  ident: erxabfd47bib134
  article-title: Hand-held, automatic capillary viscometer for analysis of Newtonian and non-Newtonian fluids,
  publication-title: Sensors Actuators, A Phys.
  doi: 10.1016/j.sna.2020.112176
– volume: 67
  start-page: 2559
  year: 2020
  ident: erxabfd47bib126
  article-title: Automated Mini-Platform with 3-D Printed Paper Microstrips for Image Processing-Based Viscosity Measurement of Biological Samples,
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2020.2989727
– volume: 61
  start-page: 4
  year: 2000
  ident: erxabfd47bib65
  article-title: Schmidt number for density matrices,
  publication-title: Phys. Rev. A - At. Mol. Opt. Phys.
  doi: 10.1103/PhysRevA.61.040301
– volume: 3
  start-page: 2
  year: 2019
  ident: erxabfd47bib121
  article-title: Amperometric Automation and Optimization Paper Microfluidic Viscometer
  publication-title: IEEE Sensors Lett.
  doi: 10.1109/LSENS.2019.2894623
– volume: 4
  start-page: 310
  year: 2004
  ident: erxabfd47bib29
  article-title: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids
  publication-title: Lab Chip
  doi: 10.1039/b403341h
– volume: 112
  start-page: 78
  year: 1990
  ident: erxabfd47bib62
  article-title: A database for interpolation of poiseuille flow rates for high knudsen number lubrication problems
  publication-title: J. Tribol.
  doi: 10.1115/1.2920234
– volume: 275
  start-page: 157
  year: 1994
  ident: erxabfd47bib67
  article-title: Pressure-driven flow of suspensions: Simulation and theory
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094002326
– volume: 319
  year: 2020
  ident: erxabfd47bib125
  article-title: Viscosity measurements utilizing a fast-flow microfluidic paper-based device,
  publication-title: Sensors Actuators, B Chem.
  doi: 10.1016/j.snb.2020.128240
– volume: 142
  start-page: 111
  year: 2009
  ident: erxabfd47bib103
  article-title: The optical viscometer based on the vibrating fiber partially submerged in fluid
  publication-title: Sensors Actuators, B Chem.
  doi: 10.1016/j.snb.2009.07.028
– volume: 21
  start-page: 1-10
  year: 2019
  ident: erxabfd47bib152
  article-title: Microfluidics-based device for the measurement of blood viscosity and its modeling based on shear rate, temperature, and heparin concentration,
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-019-0426-5
– volume: 3
  start-page: 177
  year: 2007
  ident: erxabfd47bib5
  article-title: An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-006-0114-7
– volume: 48
  start-page: 26
  year: 2013
  ident: erxabfd47bib150
  article-title: Bead assembly magnetorotation as a signal transduction method for protein detection
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.03.073
– volume: 593
  start-page: 253
  year: 1992
  ident: erxabfd47bib56
  article-title: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip
  publication-title: J. Chromatogr. A
  doi: 10.1016/0021-9673(92)80293-4
– volume: 63
  start-page: 225
  year: 2013
  ident: erxabfd47bib100
  article-title: Microcantilever based disposable viscosity sensor for serum and blood plasma measurements
  publication-title: Methods
  doi: 10.1016/j.ymeth.2013.07.009
– volume: 16
  start-page: 3689
  year: 2016
  ident: erxabfd47bib119
  article-title: Measurement of the hematocrit using paper-based microfluidic devices,
  publication-title: Lab Chip
  doi: 10.1039/C6LC00895J
– volume: 321
  start-page: 1
  year: 2002
  ident: erxabfd47bib22
  article-title: Microfluidic technologies in clinical diagnostics
  publication-title: Clin. Chim. Acta
  doi: 10.1016/S0009-8981(02)00093-1
– volume: 223
  start-page: 784
  year: 2016
  ident: erxabfd47bib96
  article-title: Automated high-throughput viscosity and density sensor using nanomechanical resonators,
  publication-title: Sensors Actuators, B Chem.
  doi: 10.1016/j.snb.2015.09.084
– volume: 21
  start-page: 2217
  year: 2006
  ident: erxabfd47bib28
  article-title: Electrochemical microfluidic biosensor for nucleic acid detection with integrated minipotentiostat
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2005.11.017
– volume: 17
  start-page: 69
  year: 2019
  ident: erxabfd47bib74
  article-title: Paper based microfluidic microbial fuel cell to harvest energy from urine
  publication-title: Sens. Lett.
  doi: 10.1166/sl.2019.3998
– volume: 19
  start-page: 529
  year: 2019
  ident: erxabfd47bib123
  article-title: Realization of Microfluidic Paper-Based Analytical Devices Using a 3-D Printer: Characterization and Optimization,
  publication-title: IEEE Trans. Device Mater. Reliab.
  doi: 10.1109/TDMR.2019.2927448
– volume: 88
  year: 2017
  ident: erxabfd47bib111
  article-title: An automated system for performing continuous viscosity versus temperature measurements of fluids using an Ostwald viscometer
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4990134
– volume: 141
  start-page: 266
  year: 2008
  ident: erxabfd47bib87
  article-title: MEMS sensors for density-viscosity sensing in a low-flow microfluidic environment,
  publication-title: Sensors Actuators, A Phys.
  doi: 10.1016/j.sna.2007.08.007
– volume: 4
  start-page: 76
  year: 2014
  ident: erxabfd47bib149
  article-title: Asynchronous magnetic bead rotation (AMBR) microviscometer for label-free DNA analysis
  publication-title: Biosensors
  doi: 10.3390/bios4010076
– volume: 90
  start-page: 2317
  year: 2018
  ident: erxabfd47bib133
  article-title: Electrofluidic circuit-based microfluidic viscometer for analysis of newtonian and non-newtonian liquids under different temperatures,
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b04779
– start-page: 646–8
  year: 2020
  ident: erxabfd47bib99
  article-title: Pipette Based Viscometer with Pressure Sensor Element
  doi: 10.1109/MEMS46641.2020.9056273
– start-page: 804
  year: 2012
  ident: erxabfd47bib97
  article-title: Design and fabriction of micro-viscometer using the propagation of acoustic waves in micro-channel
  doi: 10.1109/MEMSYS.2012.6170308
– volume: 230
  start-page: 357
  year: 2004
  ident: erxabfd47bib105
  article-title: New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2003.11.062
– volume: 6
  start-page: 1
  year: 2016
  ident: erxabfd47bib1
  article-title: Microfluidic devices for forensic DNA analysis: A review
  publication-title: Biosensors
  doi: 10.3390/bios6030041
– volume: 67
  start-page: 1795
  year: 2018
  ident: erxabfd47bib55
  article-title: Analysis of a Linearizing Direct Digitizer With Phase-Error Compensation for TMR Angular Position Sensor,
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2810698
– year: 2012
  ident: erxabfd47bib114
– volume: 16
  start-page: 10
  year: 2016
  ident: erxabfd47bib17
  article-title: Fundamentals and applications of inertial microfluidics: A review
  publication-title: Lab Chip
  doi: 10.1039/C5LC01159K
– volume: 22
  start-page: 1
  year: 1990
  ident: erxabfd47bib63
  article-title: Note On The History Of The Reynolds Number,
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.22.010190.000245
– volume: 32
  start-page: 042002
  year: 2020
  ident: erxabfd47bib131
  article-title: Measurement of fluid viscosity based on droplet microfluidics,
  publication-title: Phys. Fluids
  doi: 10.1063/5.0002929
– volume: 81
  start-page: 8447
  year: 2009
  ident: erxabfd47bib116
  article-title: Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper,
  publication-title: Anal. Chem.
  doi: 10.1021/ac901307q
– volume: 3
  start-page: 1
  year: 2020
  ident: erxabfd47bib132
  article-title: Mechanically flexible viscosity sensor for real‐time monitoring of tubular architectures for industrial applications
  publication-title: Eng. Reports,
  doi: 10.1002/eng2.12315
– start-page: 585–9
  year: 2010
  ident: erxabfd47bib89
  article-title: A small scale viscometer based on an IPMC actuator and an IPMC sensor
  doi: 10.1109/IMTC.2010.5488156
– volume: 14
  start-page: 93
  year: 1992
  ident: erxabfd47bib46
  article-title: Future developments in cosmetic formulations
  publication-title: Int. J. Cosmet. Sci.
  doi: 10.1111/j.1467-2494.1992.tb00045.x
– volume: 29
  start-page: 830
  year: 2011
  ident: erxabfd47bib25
  article-title: Advances in microfluidic PCR for point-of-care infectious disease diagnostics
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2011.06.017
– volume: 2008
  start-page: 1
  year: 2008
  ident: erxabfd47bib85
  article-title: Characterizing Vibrating Cantilevers for Liquid Viscosity and Density Sensing,
  publication-title: J. Sensors
  doi: 10.1155/2008/697062
– volume: 96
  start-page: 168
  year: 1997
  ident: erxabfd47bib146
  article-title: Blood viscosity and risk of cardiovascular events: the edinburgh artery study
  publication-title: Br. J. Haematol.
  doi: 10.1046/j.1365-2141.1997.8532481.x
– volume: 104
  start-page: 18892
  year: 2007
  ident: erxabfd47bib30
  article-title: Continuous inertial focusing, ordering, and separation of particles in microchannels
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0704958104
– volume: 25
  start-page: 3933
  year: 2019
  ident: erxabfd47bib91
  article-title: A novel electronic micro-viscometer,
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-019-04357-8
– volume: 68
  start-page: 1227
  year: 2008
  ident: erxabfd47bib71
  article-title: Sensors and actuators based on carbon nanotubes and their composites: a review
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2008.01.006
– volume: 3
  start-page: 60
  year: 2018
  ident: erxabfd47bib8
  article-title: A review of current methods in microfluidic device fabrication and future commercialization prospects
  publication-title: Inventions
  doi: 10.3390/inventions3030060
– volume: 82
  start-page: 129
  year: 2012
  ident: erxabfd47bib77
  article-title: Recent advances in nanofibre fabrication techniques,
  publication-title: Text. Res. J.
  doi: 10.1177/0040517511424524
– volume: 1
  start-page: 574
  year: 2009
  ident: erxabfd47bib27
  article-title: Microfluidic sample preparation: Cell lysis and nucleic acid purification
  publication-title: Integr. Biol.
  doi: 10.1039/b905844c
– volume: 1386
  start-page: 12120
  year: 2019
  ident: erxabfd47bib47
  article-title: Software to determine the viscosity and honey’s purity using a ball viscometer
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1386/1/012120
– volume: 19
  start-page: 1941
  year: 2019
  ident: erxabfd47bib18
  article-title: Extraction of nucleic acids from blood: Unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes
  publication-title: Lab Chip
  doi: 10.1039/C9LC00276F
– volume: 19
  year: 2017
  ident: erxabfd47bib148
  article-title: Point-of-care coagulation monitoring: first clinical experience using a paper-based lateral flow diagnostic device
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-017-0206-z
– volume: 42
  start-page: 314
  year: 2013
  ident: erxabfd47bib26
  article-title: Digital microfluidics with impedance sensing for integrated cell culture and analysis
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.10.035
– volume: 88
  start-page: 3488
  year: 2016
  ident: erxabfd47bib48
  article-title: Microfluidic Diffusion Viscometer for Rapid Analysis of Complex Solutions
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b02930
– volume: 506
  start-page: 357
  year: 2004
  ident: erxabfd47bib68
  article-title: An experimental study of electro-osmotic flow in rectangular microchannels
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004008626
– volume: 66
  start-page: 187
  year: 1998
  ident: erxabfd47bib104
  article-title: An optical micro-fluidic viscometer
– volume: 28
  start-page: 804
  year: 2019
  ident: erxabfd47bib75
  article-title: Experimental characterization to fabricate CO2 laser ablated PMMA microchannel with homogeneous surface,
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2019.12.302
– volume: 18
  start-page: 649
  year: 2012
  ident: erxabfd47bib113
  article-title: Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices,
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-012-1469-1
– volume: 1
  start-page: 1
  year: 2020
  ident: erxabfd47bib31
  article-title: Microfluidic devices for synthesizing nanomaterials — a review
  publication-title: Nano Express
  doi: 10.1088/2632-959X/abcca6
– volume: 33
  start-page: 913
  year: 1978
  ident: erxabfd47bib64
  article-title: Low peclet number particle-to-fluid heat and mass transfer in packed beds
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(78)85181-1
– volume: 1001
  start-page: 1
  year: 2018
  ident: erxabfd47bib40
  article-title: Review on microfluidic paper-based analytical devices towards commercialisation
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.11.010
– volume: 36
  start-page: 110
  year: 2009
  ident: erxabfd47bib50
  article-title: Microfluidic rheometry
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2008.08.009
– volume: 1153
  year: 2021
  ident: erxabfd47bib128
  article-title: Handheld and ‘turnkey’ 3D printed paper-microfluidic viscometer with on-board microcontroller for smartphone based biosensing applications,
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2021.338303
– volume: 56
  start-page: 210
  year: 1998
  ident: erxabfd47bib43
  article-title: Viscosity of whole saliva
  publication-title: Acta Odontol. Scand.
  doi: 10.1080/00016359850142817
– volume: 11
  start-page: 451
  year: 2000
  ident: erxabfd47bib44
  article-title: Process viscometry for the food industry
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/S0924-2244(01)00034-6
– volume: 9294
  start-page: 1
  year: 2020
  ident: erxabfd47bib135
  article-title: An integrated detection method for flow viscosity measurements in microdevices
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2020.3013519
– volume: 979
  start-page: 012083
  year: 2018
  ident: erxabfd47bib88
  article-title: Design of Oil Viscosity Sensor Based on Plastic Optical Fiber,
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/979/1/012083
– volume: 16
  start-page: 3000
  year: 2016
  ident: erxabfd47bib106
  article-title: Rapid and automated measurement of milk adulteration using a 3D printed optofluidic microviscometer (OMV)
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2527921
– volume: 157
  start-page: 621
  year: 2011
  ident: erxabfd47bib108
  article-title: Compact dip-style viscometer based on the acousto-optic effect in a long period fiber grating
  publication-title: Sensors Actuators, B Chem.
  doi: 10.1016/j.snb.2011.05.035
– volume: 14
  start-page: 014109
  year: 2020
  ident: erxabfd47bib130
  article-title: A droplet-based microfluidic viscometer for the measurement of blood coagulation,
  publication-title: Biomicrofluidics
  doi: 10.1063/1.5128255
– volume: 20
  start-page: 1428
  year: 2011
  ident: erxabfd47bib59
  article-title: Integration of bulk nanoporous elements in microfluidic devices with application to biomedical diagnostics
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2011.2167669
– volume: 15
  start-page: 2249
  year: 2005
  ident: erxabfd47bib86
  article-title: Effect of gold coating on the Q-factor of a resonant cantilever,
  publication-title: J. Micromechanics Microengineering
  doi: 10.1088/0960-1317/15/12/006
– volume: 19
  start-page: 4
  year: 2020
  ident: erxabfd47bib76
  article-title: 3D Printed Bioelectrodes for Enzymatic Biofuel Cell: Simple, Rapid, Optimized and Enhanced Approach,
  publication-title: IEEE Trans. Nanobioscience
  doi: 10.1109/TNB.2019.2941196
– volume: 232
  start-page: 141
  year: 2015
  ident: erxabfd47bib109
  article-title: Precision density and viscosity measurement using two cantilevers with different widths,
  publication-title: Sensors Actuators, A Phys.
  doi: 10.1016/j.sna.2015.05.024
– volume: 81
  start-page: 264
  year: 1971
  ident: erxabfd47bib143
  article-title: Whole‐blood viscosity, hematocrit and plasma protein in normal subjects at different ages
  publication-title: Acta Physiol. Scand.
  doi: 10.1111/j.1748-1716.1971.tb04899.x
– year: 2021
  ident: erxabfd47bib33
  article-title: Integrated temperature controlling platform to synthesize ZnO nanoparticles and its deposition on Al-foil for Biosensing
  doi: 10.1109/JSEN.2021.3053642
– volume: 77
  start-page: 383
  year: 2005
  ident: erxabfd47bib153
  article-title: Nanoliter viscometer for analyzing blood plasma and other liquid samples viscometer that quickly , easily , and inexpensively mea-
  publication-title: Anal. Chem.
  doi: 10.1021/ac0494681
– volume: 24
  start-page: 3563
  year: 2003
  ident: erxabfd47bib49
  article-title: Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies
  publication-title: Electrophoresis
  doi: 10.1002/elps.200305584
– volume: 104
  start-page: 371
  year: 2001
  ident: erxabfd47bib140
  article-title: Changes in blood viscosity by heparin and argatroban
  publication-title: Thromb. Res.
  doi: 10.1016/S0049-3848(01)00359-0
– volume: 68
  start-page: 2648–55
  year: 2018
  ident: erxabfd47bib98
  article-title: 3D Printed Integrated and Automated Electro-Microfluidic Viscometer for Biochemical Applications,
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2866357
– volume: 20
  start-page: 1-8
  year: 2016
  ident: erxabfd47bib120
  article-title: Precise capillary flow for paper-based viscometry,
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-016-1800-8
– volume: 1135
  start-page: 107
  year: 2020
  ident: erxabfd47bib129
  article-title: A micropillar-based microfluidic viscometer for Newtonian and non-Newtonian fluids,
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2020.07.039
– volume: 20
  start-page: 365
  year: 2015
  ident: erxabfd47bib38
  article-title: Development and Applications of Portable Biosensors
  publication-title: J. Lab. Autom.
  doi: 10.1177/2211068215581349
– volume: 54
  start-page: 592
  year: 1984
  ident: erxabfd47bib144
  article-title: Whole blood viscosity as a determinant of cardiac hypertrophy in systemic hypertension
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(84)90255-8
– volume: 252
  start-page: 135
  year: 2007
  ident: erxabfd47bib10
  article-title: Applications of microfluidics for neuronal studies
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2006.11.009
– volume: 7929
  year: 2011
  ident: erxabfd47bib23
  article-title: Microfluidic MEMS hand-held flow cytometer
  publication-title: Microfluid. BioMEMS, Med. Microsystems IX
  doi: 10.1117/12.874299
– volume: 114
  start-page: 766
  year: 1992
  ident: erxabfd47bib78
  article-title: Slipper balance in axial piston pumps and motors,
  publication-title: J. Tribol.
  doi: 10.1115/1.2920946
– volume: 186
  start-page: 111
  year: 2012
  ident: erxabfd47bib94
  article-title: Tunable resonators in the low kHz range for viscosity sensing,
  publication-title: Sensors Actuators, A Phys.
  doi: 10.1016/j.sna.2012.03.009
SSID ssib046616717
ssib037096498
ssib052001916
Score 2.357561
SecondaryResourceType review_article
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 22003
SubjectTerms Biosensing
Microfabrication
Microfluidics
Point-of-Care Testing (POCT)
Viscometers
Title Microfluidic viscometers for biochemical and biomedical applications: A review
URI https://iopscience.iop.org/article/10.1088/2631-8695/abfd47
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bvHgRRcX5MXPQg4e6rUnTVE9DHFPY5sHhbqH5goJ0Yx_in-9L080NZHhrIE3Lry99v5f3hdANi00SaakDSd1pVWhpkIJeC0xK4pRzpSPlEoX7A9Yb0ddxNK6gx3UuzGRa_vrv4dIXCvYQlgFxvBky0g44S6JmKq2mcRXtEc64s7yG5GMlTCQGck5_bQkKioiB7VK6Kv9aaEs1VeHxG5qme4gOSoqIO_6FjlDF5Mdo0HeRc_ZzmelM4a9sDpLiIlnmGFgnlplrfFVk_uM019gn1fvhhof6AXewz1U5QaPu8_tTLyh7IQQKCNIiSKxOmWzLNuMyjC2h2miqHDtIJHGbKJSGKNB4rmSZtWCXwNAarltGJRFX5BTV8kluzhDmqaXAUolVOoYPlEgeqUi5_t4yBfXO6qi5gkGoslC461fxKQqHNefCAScccMIDV0d36zumvkjGjrm3gKwod8p8x7zrrXlm9i2ICIXLDG4RMdX2_J8rXaD90AWiFEcnl6i2mC3NFTCJhWyg6svwrVHIzQ-QUcRx
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62gngRRcX6ag568LBuu8lms96KWuqj1YPF3sLmBQulLX2IP9_JbtQWpHjbwCSEyWTnm8wLoQuWmDTWUgeSuteqyNIgA70WmIwkGedKx8olCnd7rNOnj4N44PucFrkw44n_9V_DZ1kouGShD4jjYcRIM-AsjcNMWk2TcKJtBW3GhDHXu-GFvH8LFEkAoNNfe4KCMmJgv3h35V-LrainCmxhSdu0d9GOh4m4VW5qD22Y0T7qdV30nB0ucp0r_JHPQFpcNMsMA_LEMnfNr4rsf5yNNC4T68vhkpf6Brdwma9ygPrt-7fbTuD7IQQKQNI8SK3OmGzKJuMySiyh2miqHEJIJXEXKZKGKNB6rmyZtWCbwNAarhtGpTFX5BBVR-OROUKYZ5YCUiVW6QQOKZU8VrFyPb5lBiqe1VD4zQahfLFw17NiKAqnNefCMU44xomScTV09TNjUhbKWEN7CZwV_rbM1tDVV-jM9FMQEQmXHdwgAs79-J8r1dHW611bPD_0nk7QduTiUoqXlFNUnU8X5gyAxVyeF8LzBSS4x1c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+viscometers+for+biochemical+and+biomedical+applications%3A+A+review&rft.jtitle=Engineering+Research+Express&rft.au=Puneeth%2C+S+B&rft.au=Kulkarni%2C+Madhusudan+B&rft.au=Goel%2C+Sanket&rft.date=2021-06-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1088%2F2631-8695%2Fabfd47&rft.externalDocID=erxabfd47
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon