Microfluidic viscometers for biochemical and biomedical applications: A review
Saved in:
Published in | Engineering Research Express Vol. 3; no. 2; pp. 22003 - 22031 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Author | Kulkarni, Madhusudan B Puneeth, S B Goel, Sanket |
---|---|
Author_xml | – sequence: 1 givenname: S B surname: Puneeth fullname: Puneeth, S B organization: MEMS, Microfluidics, and Nano Electronics (MMNE) Research Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad-580078, Telangana, India – sequence: 2 givenname: Madhusudan B orcidid: 0000-0002-2911-3784 surname: Kulkarni fullname: Kulkarni, Madhusudan B organization: MEMS, Microfluidics, and Nano Electronics (MMNE) Research Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad-580078, Telangana, India – sequence: 3 givenname: Sanket surname: Goel fullname: Goel, Sanket organization: MEMS, Microfluidics, and Nano Electronics (MMNE) Research Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad-580078, Telangana, India |
BookMark | eNp9UMtOwzAQtFCRKKV3jjlxItSP1HG4VRUvqcAFzlZsr4VREkd2WuDvSQhCCKGedmY1s5rZYzRpfAMInRJ8QbAQC8oZSQUvlotSWZPlB2j6s5r8wkdoHqNTOOOc8JzkU_Rw73Twtto643Syc1H7GjoIMbE-JMp5_QK102WVlI0ZeA1mpG1b9aBzvomXySoJsHPwdoIObVlFmH_PGXq-vnpa36abx5u79WqTakp5lxbWlFwRRbhQNLcsM2AyTTAVhWIFZ4IqYFoD0AwLawuOe2pBGAy6WArNZgiPd_vwMQawsg2uLsOHJFgOL5FDZzl0luNLegv_Y9Gu-8rfhdJV-4zno9H5Vr76bWj6ZvvkZ__IIbxLJqnElGLMZGss-wSFyYVe |
CODEN | ERENBL |
CitedBy_id | crossref_primary_10_1007_s10404_021_02473_4 crossref_primary_10_3390_bios13020246 crossref_primary_10_1016_j_sna_2023_114385 crossref_primary_10_1080_10408347_2022_2099222 crossref_primary_10_1016_j_sna_2022_113590 crossref_primary_10_1109_TNB_2021_3092292 crossref_primary_10_35848_1347_4065_ad81d8 crossref_primary_10_1007_s00542_023_05530_w crossref_primary_10_1016_j_bej_2023_109027 crossref_primary_10_3390_bios12100892 crossref_primary_10_1016_j_talanta_2024_125817 crossref_primary_10_1039_D5LC00144G crossref_primary_10_1109_TIM_2021_3097861 crossref_primary_10_1063_5_0207764 crossref_primary_10_1007_s10544_021_00567_y crossref_primary_10_1039_D3LC00101F crossref_primary_10_1039_D3LC00062A crossref_primary_10_1088_1402_4896_acc7d8 crossref_primary_10_1088_2631_8695_adabba crossref_primary_10_1088_1742_6596_2839_1_012018 crossref_primary_10_1109_JSEN_2023_3309757 crossref_primary_10_1016_j_cej_2025_159741 crossref_primary_10_3390_bios12070543 crossref_primary_10_3390_bios13030412 crossref_primary_10_3390_bios13060666 crossref_primary_10_3390_bios13020183 crossref_primary_10_3390_bios14070346 |
Cites_doi | 10.1016/j.bios.2020.112447 10.1002/biot.201500278 10.1016/j.optlaseng.2017.05.016 10.1016/j.aca.2003.09.019 10.1007/s00408-012-9427-3 10.1063/1.1699894 10.1109/TED.2019.2913851 10.1016/j.mee.2014.09.024 10.1039/c2lc40331e 10.1021/ac0202435 10.1002/elps.200800121 10.1039/C6LC00387G 10.1007/s13204-020-01480-1 10.1039/b516317j 10.1016/j.trac.2017.07.013 10.3390/s20092492 10.1146/annurev.biophys.36.040306.132646 10.1088/1758-5082/5/2/022001 10.1021/ac203496c 10.1007/s10404-012-1085-5 10.1088/1757-899X/381/1/012191 10.1016/j.sna.2017.10.041 10.1002/smll.201702323 10.1021/ac0203950 10.1016/j.sna.2015.02.007 10.1002/elps.201000029 10.1371/journal.pone.0175089 10.1016/j.snb.2016.04.126 10.1109/JSEN.2017.2752371 10.1088/1361-6528/ab9ed8 10.1016/0090-3019(93)90186-5 10.1016/0002-9343(81)90827-5 10.1039/C5LC00661A 10.1016/j.fuel.2014.08.053 10.1172/JCI107644 10.1109/JSEN.2020.3024837 10.1039/c2cs15344k 10.1002/anie.200603817 10.1016/j.jfoodeng.2004.05.062 10.3389/fbioe.2019.00395 10.1039/C4LC00716F 10.1088/0960-1317/17/4/N01 10.1115/1.4030975 10.3109/08037059709061932 10.1002/adma.201705759 10.1021/acs.analchem.9b00624 10.1109/JSEN.2020.2977694 10.1016/j.addr.2009.11.016 10.1016/0925-4005(95)85167-4 10.1016/S0140-6736(76)92595-2 10.1021/ac9022764 10.2494/photopolymer.31.425 10.1039/b314469k ISSN: 1311-8080 10.1088/2631-8695/abd287 10.1002/smll.201903388 10.1016/j.sna.2014.04.020 10.1016/j.aca.2005.12.037 10.3109/02656736.2013.775355 10.1088/0960-1317/14/6/R01 10.1016/j.aca.2018.05.036 10.1515/arh-2009-0007 10.1088/1361-6439/ab92ea 10.1080/03091929308203563 10.3390/mi11100934 10.1109/SENSOR.1995.717344 10.1146/annurev-bioeng-071114-040538 10.1016/j.sna.2020.112176 10.1109/TED.2020.2989727 10.1103/PhysRevA.61.040301 10.1109/LSENS.2019.2894623 10.1039/b403341h 10.1115/1.2920234 10.1017/S0022112094002326 10.1016/j.snb.2020.128240 10.1016/j.snb.2009.07.028 10.1007/s10544-019-0426-5 10.1007/s10404-006-0114-7 10.1016/j.bios.2013.03.073 10.1016/0021-9673(92)80293-4 10.1016/j.ymeth.2013.07.009 10.1039/C6LC00895J 10.1016/S0009-8981(02)00093-1 10.1016/j.snb.2015.09.084 10.1016/j.bios.2005.11.017 10.1166/sl.2019.3998 10.1109/TDMR.2019.2927448 10.1063/1.4990134 10.1016/j.sna.2007.08.007 10.3390/bios4010076 10.1021/acs.analchem.7b04779 10.1109/MEMS46641.2020.9056273 10.1109/MEMSYS.2012.6170308 10.1016/j.optcom.2003.11.062 10.3390/bios6030041 10.1109/TIM.2018.2810698 10.1039/C5LC01159K 10.1146/annurev.fl.22.010190.000245 10.1063/5.0002929 10.1021/ac901307q 10.1002/eng2.12315 10.1109/IMTC.2010.5488156 10.1111/j.1467-2494.1992.tb00045.x 10.1016/j.biotechadv.2011.06.017 10.1155/2008/697062 10.1046/j.1365-2141.1997.8532481.x 10.1073/pnas.0704958104 10.1007/s00542-019-04357-8 10.1016/j.compscitech.2008.01.006 10.3390/inventions3030060 10.1177/0040517511424524 10.1039/b905844c 10.1088/1742-6596/1386/1/012120 10.1039/C9LC00276F 10.1007/s10544-017-0206-z 10.1016/j.bios.2012.10.035 10.1021/acs.analchem.5b02930 10.1017/S0022112004008626 10.1016/j.matpr.2019.12.302 10.1007/s00542-012-1469-1 10.1088/2632-959X/abcca6 10.1016/0009-2509(78)85181-1 10.1016/j.aca.2017.11.010 10.1016/j.mechrescom.2008.08.009 10.1016/j.aca.2021.338303 10.1080/00016359850142817 10.1016/S0924-2244(01)00034-6 10.1109/TBME.2020.3013519 10.1088/1742-6596/979/1/012083 10.1109/JSEN.2016.2527921 10.1016/j.snb.2011.05.035 10.1063/1.5128255 10.1109/JMEMS.2011.2167669 10.1088/0960-1317/15/12/006 10.1109/TNB.2019.2941196 10.1016/j.sna.2015.05.024 10.1111/j.1748-1716.1971.tb04899.x 10.1109/JSEN.2021.3053642 10.1021/ac0494681 10.1002/elps.200305584 10.1016/S0049-3848(01)00359-0 10.1109/TIM.2018.2866357 10.1007/s10404-016-1800-8 10.1016/j.aca.2020.07.039 10.1177/2211068215581349 10.1016/0002-9149(84)90255-8 10.1016/j.jns.2006.11.009 10.1117/12.874299 10.1115/1.2920946 10.1016/j.sna.2012.03.009 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd |
Copyright_xml | – notice: 2021 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/2631-8695/abfd47 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2631-8695 |
ExternalDocumentID | 10_1088_2631_8695_abfd47 erxabfd47 |
GroupedDBID | AAYXX ABJNI ALMA_UNASSIGNED_HOLDINGS CITATION |
ID | FETCH-LOGICAL-c226t-9fda6b1b168b27f34ded4c10289b396382be3ccee2408ff960e3cfe8d0ec958c3 |
IEDL.DBID | O3W |
ISSN | 2631-8695 |
IngestDate | Thu Apr 24 22:51:14 EDT 2025 Tue Jul 01 02:33:20 EDT 2025 Wed Aug 21 03:32:57 EDT 2024 Tue Aug 20 22:16:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c226t-9fda6b1b168b27f34ded4c10289b396382be3ccee2408ff960e3cfe8d0ec958c3 |
Notes | ERX-100930.R1 |
ORCID | 0000-0002-2911-3784 |
PageCount | 29 |
ParticipantIDs | crossref_primary_10_1088_2631_8695_abfd47 crossref_citationtrail_10_1088_2631_8695_abfd47 iop_journals_10_1088_2631_8695_abfd47 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Engineering Research Express |
PublicationTitleAbbrev | ERX |
PublicationTitleAlternate | Eng. Res. Express |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Duan (erxabfd47bib60) 2017; 13 Lowe (erxabfd47bib146) 1997; 96 Kulkarni (erxabfd47bib24) 2020; 2 Fachin (erxabfd47bib59) 2011; 20 Wang (erxabfd47bib102) 1995; 25 Kwakye (erxabfd47bib28) 2006; 21 Kulkarni (erxabfd47bib33) 2021 Pipe (erxabfd47bib50) 2009; 36 Reyes (erxabfd47bib16) 2002; 74 Brummell (erxabfd47bib66) 1993; 68 Kamaly (erxabfd47bib12) 2012; 41 Nayak (erxabfd47bib77) 2012; 82 Kampmann (erxabfd47bib143) 1971; 81 Higashino (erxabfd47bib90) 2015; 137 Li (erxabfd47bib71) 2008; 68 Melin (erxabfd47bib7) 2007; 36 Lee (erxabfd47bib134) 2020; 313 Puneeth (erxabfd47bib124) 2019; 66 Andersson (erxabfd47bib11) 2004; 4 Mehmood (erxabfd47bib54) 2018; 381 Heinisch (erxabfd47bib95) 2015; 226 Akyazi (erxabfd47bib40) 2018; 1001 Barnes (erxabfd47bib57) 2019; 9 Laser (erxabfd47bib81) 2004; 14 Khan (erxabfd47bib34) 2018; 30 Ober (erxabfd47bib70) 2018; 31 Koc (erxabfd47bib78) 1992; 114 Ding (erxabfd47bib38) 2015; 20 Srikanth (erxabfd47bib72) 2020; 30 Northrup (erxabfd47bib53) 1995; 1 Martinez (erxabfd47bib112) 2007; 46 Zhao (erxabfd47bib92) 2020; 166 Toraldo (erxabfd47bib141) 2013; 191 Oliveira (erxabfd47bib108) 2011; 157 McMillan (erxabfd47bib61) 1974; 53 Buosciolo (erxabfd47bib105) 2004; 230 Puneeth (erxabfd47bib98) 2018; 68 TADROS (erxabfd47bib46) 1992; 14 Gross (erxabfd47bib10) 2007; 252 Lazar (erxabfd47bib20) 2002; 74 Cakmak (erxabfd47bib109) 2015; 232 Juang (erxabfd47bib9) 2016; 11 Sia (erxabfd47bib49) 2003; 24 Manz (erxabfd47bib56) 1992; 593 Kim (erxabfd47bib27) 2009; 1 Chen (erxabfd47bib2) 2020; 16 Park (erxabfd47bib25) 2011; 29 Rayaprolu (erxabfd47bib122) 2018 Mohammadi Aria (erxabfd47bib51) 2019; 7 Lee (erxabfd47bib133) 2018; 90 Goel (erxabfd47bib107) 2015; 139 Zhong (erxabfd47bib113) 2012; 18 Rajakumar (erxabfd47bib58) 2018; 06 Cui (erxabfd47bib19) 2015; 17 Terhal (erxabfd47bib65) 2000; 61 Jang (erxabfd47bib125) 2020; 319 Zang (erxabfd47bib17) 2016; 16 Nguyen (erxabfd47bib83) 2015; 15 Puneeth (erxabfd47bib121) 2019; 3 Devereux (erxabfd47bib144) 1984; 54 Letcher (erxabfd47bib145) 1981; 70 Halder (erxabfd47bib147) 2017; 17 Inman (erxabfd47bib42) 2013; 29 Yi (erxabfd47bib4) 2006; 560 Li (erxabfd47bib6) 2020; 20 Angelone (erxabfd47bib47) 2019; 1386 Galambos (erxabfd47bib104) 1998; 66 Hegener (erxabfd47bib148) 2017; 19 Puneeth (erxabfd47bib126) 2020; 67 Kang (erxabfd47bib101) 2013; 14 Bowen (erxabfd47bib80) 2010; 31 Mohan (erxabfd47bib52) 2020; 10 Kothuru (erxabfd47bib73) 2020; 20 Shih (erxabfd47bib26) 2013; 42 Hecht (erxabfd47bib150) 2013; 48 Heinisch (erxabfd47bib93) 2014; 214 Chen (erxabfd47bib14) 2010; 82 Lee (erxabfd47bib3) 2010; 62 Tabilo-Munizaga (erxabfd47bib45) 2005; 67 Samiei (erxabfd47bib35) 2016; 16 Bircher (erxabfd47bib96) 2016; 223 Cullen (erxabfd47bib44) 2000; 11 Hintermuller (erxabfd47bib136) 2020; 21 Mankar (erxabfd47bib74) 2019; 17 Dudala (erxabfd47bib75) 2019; 28 Rewatkar (erxabfd47bib76) 2020; 19 Puneeth (erxabfd47bib123) 2019; 19 Doolittle (erxabfd47bib39) 1951; 22 Kulkarni (erxabfd47bib31) 2020; 1 Cakmak (erxabfd47bib100) 2013; 63 Li (erxabfd47bib149) 2014; 4 Prakash (erxabfd47bib5) 2007; 3 Martin (erxabfd47bib64) 1978; 33 Kang (erxabfd47bib127) 2019; 91 Nour (erxabfd47bib132) 2020; 3 Schulte (erxabfd47bib22) 2002; 321 Venkateswaran (erxabfd47bib106) 2016; 16 Heinisch (erxabfd47bib94) 2012; 186 Cho (erxabfd47bib99) 2020 Rott (erxabfd47bib63) 1990; 22 (erxabfd47bib82) 2001 Etchart (erxabfd47bib87) 2008; 141 Maurya (erxabfd47bib91) 2019; 25 Ohno (erxabfd47bib13) 2008; 29 Li (erxabfd47bib118) 2014; 14 Rantonen (erxabfd47bib43) 1998; 56 Srivastava (erxabfd47bib153) 2005; 77 Fossum (erxabfd47bib41) 1997; 6 Andrews (erxabfd47bib142) 1993; 39 Yunus (erxabfd47bib88) 2018; 979 Lewis (erxabfd47bib117) 2012; 12 Erickson (erxabfd47bib15) 2004; 507 Erdi (erxabfd47bib139) 1976; 308 Khnouf (erxabfd47bib152) 2019; 21 Fukui (erxabfd47bib62) 1990; 112 Kishor Bhaskarrao (erxabfd47bib55) 2018; 67 Sadr (erxabfd47bib68) 2004; 506 Ellerbee (erxabfd47bib116) 2009; 81 Nott (erxabfd47bib67) 1994; 275 Lake (erxabfd47bib79) 2017; 12 Zeng (erxabfd47bib131) 2020; 32 Liu (erxabfd47bib138) 2020; 11 Srivastava (erxabfd47bib151) 2006; 6 Wang (erxabfd47bib84) 2017; 267 Riesch (erxabfd47bib85) 2008; 2008 Choi (erxabfd47bib97) 2012 Suk (erxabfd47bib69) 2007; 17 Puneeth (erxabfd47bib128) 2021; 1153 Berry (erxabfd47bib119) 2016; 16 Di Carlo (erxabfd47bib30) 2007; 104 Arosio (erxabfd47bib48) 2016; 88 Fedorchenko (erxabfd47bib103) 2009; 142 Nie (erxabfd47bib115) 2012; 84 Hitosugi (erxabfd47bib140) 2001; 104 Grafton (erxabfd47bib23) 2011; 7929 Beaulieu (erxabfd47bib111) 2017; 88 Mustafa (erxabfd47bib129) 2020; 1135 Zhang (erxabfd47bib37) 2017; 94 Srinivasan (erxabfd47bib29) 2004; 4 Carrilho (erxabfd47bib114) 2012 Rodriguez-Villarreal (erxabfd47bib135) 2020; 9294 Kim (erxabfd47bib137) 2018; 104 Bruijns (erxabfd47bib1) 2016; 6 Gale (erxabfd47bib8) 2018; 3 Sandberg (erxabfd47bib86) 2005; 15 Kim (erxabfd47bib110) 2016; 234 Mena (erxabfd47bib130) 2020; 14 Brassard (erxabfd47bib18) 2019; 19 Kulkarni (erxabfd47bib32) 2020; 31 Yun (erxabfd47bib21) 2013; 5 Jung (erxabfd47bib36) 2015; 132 Brunetto (erxabfd47bib89) 2010 Elizalde (erxabfd47bib120) 2016; 20 |
References_xml | – volume: 166 start-page: 112447 year: 2020 ident: erxabfd47bib92 article-title: Applications of fiber-optic biochemical sensor in microfluidic chips: A review publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112447 – volume: 11 start-page: 327 year: 2016 ident: erxabfd47bib9 article-title: Applications of microfluidics in microalgae biotechnology: A review publication-title: Biotechnol. J. doi: 10.1002/biot.201500278 – volume: 104 start-page: 237 year: 2018 ident: erxabfd47bib137 article-title: Microfluidic method for measuring viscosity using images from smartphone publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2017.05.016 – volume: 507 start-page: 11 year: 2004 ident: erxabfd47bib15 article-title: Integrated microfluidic devices, publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2003.09.019 – volume: 191 start-page: 1 year: 2013 ident: erxabfd47bib141 article-title: Obstructive sleep apnea syndrome: Blood viscosity, blood coagulation abnormalities, and early atherosclerosis publication-title: Lung doi: 10.1007/s00408-012-9427-3 – volume: 22 start-page: 1471 year: 1951 ident: erxabfd47bib39 article-title: Studies in newtonian flow. II. the dependence of the viscosity of liquids on free-space publication-title: J. Appl. Phys. doi: 10.1063/1.1699894 – volume: 66 start-page: 3196 year: 2019 ident: erxabfd47bib124 article-title: Novel 3D Printed Microfluidic Paper-Based Analytical Device with Integrated Screen-Printed Electrodes for Automated Viscosity Measurements, publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2019.2913851 – volume: 132 start-page: 46 year: 2015 ident: erxabfd47bib36 article-title: Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2014.09.024 – volume: 12 start-page: 2630 year: 2012 ident: erxabfd47bib117 article-title: High throughput method for prototyping three-dimensional, paper-based microfluidic devices, publication-title: Lab Chip doi: 10.1039/c2lc40331e – volume: 74 start-page: 2623 year: 2002 ident: erxabfd47bib16 article-title: Micro total analysis systems . 1 . introduction , theory , and technology doi: 10.1021/ac0202435 – volume: 29 start-page: 4443 year: 2008 ident: erxabfd47bib13 article-title: Microfluidics: Applications for analytical purposes in chemistry and biochemistry, publication-title: Electrophoresis doi: 10.1002/elps.200800121 – volume: 16 start-page: 2376 year: 2016 ident: erxabfd47bib35 article-title: A review of digital microfluidics as portable platforms for lab-on a-chip applications publication-title: Lab Chip doi: 10.1039/C6LC00387G – volume: 10 start-page: 3745-3755 year: 2020 ident: erxabfd47bib52 article-title: Miniaturized electrochemical platform with ink-jetted electrodes for multiplexed and interference mitigated biochemical sensing publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01480-1 – volume: 6 start-page: 744 year: 2006 ident: erxabfd47bib151 article-title: Electronic drop sensing in microfluidic devices: Automated operation of a nanoliter viscometer publication-title: Lab Chip doi: 10.1039/b516317j – volume: 94 start-page: 106 year: 2017 ident: erxabfd47bib37 article-title: Point-of-care-testing of nucleic acids by microfluidics publication-title: TrAC - Trends Anal. Chem. doi: 10.1016/j.trac.2017.07.013 – volume: 20 start-page: 1 year: 2020 ident: erxabfd47bib6 article-title: Miniaturized continuous-flow digital PCR for clinical-level serum sample based on the 3D microfluidics and CMOS imaging device publication-title: MDPI Sensors doi: 10.3390/s20092492 – volume: 36 start-page: 213 year: 2007 ident: erxabfd47bib7 article-title: Microfluidic large-scale integration: the evolution of design rules for biological automation, publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.36.040306.132646 – volume: 5 year: 2013 ident: erxabfd47bib21 article-title: Cell manipulation in microfluidics publication-title: Biofabrication doi: 10.1088/1758-5082/5/2/022001 – volume: 84 start-page: 6331 year: 2012 ident: erxabfd47bib115 article-title: Low-cost fabrication of paper-based microfluidic devices by one-step plotting, publication-title: Anal. Chem. doi: 10.1021/ac203496c – volume: 14 start-page: 657 year: 2013 ident: erxabfd47bib101 article-title: Integrated microfluidic viscometer equipped with fluid temperature controller for measurement of viscosity in complex fluids, publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-012-1085-5 – volume: 381 start-page: 012191 year: 2018 ident: erxabfd47bib54 article-title: A pump based microfluidic image processing system for droplet detection and counting,’ publication-title: IOP Conf. Ser.: Mater. Sci. Eng. doi: 10.1088/1757-899X/381/1/012191 – volume: 267 start-page: 401 year: 2017 ident: erxabfd47bib84 article-title: A contact resonance viscometer based on the electromechanical impedance of a piezoelectric cantilever, publication-title: Sensors Actuators A. Phys. doi: 10.1016/j.sna.2017.10.041 – volume: 13 start-page: 1 year: 2017 ident: erxabfd47bib60 article-title: Optimizing multiplexed detections of diabetes antibodies via quantitative microfluidic droplet array publication-title: Small doi: 10.1002/smll.201702323 – volume: 74 start-page: 6259 year: 2002 ident: erxabfd47bib20 article-title: Multiple open-channel electroosmotic pumping system for microfluidic sample handling publication-title: Anal. Chem. doi: 10.1021/ac0203950 – volume: 226 start-page: 163 year: 2015 ident: erxabfd47bib95 article-title: Application of resonant steel tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurements, publication-title: Sensors Actuators, A Phys. doi: 10.1016/j.sna.2015.02.007 – volume: 31 start-page: 2534 year: 2010 ident: erxabfd47bib80 article-title: Integration of on-chip peristaltic pumps and injection valves with microchip electrophoresis and electrochemical detection, publication-title: Electrophoresis doi: 10.1002/elps.201000029 – volume: 12 start-page: 1 year: 2017 ident: erxabfd47bib79 article-title: Low-cost feedback-controlled syringe pressure pumps for microfluidics applications, publication-title: PLoS One doi: 10.1371/journal.pone.0175089 – volume: 234 start-page: 239 year: 2016 ident: erxabfd47bib110 article-title: A novel hand-held viscometer applicable for point-of-care, publication-title: Sensors Actuators, B Chem. doi: 10.1016/j.snb.2016.04.126 – volume: 17 start-page: 7149 year: 2017 ident: erxabfd47bib147 article-title: Digital Camera-Based Spectrometry for the Development of Point-of-Care Anemia Detection on Ultra-Low Volume Whole Blood Sample publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2752371 – volume: 31 start-page: 1 year: 2020 ident: erxabfd47bib32 article-title: Internet of things enabled portable thermal management system with microfluidic platform to synthesize MnO2 nanoparticles for electrochemical sensing publication-title: Nanotechnology doi: 10.1088/1361-6528/ab9ed8 – volume: 39 start-page: 218 year: 1993 ident: erxabfd47bib142 article-title: Effects of mannitol on cerebral blood flow, blood pressure, blood viscosity, hematocrit, sodium, and potassium publication-title: Surg. Neurol. doi: 10.1016/0090-3019(93)90186-5 – volume: 70 start-page: 1195 year: 1981 ident: erxabfd47bib145 article-title: Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects. Role of fibrinogen and concentration publication-title: Am. J. Med. doi: 10.1016/0002-9343(81)90827-5 – volume: 15 start-page: 3670 year: 2015 ident: erxabfd47bib83 article-title: Viscosity measurement based on the tapping-induced free vibration of sessile droplets using MEMS-based piezoresistive cantilevers, publication-title: Lab Chip doi: 10.1039/C5LC00661A – volume: 139 start-page: 213 year: 2015 ident: erxabfd47bib107 article-title: Rapid and automated measurement of biofuel blending using a microfluidic viscometer, publication-title: Fuel doi: 10.1016/j.fuel.2014.08.053 – volume: 53 start-page: 1071 year: 1974 ident: erxabfd47bib61 article-title: Disturbance of serum viscosity in diabetes mellitus publication-title: J. Clin. Invest. doi: 10.1172/JCI107644 – volume: 21 start-page: 2565 –72 year: 2020 ident: erxabfd47bib136 article-title: A Microfluidic viscometer with capacitive readout using screen-printed electrodes publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3024837 – volume: 41 start-page: 2971 year: 2012 ident: erxabfd47bib12 article-title: Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation, publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15344k – volume: 46 start-page: 1318 year: 2007 ident: erxabfd47bib112 article-title: Patterned paper as a platform for inexpensive, low-volume, portable bioassays publication-title: Angew. Chemie - Int. Ed. doi: 10.1002/anie.200603817 – volume: 67 start-page: 147 year: 2005 ident: erxabfd47bib45 article-title: Rheology for the food industry publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2004.05.062 – volume: 7 start-page: 1 year: 2019 ident: erxabfd47bib51 article-title: Technology Advancements in Blood Coagulation Measurements for Point-of-Care Diagnostic Testing publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00395 – volume: 14 start-page: 4035 year: 2014 ident: erxabfd47bib118 article-title: Blood coagulation screening using a paper-based microfluidic lateral flow device, publication-title: Lab Chip doi: 10.1039/C4LC00716F – volume: 17 start-page: 11-15 year: 2007 ident: erxabfd47bib69 article-title: Capillary flow control using hydrophobic patterns publication-title: J. Micromechanics Microengineering doi: 10.1088/0960-1317/17/4/N01 – volume: 137 year: 2015 ident: erxabfd47bib90 article-title: Self-excited vibrational cantilever-type viscometer driven by piezo-actuator publication-title: J. Vib. Acoust. doi: 10.1115/1.4030975 – volume: 6 start-page: 161 year: 1997 ident: erxabfd47bib41 article-title: Whole blood viscosity, blood pressure and cardiovascular risk factors in healthy blood donors publication-title: Blood Press. doi: 10.3109/08037059709061932 – volume: 30 start-page: 1 year: 2018 ident: erxabfd47bib34 article-title: CMOS enabled microfluidic systems for healthcare based applications publication-title: Adv. Mater. doi: 10.1002/adma.201705759 – volume: 91 start-page: 4868 year: 2019 ident: erxabfd47bib127 article-title: Development of a paper-based viscometer for blood plasma using colorimetric analysis, publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b00624 – volume: 20 start-page: 7392 year: 2020 ident: erxabfd47bib73 article-title: Laser-induced flexible electronics (LIFE) for resistive, capacitive and electrochemical sensing applications publication-title: IEEE Sensors doi: 10.1109/JSEN.2020.2977694 – volume: 62 start-page: 449 year: 2010 ident: erxabfd47bib3 article-title: Nano/microfluidics for diagnosis of infectious diseases in developing countries publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.11.016 – volume: 25 start-page: 753 year: 1995 ident: erxabfd47bib102 article-title: Optical viscosity sensor using forward light scattering, publication-title: Sensors Actuators B. Chem. doi: 10.1016/0925-4005(95)85167-4 – volume: 308 start-page: 342 year: 1976 ident: erxabfd47bib139 article-title: Effect of Low-Dose Subcutaneous Heparin on Whole-Blood Viscosity, publication-title: Lancet doi: 10.1016/S0140-6736(76)92595-2 – volume: 82 start-page: 1012 year: 2010 ident: erxabfd47bib14 article-title: Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels, publication-title: Anal. Chem. doi: 10.1021/ac9022764 – volume: 31 start-page: 425–9 year: 2018 ident: erxabfd47bib70 article-title: Materials Overview for 2-Photon 3D Printing Applications publication-title: Journal of Photopolymer Science and Technology doi: 10.2494/photopolymer.31.425 – volume: 4 start-page: 98 year: 2004 ident: erxabfd47bib11 article-title: Microfabrication and microfluidics for tissue engineering: State of the art and future opportunities publication-title: Lab Chip doi: 10.1039/b314469k – volume: 06 start-page: 163 year: 2018 ident: erxabfd47bib58 article-title: IOT based milk monitoring system for detection of milk adulteration publication-title: Int. J. Comput. Sci. Eng. doi: ISSN: 1311-8080 – volume: 2 start-page: 0 year: 2020 ident: erxabfd47bib24 article-title: Advances in continuous-flow based microfluidic PCR devices – A review publication-title: Eng. Res. Express doi: 10.1088/2631-8695/abd287 – volume: 16 start-page: 1 year: 2020 ident: erxabfd47bib2 article-title: Microfluidics-Implemented Biochemical Assays: from the perspective of readout, publication-title: Small doi: 10.1002/smll.201903388 – volume: 214 start-page: 245 year: 2014 ident: erxabfd47bib93 article-title: A U-shaped wire for viscosity and mass density sensing, publication-title: Sensors Actuators, A Phys. doi: 10.1016/j.sna.2014.04.020 – volume: 560 start-page: 1 year: 2006 ident: erxabfd47bib4 article-title: Microfluidics technology for manipulation and analysis of biological cells publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2005.12.037 – volume: 29 start-page: 206 year: 2013 ident: erxabfd47bib42 article-title: The impact of temperature and urinary constituents on urine viscosity and its relevance to bladder hyperthermia treatment publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2013.775355 – volume: 14 start-page: 35 year: 2004 ident: erxabfd47bib81 article-title: A review of micropumps, publication-title: J. Micromechanics Microengineering doi: 10.1088/0960-1317/14/6/R01 – year: 2001 ident: erxabfd47bib82 – start-page: 1 year: 2018 ident: erxabfd47bib122 article-title: Fabrication of cost-effective and efficient paper-based device for viscosity measurement, publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.05.036 – volume: 9 start-page: 102 year: 2019 ident: erxabfd47bib57 article-title: On-line or process viscometry – a review publication-title: Appl. Rheol. doi: 10.1515/arh-2009-0007 – volume: 30 year: 2020 ident: erxabfd47bib72 article-title: Optimization and characterization of direct UV laser writing system for microscale applications, publication-title: J. Micromechanics Microengineering doi: 10.1088/1361-6439/ab92ea – volume: 68 start-page: 85 year: 1993 ident: erxabfd47bib66 article-title: High rayleigh number β-convection, publication-title: Geophys. Astrophys. Fluid Dyn. doi: 10.1080/03091929308203563 – volume: 11 start-page: 1 year: 2020 ident: erxabfd47bib138 article-title: Microfluidic viscometer using a suspending micromembrane for measurement of biosamples publication-title: Micromachines doi: 10.3390/mi11100934 – volume: 1 start-page: 764 year: 1995 ident: erxabfd47bib53 article-title: MEMS-based miniature DNA analysis system publication-title: Int. Conf. Solid-State Sensors Actuators, Eurosensors IX, Proc. doi: 10.1109/SENSOR.1995.717344 – volume: 17 start-page: 267 year: 2015 ident: erxabfd47bib19 article-title: Microfluidic Sample Preparation for Medical Diagnostics publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071114-040538 – volume: 313 start-page: 112176 year: 2020 ident: erxabfd47bib134 article-title: Hand-held, automatic capillary viscometer for analysis of Newtonian and non-Newtonian fluids, publication-title: Sensors Actuators, A Phys. doi: 10.1016/j.sna.2020.112176 – volume: 67 start-page: 2559 year: 2020 ident: erxabfd47bib126 article-title: Automated Mini-Platform with 3-D Printed Paper Microstrips for Image Processing-Based Viscosity Measurement of Biological Samples, publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2020.2989727 – volume: 61 start-page: 4 year: 2000 ident: erxabfd47bib65 article-title: Schmidt number for density matrices, publication-title: Phys. Rev. A - At. Mol. Opt. Phys. doi: 10.1103/PhysRevA.61.040301 – volume: 3 start-page: 2 year: 2019 ident: erxabfd47bib121 article-title: Amperometric Automation and Optimization Paper Microfluidic Viscometer publication-title: IEEE Sensors Lett. doi: 10.1109/LSENS.2019.2894623 – volume: 4 start-page: 310 year: 2004 ident: erxabfd47bib29 article-title: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids publication-title: Lab Chip doi: 10.1039/b403341h – volume: 112 start-page: 78 year: 1990 ident: erxabfd47bib62 article-title: A database for interpolation of poiseuille flow rates for high knudsen number lubrication problems publication-title: J. Tribol. doi: 10.1115/1.2920234 – volume: 275 start-page: 157 year: 1994 ident: erxabfd47bib67 article-title: Pressure-driven flow of suspensions: Simulation and theory publication-title: J. Fluid Mech. doi: 10.1017/S0022112094002326 – volume: 319 year: 2020 ident: erxabfd47bib125 article-title: Viscosity measurements utilizing a fast-flow microfluidic paper-based device, publication-title: Sensors Actuators, B Chem. doi: 10.1016/j.snb.2020.128240 – volume: 142 start-page: 111 year: 2009 ident: erxabfd47bib103 article-title: The optical viscometer based on the vibrating fiber partially submerged in fluid publication-title: Sensors Actuators, B Chem. doi: 10.1016/j.snb.2009.07.028 – volume: 21 start-page: 1-10 year: 2019 ident: erxabfd47bib152 article-title: Microfluidics-based device for the measurement of blood viscosity and its modeling based on shear rate, temperature, and heparin concentration, publication-title: Biomed. Microdevices doi: 10.1007/s10544-019-0426-5 – volume: 3 start-page: 177 year: 2007 ident: erxabfd47bib5 article-title: An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-006-0114-7 – volume: 48 start-page: 26 year: 2013 ident: erxabfd47bib150 article-title: Bead assembly magnetorotation as a signal transduction method for protein detection publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.03.073 – volume: 593 start-page: 253 year: 1992 ident: erxabfd47bib56 article-title: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip publication-title: J. Chromatogr. A doi: 10.1016/0021-9673(92)80293-4 – volume: 63 start-page: 225 year: 2013 ident: erxabfd47bib100 article-title: Microcantilever based disposable viscosity sensor for serum and blood plasma measurements publication-title: Methods doi: 10.1016/j.ymeth.2013.07.009 – volume: 16 start-page: 3689 year: 2016 ident: erxabfd47bib119 article-title: Measurement of the hematocrit using paper-based microfluidic devices, publication-title: Lab Chip doi: 10.1039/C6LC00895J – volume: 321 start-page: 1 year: 2002 ident: erxabfd47bib22 article-title: Microfluidic technologies in clinical diagnostics publication-title: Clin. Chim. Acta doi: 10.1016/S0009-8981(02)00093-1 – volume: 223 start-page: 784 year: 2016 ident: erxabfd47bib96 article-title: Automated high-throughput viscosity and density sensor using nanomechanical resonators, publication-title: Sensors Actuators, B Chem. doi: 10.1016/j.snb.2015.09.084 – volume: 21 start-page: 2217 year: 2006 ident: erxabfd47bib28 article-title: Electrochemical microfluidic biosensor for nucleic acid detection with integrated minipotentiostat publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2005.11.017 – volume: 17 start-page: 69 year: 2019 ident: erxabfd47bib74 article-title: Paper based microfluidic microbial fuel cell to harvest energy from urine publication-title: Sens. Lett. doi: 10.1166/sl.2019.3998 – volume: 19 start-page: 529 year: 2019 ident: erxabfd47bib123 article-title: Realization of Microfluidic Paper-Based Analytical Devices Using a 3-D Printer: Characterization and Optimization, publication-title: IEEE Trans. Device Mater. Reliab. doi: 10.1109/TDMR.2019.2927448 – volume: 88 year: 2017 ident: erxabfd47bib111 article-title: An automated system for performing continuous viscosity versus temperature measurements of fluids using an Ostwald viscometer publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4990134 – volume: 141 start-page: 266 year: 2008 ident: erxabfd47bib87 article-title: MEMS sensors for density-viscosity sensing in a low-flow microfluidic environment, publication-title: Sensors Actuators, A Phys. doi: 10.1016/j.sna.2007.08.007 – volume: 4 start-page: 76 year: 2014 ident: erxabfd47bib149 article-title: Asynchronous magnetic bead rotation (AMBR) microviscometer for label-free DNA analysis publication-title: Biosensors doi: 10.3390/bios4010076 – volume: 90 start-page: 2317 year: 2018 ident: erxabfd47bib133 article-title: Electrofluidic circuit-based microfluidic viscometer for analysis of newtonian and non-newtonian liquids under different temperatures, publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b04779 – start-page: 646–8 year: 2020 ident: erxabfd47bib99 article-title: Pipette Based Viscometer with Pressure Sensor Element doi: 10.1109/MEMS46641.2020.9056273 – start-page: 804 year: 2012 ident: erxabfd47bib97 article-title: Design and fabriction of micro-viscometer using the propagation of acoustic waves in micro-channel doi: 10.1109/MEMSYS.2012.6170308 – volume: 230 start-page: 357 year: 2004 ident: erxabfd47bib105 article-title: New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers, publication-title: Opt. Commun. doi: 10.1016/j.optcom.2003.11.062 – volume: 6 start-page: 1 year: 2016 ident: erxabfd47bib1 article-title: Microfluidic devices for forensic DNA analysis: A review publication-title: Biosensors doi: 10.3390/bios6030041 – volume: 67 start-page: 1795 year: 2018 ident: erxabfd47bib55 article-title: Analysis of a Linearizing Direct Digitizer With Phase-Error Compensation for TMR Angular Position Sensor, publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2810698 – year: 2012 ident: erxabfd47bib114 – volume: 16 start-page: 10 year: 2016 ident: erxabfd47bib17 article-title: Fundamentals and applications of inertial microfluidics: A review publication-title: Lab Chip doi: 10.1039/C5LC01159K – volume: 22 start-page: 1 year: 1990 ident: erxabfd47bib63 article-title: Note On The History Of The Reynolds Number, publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.22.010190.000245 – volume: 32 start-page: 042002 year: 2020 ident: erxabfd47bib131 article-title: Measurement of fluid viscosity based on droplet microfluidics, publication-title: Phys. Fluids doi: 10.1063/5.0002929 – volume: 81 start-page: 8447 year: 2009 ident: erxabfd47bib116 article-title: Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper, publication-title: Anal. Chem. doi: 10.1021/ac901307q – volume: 3 start-page: 1 year: 2020 ident: erxabfd47bib132 article-title: Mechanically flexible viscosity sensor for real‐time monitoring of tubular architectures for industrial applications publication-title: Eng. Reports, doi: 10.1002/eng2.12315 – start-page: 585–9 year: 2010 ident: erxabfd47bib89 article-title: A small scale viscometer based on an IPMC actuator and an IPMC sensor doi: 10.1109/IMTC.2010.5488156 – volume: 14 start-page: 93 year: 1992 ident: erxabfd47bib46 article-title: Future developments in cosmetic formulations publication-title: Int. J. Cosmet. Sci. doi: 10.1111/j.1467-2494.1992.tb00045.x – volume: 29 start-page: 830 year: 2011 ident: erxabfd47bib25 article-title: Advances in microfluidic PCR for point-of-care infectious disease diagnostics publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.06.017 – volume: 2008 start-page: 1 year: 2008 ident: erxabfd47bib85 article-title: Characterizing Vibrating Cantilevers for Liquid Viscosity and Density Sensing, publication-title: J. Sensors doi: 10.1155/2008/697062 – volume: 96 start-page: 168 year: 1997 ident: erxabfd47bib146 article-title: Blood viscosity and risk of cardiovascular events: the edinburgh artery study publication-title: Br. J. Haematol. doi: 10.1046/j.1365-2141.1997.8532481.x – volume: 104 start-page: 18892 year: 2007 ident: erxabfd47bib30 article-title: Continuous inertial focusing, ordering, and separation of particles in microchannels publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0704958104 – volume: 25 start-page: 3933 year: 2019 ident: erxabfd47bib91 article-title: A novel electronic micro-viscometer, publication-title: Microsyst. Technol. doi: 10.1007/s00542-019-04357-8 – volume: 68 start-page: 1227 year: 2008 ident: erxabfd47bib71 article-title: Sensors and actuators based on carbon nanotubes and their composites: a review publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2008.01.006 – volume: 3 start-page: 60 year: 2018 ident: erxabfd47bib8 article-title: A review of current methods in microfluidic device fabrication and future commercialization prospects publication-title: Inventions doi: 10.3390/inventions3030060 – volume: 82 start-page: 129 year: 2012 ident: erxabfd47bib77 article-title: Recent advances in nanofibre fabrication techniques, publication-title: Text. Res. J. doi: 10.1177/0040517511424524 – volume: 1 start-page: 574 year: 2009 ident: erxabfd47bib27 article-title: Microfluidic sample preparation: Cell lysis and nucleic acid purification publication-title: Integr. Biol. doi: 10.1039/b905844c – volume: 1386 start-page: 12120 year: 2019 ident: erxabfd47bib47 article-title: Software to determine the viscosity and honey’s purity using a ball viscometer publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1386/1/012120 – volume: 19 start-page: 1941 year: 2019 ident: erxabfd47bib18 article-title: Extraction of nucleic acids from blood: Unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes publication-title: Lab Chip doi: 10.1039/C9LC00276F – volume: 19 year: 2017 ident: erxabfd47bib148 article-title: Point-of-care coagulation monitoring: first clinical experience using a paper-based lateral flow diagnostic device publication-title: Biomed. Microdevices doi: 10.1007/s10544-017-0206-z – volume: 42 start-page: 314 year: 2013 ident: erxabfd47bib26 article-title: Digital microfluidics with impedance sensing for integrated cell culture and analysis publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.10.035 – volume: 88 start-page: 3488 year: 2016 ident: erxabfd47bib48 article-title: Microfluidic Diffusion Viscometer for Rapid Analysis of Complex Solutions publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b02930 – volume: 506 start-page: 357 year: 2004 ident: erxabfd47bib68 article-title: An experimental study of electro-osmotic flow in rectangular microchannels publication-title: J. Fluid Mech. doi: 10.1017/S0022112004008626 – volume: 66 start-page: 187 year: 1998 ident: erxabfd47bib104 article-title: An optical micro-fluidic viscometer – volume: 28 start-page: 804 year: 2019 ident: erxabfd47bib75 article-title: Experimental characterization to fabricate CO2 laser ablated PMMA microchannel with homogeneous surface, publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2019.12.302 – volume: 18 start-page: 649 year: 2012 ident: erxabfd47bib113 article-title: Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices, publication-title: Microsyst. Technol. doi: 10.1007/s00542-012-1469-1 – volume: 1 start-page: 1 year: 2020 ident: erxabfd47bib31 article-title: Microfluidic devices for synthesizing nanomaterials — a review publication-title: Nano Express doi: 10.1088/2632-959X/abcca6 – volume: 33 start-page: 913 year: 1978 ident: erxabfd47bib64 article-title: Low peclet number particle-to-fluid heat and mass transfer in packed beds publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(78)85181-1 – volume: 1001 start-page: 1 year: 2018 ident: erxabfd47bib40 article-title: Review on microfluidic paper-based analytical devices towards commercialisation publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.11.010 – volume: 36 start-page: 110 year: 2009 ident: erxabfd47bib50 article-title: Microfluidic rheometry publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2008.08.009 – volume: 1153 year: 2021 ident: erxabfd47bib128 article-title: Handheld and ‘turnkey’ 3D printed paper-microfluidic viscometer with on-board microcontroller for smartphone based biosensing applications, publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2021.338303 – volume: 56 start-page: 210 year: 1998 ident: erxabfd47bib43 article-title: Viscosity of whole saliva publication-title: Acta Odontol. Scand. doi: 10.1080/00016359850142817 – volume: 11 start-page: 451 year: 2000 ident: erxabfd47bib44 article-title: Process viscometry for the food industry publication-title: Trends Food Sci. Technol. doi: 10.1016/S0924-2244(01)00034-6 – volume: 9294 start-page: 1 year: 2020 ident: erxabfd47bib135 article-title: An integrated detection method for flow viscosity measurements in microdevices publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.3013519 – volume: 979 start-page: 012083 year: 2018 ident: erxabfd47bib88 article-title: Design of Oil Viscosity Sensor Based on Plastic Optical Fiber, publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/979/1/012083 – volume: 16 start-page: 3000 year: 2016 ident: erxabfd47bib106 article-title: Rapid and automated measurement of milk adulteration using a 3D printed optofluidic microviscometer (OMV) publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2527921 – volume: 157 start-page: 621 year: 2011 ident: erxabfd47bib108 article-title: Compact dip-style viscometer based on the acousto-optic effect in a long period fiber grating publication-title: Sensors Actuators, B Chem. doi: 10.1016/j.snb.2011.05.035 – volume: 14 start-page: 014109 year: 2020 ident: erxabfd47bib130 article-title: A droplet-based microfluidic viscometer for the measurement of blood coagulation, publication-title: Biomicrofluidics doi: 10.1063/1.5128255 – volume: 20 start-page: 1428 year: 2011 ident: erxabfd47bib59 article-title: Integration of bulk nanoporous elements in microfluidic devices with application to biomedical diagnostics publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2011.2167669 – volume: 15 start-page: 2249 year: 2005 ident: erxabfd47bib86 article-title: Effect of gold coating on the Q-factor of a resonant cantilever, publication-title: J. Micromechanics Microengineering doi: 10.1088/0960-1317/15/12/006 – volume: 19 start-page: 4 year: 2020 ident: erxabfd47bib76 article-title: 3D Printed Bioelectrodes for Enzymatic Biofuel Cell: Simple, Rapid, Optimized and Enhanced Approach, publication-title: IEEE Trans. Nanobioscience doi: 10.1109/TNB.2019.2941196 – volume: 232 start-page: 141 year: 2015 ident: erxabfd47bib109 article-title: Precision density and viscosity measurement using two cantilevers with different widths, publication-title: Sensors Actuators, A Phys. doi: 10.1016/j.sna.2015.05.024 – volume: 81 start-page: 264 year: 1971 ident: erxabfd47bib143 article-title: Whole‐blood viscosity, hematocrit and plasma protein in normal subjects at different ages publication-title: Acta Physiol. Scand. doi: 10.1111/j.1748-1716.1971.tb04899.x – year: 2021 ident: erxabfd47bib33 article-title: Integrated temperature controlling platform to synthesize ZnO nanoparticles and its deposition on Al-foil for Biosensing doi: 10.1109/JSEN.2021.3053642 – volume: 77 start-page: 383 year: 2005 ident: erxabfd47bib153 article-title: Nanoliter viscometer for analyzing blood plasma and other liquid samples viscometer that quickly , easily , and inexpensively mea- publication-title: Anal. Chem. doi: 10.1021/ac0494681 – volume: 24 start-page: 3563 year: 2003 ident: erxabfd47bib49 article-title: Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies publication-title: Electrophoresis doi: 10.1002/elps.200305584 – volume: 104 start-page: 371 year: 2001 ident: erxabfd47bib140 article-title: Changes in blood viscosity by heparin and argatroban publication-title: Thromb. Res. doi: 10.1016/S0049-3848(01)00359-0 – volume: 68 start-page: 2648–55 year: 2018 ident: erxabfd47bib98 article-title: 3D Printed Integrated and Automated Electro-Microfluidic Viscometer for Biochemical Applications, publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2866357 – volume: 20 start-page: 1-8 year: 2016 ident: erxabfd47bib120 article-title: Precise capillary flow for paper-based viscometry, publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-016-1800-8 – volume: 1135 start-page: 107 year: 2020 ident: erxabfd47bib129 article-title: A micropillar-based microfluidic viscometer for Newtonian and non-Newtonian fluids, publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.07.039 – volume: 20 start-page: 365 year: 2015 ident: erxabfd47bib38 article-title: Development and Applications of Portable Biosensors publication-title: J. Lab. Autom. doi: 10.1177/2211068215581349 – volume: 54 start-page: 592 year: 1984 ident: erxabfd47bib144 article-title: Whole blood viscosity as a determinant of cardiac hypertrophy in systemic hypertension publication-title: Am. J. Cardiol. doi: 10.1016/0002-9149(84)90255-8 – volume: 252 start-page: 135 year: 2007 ident: erxabfd47bib10 article-title: Applications of microfluidics for neuronal studies publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2006.11.009 – volume: 7929 year: 2011 ident: erxabfd47bib23 article-title: Microfluidic MEMS hand-held flow cytometer publication-title: Microfluid. BioMEMS, Med. Microsystems IX doi: 10.1117/12.874299 – volume: 114 start-page: 766 year: 1992 ident: erxabfd47bib78 article-title: Slipper balance in axial piston pumps and motors, publication-title: J. Tribol. doi: 10.1115/1.2920946 – volume: 186 start-page: 111 year: 2012 ident: erxabfd47bib94 article-title: Tunable resonators in the low kHz range for viscosity sensing, publication-title: Sensors Actuators, A Phys. doi: 10.1016/j.sna.2012.03.009 |
SSID | ssib046616717 ssib037096498 ssib052001916 |
Score | 2.357561 |
SecondaryResourceType | review_article |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 22003 |
SubjectTerms | Biosensing Microfabrication Microfluidics Point-of-Care Testing (POCT) Viscometers |
Title | Microfluidic viscometers for biochemical and biomedical applications: A review |
URI | https://iopscience.iop.org/article/10.1088/2631-8695/abfd47 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bvHgRRcX5MXPQg4e6rUnTVE9DHFPY5sHhbqH5goJ0Yx_in-9L080NZHhrIE3Lry99v5f3hdANi00SaakDSd1pVWhpkIJeC0xK4pRzpSPlEoX7A9Yb0ddxNK6gx3UuzGRa_vrv4dIXCvYQlgFxvBky0g44S6JmKq2mcRXtEc64s7yG5GMlTCQGck5_bQkKioiB7VK6Kv9aaEs1VeHxG5qme4gOSoqIO_6FjlDF5Mdo0HeRc_ZzmelM4a9sDpLiIlnmGFgnlplrfFVk_uM019gn1fvhhof6AXewz1U5QaPu8_tTLyh7IQQKCNIiSKxOmWzLNuMyjC2h2miqHDtIJHGbKJSGKNB4rmSZtWCXwNAarltGJRFX5BTV8kluzhDmqaXAUolVOoYPlEgeqUi5_t4yBfXO6qi5gkGoslC461fxKQqHNefCAScccMIDV0d36zumvkjGjrm3gKwod8p8x7zrrXlm9i2ICIXLDG4RMdX2_J8rXaD90AWiFEcnl6i2mC3NFTCJhWyg6svwrVHIzQ-QUcRx |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62gngRRcX6ag568LBuu8lms96KWuqj1YPF3sLmBQulLX2IP9_JbtQWpHjbwCSEyWTnm8wLoQuWmDTWUgeSuteqyNIgA70WmIwkGedKx8olCnd7rNOnj4N44PucFrkw44n_9V_DZ1kouGShD4jjYcRIM-AsjcNMWk2TcKJtBW3GhDHXu-GFvH8LFEkAoNNfe4KCMmJgv3h35V-LrainCmxhSdu0d9GOh4m4VW5qD22Y0T7qdV30nB0ucp0r_JHPQFpcNMsMA_LEMnfNr4rsf5yNNC4T68vhkpf6Brdwma9ygPrt-7fbTuD7IQQKQNI8SK3OmGzKJuMySiyh2miqHEJIJXEXKZKGKNB6rmyZtWCbwNAarhtGpTFX5BBVR-OROUKYZ5YCUiVW6QQOKZU8VrFyPb5lBiqe1VD4zQahfLFw17NiKAqnNefCMU44xomScTV09TNjUhbKWEN7CZwV_rbM1tDVV-jM9FMQEQmXHdwgAs79-J8r1dHW611bPD_0nk7QduTiUoqXlFNUnU8X5gyAxVyeF8LzBSS4x1c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+viscometers+for+biochemical+and+biomedical+applications%3A+A+review&rft.jtitle=Engineering+Research+Express&rft.au=Puneeth%2C+S+B&rft.au=Kulkarni%2C+Madhusudan+B&rft.au=Goel%2C+Sanket&rft.date=2021-06-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1088%2F2631-8695%2Fabfd47&rft.externalDocID=erxabfd47 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon |