DuAGNet: an unrestricted multimodal speech recognition framework using dual adaptive gating fusion

Speech recognition is a major communication channel for human-machine interaction with outstanding breakthroughs. However, the practicality of single-modal speech recognition is not satisfactory in high-noise or silent communication applications. Integrating multiple modalities can effectively addre...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 55; no. 3; p. 224
Main Authors Wu, Jinghan, Zhang, Yakun, Zhang, Meishan, Zheng, Changyan, Zhang, Xingyu, Xie, Liang, An, Xingwei, Yin, Erwei
Format Journal Article
LanguageEnglish
Published Boston Springer Nature B.V 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Speech recognition is a major communication channel for human-machine interaction with outstanding breakthroughs. However, the practicality of single-modal speech recognition is not satisfactory in high-noise or silent communication applications. Integrating multiple modalities can effectively address this problem, but existing fusion methods tend to pay excessive attention to the alignment of semantic features and the construction of fused features between modalities, omitting the preservation of single-modal characteristics. In this work, audio signals, visual clues of lip region images, and facial electromyography signals are used for unrestricted speech recognition, which can effectively resist the noise interference brought by single modalities. To preserve the unique feature expression of each speech modality and improve the global perception of the coupling correlations among them, a Dual Adaptive Gating fusion framework is proposed (dubbed DuAGNet), utilizing modality-specific and feature-specific adaptive gating networks. A multimodal speech dataset is constructed from forty subjects to validate the effectiveness of the proposed DuAGNet, covering three modalities of speech data and 100 classes of Chinese phrases. Both the highest recognition accuracy of 98.79% and lowest standard deviation of 0.83 are obtained with clean test data, and a maximum increase of accuracy over 80% is achieved, compared to audio speech recognition systems when introduced severe audio noise.
AbstractList Speech recognition is a major communication channel for human-machine interaction with outstanding breakthroughs. However, the practicality of single-modal speech recognition is not satisfactory in high-noise or silent communication applications. Integrating multiple modalities can effectively address this problem, but existing fusion methods tend to pay excessive attention to the alignment of semantic features and the construction of fused features between modalities, omitting the preservation of single-modal characteristics. In this work, audio signals, visual clues of lip region images, and facial electromyography signals are used for unrestricted speech recognition, which can effectively resist the noise interference brought by single modalities. To preserve the unique feature expression of each speech modality and improve the global perception of the coupling correlations among them, a Dual Adaptive Gating fusion framework is proposed (dubbed DuAGNet), utilizing modality-specific and feature-specific adaptive gating networks. A multimodal speech dataset is constructed from forty subjects to validate the effectiveness of the proposed DuAGNet, covering three modalities of speech data and 100 classes of Chinese phrases. Both the highest recognition accuracy of 98.79% and lowest standard deviation of 0.83 are obtained with clean test data, and a maximum increase of accuracy over 80% is achieved, compared to audio speech recognition systems when introduced severe audio noise.
ArticleNumber 224
Author Zhang, Meishan
Wu, Jinghan
Xie, Liang
Zheng, Changyan
Yin, Erwei
An, Xingwei
Zhang, Xingyu
Zhang, Yakun
Author_xml – sequence: 1
  givenname: Jinghan
  surname: Wu
  fullname: Wu, Jinghan
– sequence: 2
  givenname: Yakun
  surname: Zhang
  fullname: Zhang, Yakun
– sequence: 3
  givenname: Meishan
  surname: Zhang
  fullname: Zhang, Meishan
– sequence: 4
  givenname: Changyan
  surname: Zheng
  fullname: Zheng, Changyan
– sequence: 5
  givenname: Xingyu
  surname: Zhang
  fullname: Zhang, Xingyu
– sequence: 6
  givenname: Liang
  surname: Xie
  fullname: Xie, Liang
– sequence: 7
  givenname: Xingwei
  surname: An
  fullname: An, Xingwei
– sequence: 8
  givenname: Erwei
  orcidid: 0000-0002-2147-9888
  surname: Yin
  fullname: Yin, Erwei
BookMark eNotkEFPwzAMhSM0JMbgD3CKxLngtFnbcJsGDKQJLiBxi9LEGR1rUpIUxL-nYxwsW35PfvJ3SibOOyTkgsEVA6iuIwNeiwxynkHJ2DgdkSmbV0VWcVFNyBTEKJWleDshpzFuAaAogE1JczssVk-YbqhydHABYwqtTmhoN-xS23mjdjT2iPqdBtR-49rUekdtUB1--_BBh9i6DTXD6FNG9an9QrpRab-0o-bdGTm2ahfx_L_PyOv93cvyIVs_rx6Xi3Wm87xMmeCMmbzCBkzBc8Nto3VTqqayBoyYW1Voa4WqtUDDsda8qaEqUaA2AFhXxYxcHu72wX8O4yNy64fgxkhZMC7GArZ35QeXDj7GgFb2oe1U-JEM5J6lPLCUI0v5x1JC8QsEU2u9
Cites_doi 10.1109/CVPR.2017.367
10.1109/CVPR52729.2023.01801
10.1109/ICASSP40776.2020.9053841
10.1109/ICPR48806.2021.9412454
10.1007/s10489-020-01725-0
10.1109/THMS.2022.3226197
10.3389/fnbot.2022.971446
10.1109/TASL.2013.2244083
10.18653/v1/2022.acl-long.308
10.1109/JBHI.2020.3034158
10.1109/ICASSP39728.2021.9414567
10.1109/ICASSP.2018.8461326
10.1109/ICIP42928.2021.9506396
10.1109/SLT54892.2023.10022656
10.1109/EMBC46164.2021.9630373
10.1109/TNNLS.2022.3163771
10.1016/j.inffus.2022.09.006
10.1016/j.eswa.2024.124159
10.1109/ICASSP.2018.8462015
10.1109/TNNLS.2022.3202842
10.23919/Eusipco47968.2020.9287841
10.1109/TASLP.2020.3039600
10.1109/ICASSP49357.2023.10096889
10.1109/ICASSP.2015.7178964
10.1109/ICASSP48485.2024.10448106
10.1609/aaai.v37i11.26484
10.1007/s11760-019-01630-1
10.1109/TMM.2022.3185894
10.1109/ICASSP.2019.8683733
10.1109/CVPRW56347.2022.00504
10.1016/j.compeleceng.2021.107026
10.1007/s10489-024-05380-7
10.1109/CVPR52733.2024.02567
10.1109/ICASSP48485.2024.10446769
10.1007/s10489-024-05381-6
10.1109/CVPR42600.2020.01271
10.1109/ICIP40778.2020.9190894
10.1016/j.bspc.2022.104298
10.1016/0167-6393(93)90095-3
10.1109/TCDS.2023.3316701
10.1109/ASYU52992.2021.9599016
10.1109/ICASSP39728.2021.9415063
10.1561/116.00000050
10.1109/TASLP.2020.2998279
10.1109/CVPR52729.2023.01018
10.1007/s10489-021-02846-w
10.1109/ICASSP39728.2021.9415077
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10489-024-06119-0
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
ExternalDocumentID 10_1007_s10489_024_06119_0
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~A9
~EX
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c226t-9411d27eb0d342d4fbccb6ab7fd0d95fa3cff9a8c9ed4e8c4b8076e9ecd00e873
ISSN 0924-669X
IngestDate Fri Jul 25 12:16:38 EDT 2025
Tue Jul 01 03:32:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-9411d27eb0d342d4fbccb6ab7fd0d95fa3cff9a8c9ed4e8c4b8076e9ecd00e873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2147-9888
PQID 3149314017
PQPubID 326365
ParticipantIDs proquest_journals_3149314017
crossref_primary_10_1007_s10489_024_06119_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-00
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-00
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 6119_CR38
6119_CR39
6119_CR30
6119_CR32
6119_CR33
6119_CR34
6119_CR35
6119_CR36
D Yu (6119_CR47) 2016
C Fan (6119_CR8) 2021; 29
Y Zhang (6119_CR52) 2023; 15
Q Song (6119_CR37) 2022; 34
S Sarkar (6119_CR9) 2024; 54
6119_CR27
6119_CR28
6119_CR29
AK Gupta (6119_CR10) 2022; 52
G Chen (6119_CR3) 2020; 50
6119_CR20
6119_CR21
6119_CR22
6119_CR23
6119_CR24
6119_CR25
6119_CR26
AB Hassanat (6119_CR11) 2011; 1
X Chen (6119_CR5) 2023; 53
D Zhou (6119_CR53) 2023; 25
6119_CR16
6119_CR17
6119_CR18
6119_CR19
D Zhou (6119_CR54) 2024; 35
L Deng (6119_CR6) 2013; 21
6119_CR55
6119_CR12
6119_CR14
LA Passos (6119_CR31) 2023; 90
6119_CR15
6119_CR50
6119_CR51
K Ding (6119_CR7) 2024; 54
6119_CR49
X Chen (6119_CR4) 2020; 14
6119_CR41
6119_CR42
6119_CR44
6119_CR45
6119_CR46
NS Jong (6119_CR13) 2020; 25
6119_CR48
ZQ Wang (6119_CR43) 2020; 28
6119_CR2
6119_CR1
6119_CR40
References_xml – ident: 6119_CR36
  doi: 10.1109/CVPR.2017.367
– ident: 6119_CR12
  doi: 10.1109/CVPR52729.2023.01801
– ident: 6119_CR24
  doi: 10.1109/ICASSP40776.2020.9053841
– ident: 6119_CR18
  doi: 10.1109/ICPR48806.2021.9412454
– volume: 50
  start-page: 3503
  year: 2020
  ident: 6119_CR3
  publication-title: Applied Intell
  doi: 10.1007/s10489-020-01725-0
– ident: 6119_CR40
– volume: 53
  start-page: 335
  issue: 2
  year: 2023
  ident: 6119_CR5
  publication-title: IEEE Trans Human-Mach Syst
  doi: 10.1109/THMS.2022.3226197
– ident: 6119_CR45
  doi: 10.3389/fnbot.2022.971446
– volume: 21
  start-page: 1060
  issue: 5
  year: 2013
  ident: 6119_CR6
  publication-title: IEEE Trans Audio, Speech, and Language Process
  doi: 10.1109/TASL.2013.2244083
– ident: 6119_CR28
  doi: 10.18653/v1/2022.acl-long.308
– volume: 25
  start-page: 1997
  issue: 6
  year: 2020
  ident: 6119_CR13
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2020.3034158
– volume-title: Automatic Speech Recognition
  year: 2016
  ident: 6119_CR47
– ident: 6119_CR35
– ident: 6119_CR20
  doi: 10.1109/ICASSP39728.2021.9414567
– ident: 6119_CR32
  doi: 10.1109/ICASSP.2018.8461326
– ident: 6119_CR51
  doi: 10.1109/ICIP42928.2021.9506396
– ident: 6119_CR14
  doi: 10.1109/SLT54892.2023.10022656
– ident: 6119_CR44
  doi: 10.1109/EMBC46164.2021.9630373
– volume: 34
  start-page: 10028
  issue: 12
  year: 2022
  ident: 6119_CR37
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3163771
– volume: 90
  start-page: 1
  year: 2023
  ident: 6119_CR31
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2022.09.006
– ident: 6119_CR33
  doi: 10.1016/j.eswa.2024.124159
– ident: 6119_CR50
  doi: 10.1109/ICASSP.2018.8462015
– volume: 35
  start-page: 5226
  issue: 4
  year: 2024
  ident: 6119_CR54
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3202842
– ident: 6119_CR49
  doi: 10.23919/Eusipco47968.2020.9287841
– volume: 29
  start-page: 198
  year: 2021
  ident: 6119_CR8
  publication-title: IEEE/ACM Trans Audio, Speech, and Language Process
  doi: 10.1109/TASLP.2020.3039600
– ident: 6119_CR15
– ident: 6119_CR21
  doi: 10.1109/ICASSP49357.2023.10096889
– ident: 6119_CR29
  doi: 10.1109/ICASSP.2015.7178964
– volume: 1
  start-page: 279
  year: 2011
  ident: 6119_CR11
  publication-title: Speech and Language Technol.
– ident: 6119_CR48
  doi: 10.1109/ICASSP48485.2024.10448106
– ident: 6119_CR2
  doi: 10.1609/aaai.v37i11.26484
– volume: 14
  start-page: 981
  issue: 5
  year: 2020
  ident: 6119_CR4
  publication-title: Signal, Image and Video Process
  doi: 10.1007/s11760-019-01630-1
– ident: 6119_CR23
– volume: 25
  start-page: 4986
  year: 2023
  ident: 6119_CR53
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2022.3185894
– ident: 6119_CR55
  doi: 10.1109/ICASSP.2019.8683733
– ident: 6119_CR27
  doi: 10.1109/CVPRW56347.2022.00504
– ident: 6119_CR46
  doi: 10.1016/j.compeleceng.2021.107026
– volume: 54
  start-page: 4507
  issue: 6
  year: 2024
  ident: 6119_CR9
  publication-title: Applied Intell
  doi: 10.1007/s10489-024-05380-7
– ident: 6119_CR25
  doi: 10.1109/CVPR52733.2024.02567
– ident: 6119_CR41
  doi: 10.1109/ICASSP48485.2024.10446769
– volume: 54
  start-page: 5674
  issue: 7
  year: 2024
  ident: 6119_CR7
  publication-title: Applied Intell
  doi: 10.1007/s10489-024-05381-6
– ident: 6119_CR42
  doi: 10.1109/CVPR42600.2020.01271
– ident: 6119_CR17
  doi: 10.1109/ICIP40778.2020.9190894
– ident: 6119_CR38
  doi: 10.1016/j.bspc.2022.104298
– ident: 6119_CR39
  doi: 10.1016/0167-6393(93)90095-3
– volume: 15
  start-page: 2282
  issue: 4
  year: 2023
  ident: 6119_CR52
  publication-title: IEEE Trans Cogn Development Syst
  doi: 10.1109/TCDS.2023.3316701
– ident: 6119_CR1
  doi: 10.1109/ASYU52992.2021.9599016
– ident: 6119_CR19
  doi: 10.1109/ICASSP39728.2021.9415063
– ident: 6119_CR16
  doi: 10.1561/116.00000050
– volume: 28
  start-page: 1778
  year: 2020
  ident: 6119_CR43
  publication-title: IEEE/ACM Trans Audio, Speech, and Language Process
  doi: 10.1109/TASLP.2020.2998279
– ident: 6119_CR22
  doi: 10.1109/ICASSP49357.2023.10096889
– ident: 6119_CR26
  doi: 10.1109/CVPR52729.2023.01018
– volume: 52
  start-page: 9001
  issue: 8
  year: 2022
  ident: 6119_CR10
  publication-title: Applied Intell
  doi: 10.1007/s10489-021-02846-w
– ident: 6119_CR30
  doi: 10.1109/ICASSP39728.2021.9415077
– ident: 6119_CR34
SSID ssj0003301
Score 2.3757048
Snippet Speech recognition is a major communication channel for human-machine interaction with outstanding breakthroughs. However, the practicality of single-modal...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 224
SubjectTerms Audio data
Audio signals
Speech
Speech recognition
Voice recognition
Title DuAGNet: an unrestricted multimodal speech recognition framework using dual adaptive gating fusion
URI https://www.proquest.com/docview/3149314017
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge-FCeRRRaJEP3FapvLHXTnrbdrssD62QaKXeLL8iOLBd0c2lv77jV5KWCgGXaJVok8ifM54Zf98MQu_1pKk1XCyU5aZgyii_SQjGcMq1IA34FC6wLVZ8ecE-XU4v-7aKQV2y1Ufm5kFdyf-gCucAV6-S_Qdku5vCCfgN-MIREIbjX2E8b2cfVi4k9-AzbX3lHl9w3zuRgSj488p6OcjGOfN93FGFPLcwU7LGbcgVBEGWsmoTiES-6IbnV7bXGbRcpja5rD-GdTzBRZ1DBAu3j1H-QEKc0wwpq1BOMxH5XlbRU6b9Rkaneompw5IVnIcWuLCGJMMpaCFY5NpmyxoL8KYZRIdmMuqmfzPfJMuZmSdywVPA2_Aiq36xyhv0y9k3-XW-kF8-rj4_RjslBAnlCO3MFicnq24lpjS0v-7eN4mmknTy3jPuOiZ31-XgbJw_Q09TlIBnEfLn6JFbv0C7uQMHTgb5JdJpBhxjtcZD_HGPP4744wH-uMMfB_yxxx9n_HHEH0f899DF4uz8dFmkrhmFAVd6W9RsMrGlcJpYykrLGm2M5kqLxhJbTxtFTdPUqjK1s8xVhumKCO5qZywhrhL0FRqtr9buNcK8ZpWFf1TEVqzhXAmtCbOKEMudq-g-Guchk5tYHEX2ZbD9AEsYYBkGWJJ9dJBHVaaP6FpSiNCpD_LFmz9ffoue9PP0AI22v1p3CP7gVr9LsN8Cgo1kJw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DuAGNet%3A+an+unrestricted+multimodal+speech+recognition+framework+using+dual+adaptive+gating+fusion&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=3&rft.spage=224&rft_id=info:doi/10.1007%2Fs10489-024-06119-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon