Inverting the fundamental diagram and forecasting boundary conditions: how machine learning can improve macroscopic models for traffic flow
In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and veloc...
Saved in:
Published in | Advances in computational mathematics Vol. 50; no. 6 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle. By means of a machine learning model based on an LSTM recursive neural network, we extrapolate two important pieces of information: (1) if congestion is appearing under the sensor, and (2) the total amount of vehicles which is going to pass under the sensor in the next future (30 min). These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors. The first piece of information is used to invert the (concave) fundamental diagram, thus recovering the density of vehicles from the flux data, and then inject directly the density datum in the model. This allows one to better approximate the dynamics between sensors, especially if an accident/bottleneck happens in a not monitored stretch of the road. The second piece of information is used instead as boundary conditions for the equations underlying the traffic model, to better predict the total amount of vehicles on the road at any future time. Some examples motivated by real scenarios will be discussed. Real data are provided by the Italian motorway company Autovie Venete S.p.A. |
---|---|
AbstractList | In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle. By means of a machine learning model based on an LSTM recursive neural network, we extrapolate two important pieces of information: (1) if congestion is appearing under the sensor, and (2) the total amount of vehicles which is going to pass under the sensor in the next future (30 min). These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors. The first piece of information is used to invert the (concave) fundamental diagram, thus recovering the density of vehicles from the flux data, and then inject directly the density datum in the model. This allows one to better approximate the dynamics between sensors, especially if an accident/bottleneck happens in a not monitored stretch of the road. The second piece of information is used instead as boundary conditions for the equations underlying the traffic model, to better predict the total amount of vehicles on the road at any future time. Some examples motivated by real scenarios will be discussed. Real data are provided by the Italian motorway company Autovie Venete S.p.A. |
ArticleNumber | 115 |
Author | Onofri, Elia Cristiani, Emiliano Briani, Maya |
Author_xml | – sequence: 1 givenname: Maya orcidid: 0000-0003-3900-0991 surname: Briani fullname: Briani, Maya – sequence: 2 givenname: Emiliano orcidid: 0000-0002-7015-2371 surname: Cristiani fullname: Cristiani, Emiliano – sequence: 3 givenname: Elia orcidid: 0000-0001-8391-2563 surname: Onofri fullname: Onofri, Elia |
BookMark | eNotkMtOwzAQRS0EEqXwA6wssTbYefjBDlU8KlViA2tr4kebKrGLnRbxDfw0SctqRnOPZu7cK3QeYnAI3TJ6zygVD5nRqqoILSrCaEE5kWdoxmpREDUK52NPmSKCcXmJrnLeUkoVF_UM_S7DwaWhDWs8bBz2-2Chd2GADtsW1gl6DMFiH5MzkI9cEyco_WATg22HNob8iDfxG_dgNm1wuHOQwkQaCLjtdyke3CSmmE3ctQb30bouT0vxkMD7ceS7-H2NLjx02d381zn6fHn-WLyR1fvrcvG0IqYo-EBU6Y0BBp5BUwvVKF_WvvSWN5VsGqBScK9cUwhVClYab2vJpDXKG2FBGV7O0d1p7-jsa-_yoLdxn8J4UpesYpSLQqqRKk7U5Dsn5_Uutf34t2ZUT6HrU-h6DF0fQ9ey_ANO_Xrw |
Cites_doi | 10.1016/j.arcontrol.2017.03.005 10.1098/rspa.1955.0089 10.1002/9781118032954 10.1016/j.scs.2021.102858 10.1007/978-3-319-78695-7 10.1002/atr.172 10.1049/iet-its.2016.0208 10.1109/TITS.2013.2278192 10.1109/tits.2022.3157439 10.3934/nhm.2014.9.519 10.1109/tkde.2020.3025580 10.1016/j.physa.2022.127079 10.1287/opre.4.1.42 10.1016/j.trb.2017.01.011 10.1016/0191-2615(94)90002-7 10.1016/j.trb.2021.02.007 10.1680/ipeds.1952.11259 10.1137/s0036139997332099 10.1016/j.eswa.2021.116140 10.1109/MT-ITS56129.2023.10241626 10.1016/j.eswa.2022.116585 10.1016/j.trc.2019.07.003 10.1137/090746677 10.1109/TITS.2021.3106259 10.1007/s13177-021-00260-7 10.1007/978-3-642-32460-4 10.1137/140977977 10.1016/j.future.2022.03.034 10.1103/revmodphys.73.1067 10.1007/978-3-319-75961-6 10.1609/aaai.v35i1.16132 10.1109/TITS.2015.2436897 10.1016/j.physrep.2005.08.005 10.1142/S0219891610002025 10.1016/j.physa.2021.126485 10.1002/mma.10053 10.1016/s0191-2615(00)00050-3 10.1007/s10958-012-0715-5 10.1061/(ASCE)TE.1943-5436.0000781 10.1016/j.trc.2021.103240 10.1109/ojits.2022.3182925 10.3390/axioms10010017 10.3390/axioms10020102 10.1109/tits.2021.3083957 10.1016/j.apm.2017.08.029 10.3141/2553-16 10.1109/cdc45484.2021.9683295 10.1007/978-3-0348-8629-1 10.1007/s13676-014-0045-5 10.1109/access.2021.3071174 10.1109/tkde.2020.3001195 10.1137/S0036139901393184 10.3934/nhm.2015.10.857 10.1177/0361198120935875 10.1007/s13369-018-3390-0 10.3934/dcdss.2014.7.379 10.1016/j.physa.2021.126293 10.1016/j.trc.2021.103444 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2024 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2024 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10444-024-10206-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_024_10206_8 |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX ABRTQ |
ID | FETCH-LOGICAL-c226t-93fcca1af1ab579b9f35f3fd6b48bba0876f9eb2793713cfd5818dc9fc7da9c63 |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 09:54:05 EDT 2025 Tue Jul 01 02:55:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c226t-93fcca1af1ab579b9f35f3fd6b48bba0876f9eb2793713cfd5818dc9fc7da9c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8391-2563 0000-0003-3900-0991 0000-0002-7015-2371 |
PQID | 3141067289 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_3141067289 crossref_primary_10_1007_s10444_024_10206_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationYear | 2024 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | S Wang (10206_CR41) 2022; 34 Y Gu (10206_CR45) 2019; 106 G Carlier (10206_CR4) 2012; 181 G Zheng (10206_CR39) 2022; 195 W Chen (10206_CR32) 2015; 16 10206_CR15 10206_CR59 10206_CR14 CF Daganzo (10206_CR18) 1994; 28 10206_CR58 A Aw (10206_CR16) 2000; 60 EL Manibardo (10206_CR43) 2021; 23 D Helbing (10206_CR22) 2001; 73 Y Wang (10206_CR49) 2014; 15 G Bretti (10206_CR27) 2014; 7 S Fan (10206_CR29) 2015; 75 10206_CR51 AJ Huang (10206_CR52) 2022; 3 10206_CR50 10206_CR53 Z Zhang (10206_CR38) 2020; 2674 W Fang (10206_CR42) 2022; 587 10206_CR57 JG Wardrop (10206_CR3) 1952; 1 N Bellomo (10206_CR23) 2011; 53 10206_CR56 Y-L Hsueh (10206_CR46) 2021; 19 MJ Lighthill (10206_CR12) 1955; 229 A Messner (10206_CR19) 1990; 31 K Wang (10206_CR48) 2021; 583 10206_CR60 ML Delle Monache (10206_CR63) 2021; 10 W Xiangxue (10206_CR2) 2019; 44 10206_CR28 H Yan (10206_CR37) 2022; 133 RM Colombo (10206_CR61) 2002; 63 Y Yuan (10206_CR55) 2021; 146 HM Zhang (10206_CR17) 2002; 36 R Shi (10206_CR11) 2022; 23 S Modi (10206_CR36) 2022; 189 RM Colombo (10206_CR62) 2010; 7 D Ni (10206_CR9) 2018; 53 S Maerivoet (10206_CR25) 2005; 419 M Briani (10206_CR26) 2014; 9 ZS Qian (10206_CR31) 2017; 99 K Lee (10206_CR40) 2021; 9 10206_CR1 Y Wang (10206_CR20) 2022; 134 F van Wageningen-Kessels (10206_CR30) 2016; 2553 T Seo (10206_CR24) 2017; 43 Z Mo (10206_CR54) 2021; 130 10206_CR34 Z Zhao (10206_CR47) 2017; 11 F van Wageningen-Kessels (10206_CR21) 2015; 4 M Briani (10206_CR8) 2021; 10 PI Richards (10206_CR13) 1956; 4 W Du (10206_CR35) 2021; 69 E Cristiani (10206_CR5) 2015; 10 10206_CR7 10206_CR6 H Wang (10206_CR10) 2013; 47 AH Chow (10206_CR33) 2015; 141 10206_CR44 |
References_xml | – volume: 43 start-page: 128 year: 2017 ident: 10206_CR24 publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2017.03.005 – volume: 229 start-page: 317 year: 1955 ident: 10206_CR12 publication-title: Proc. R. Soc. Lond. Ser. A doi: 10.1098/rspa.1955.0089 – ident: 10206_CR15 doi: 10.1002/9781118032954 – volume: 69 start-page: 102858 year: 2021 ident: 10206_CR35 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2021.102858 – ident: 10206_CR6 doi: 10.1007/978-3-319-78695-7 – volume: 47 start-page: 126 year: 2013 ident: 10206_CR10 publication-title: J. Adv. Transp. doi: 10.1002/atr.172 – volume: 11 start-page: 68 issue: 2 year: 2017 ident: 10206_CR47 publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2016.0208 – volume: 15 start-page: 214 issue: 1 year: 2014 ident: 10206_CR49 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2278192 – ident: 10206_CR1 doi: 10.1109/tits.2022.3157439 – volume: 9 start-page: 519 year: 2014 ident: 10206_CR26 publication-title: Netw. Heterog. Media doi: 10.3934/nhm.2014.9.519 – volume: 34 start-page: 3681 issue: 8 year: 2022 ident: 10206_CR41 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/tkde.2020.3025580 – ident: 10206_CR34 doi: 10.1016/j.physa.2022.127079 – volume: 4 start-page: 42 issue: 1 year: 1956 ident: 10206_CR13 publication-title: Oper. Res. doi: 10.1287/opre.4.1.42 – volume: 99 start-page: 183 year: 2017 ident: 10206_CR31 publication-title: Transp. Res. B Methodol. doi: 10.1016/j.trb.2017.01.011 – volume: 28 start-page: 269 issue: 4 year: 1994 ident: 10206_CR18 publication-title: Transp. Res. B Methodol. doi: 10.1016/0191-2615(94)90002-7 – volume: 146 start-page: 88 year: 2021 ident: 10206_CR55 publication-title: Transp. Res. B Methodol. doi: 10.1016/j.trb.2021.02.007 – volume: 1 start-page: 325 issue: 3 year: 1952 ident: 10206_CR3 publication-title: Proc. Inst. Civ. Eng. doi: 10.1680/ipeds.1952.11259 – volume: 60 start-page: 916 issue: 3 year: 2000 ident: 10206_CR16 publication-title: SIAM J. Appl. Math. doi: 10.1137/s0036139997332099 – volume: 189 start-page: 116140 year: 2022 ident: 10206_CR36 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116140 – ident: 10206_CR57 doi: 10.1109/MT-ITS56129.2023.10241626 – volume: 195 start-page: 116585 year: 2022 ident: 10206_CR39 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116585 – volume: 106 start-page: 1 year: 2019 ident: 10206_CR45 publication-title: Transp. Res. Part C Emerg. doi: 10.1016/j.trc.2019.07.003 – volume: 53 start-page: 409 issue: 3 year: 2011 ident: 10206_CR23 publication-title: SIAM Rev. doi: 10.1137/090746677 – ident: 10206_CR58 – volume: 23 start-page: 11688 issue: 8 year: 2022 ident: 10206_CR11 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3106259 – volume: 19 start-page: 510 issue: 3 year: 2021 ident: 10206_CR46 publication-title: Int. J. Intell. Transp. Syst. Res. doi: 10.1007/s13177-021-00260-7 – ident: 10206_CR59 doi: 10.1007/978-3-642-32460-4 – volume: 75 start-page: 813 issue: 2 year: 2015 ident: 10206_CR29 publication-title: SIAM J. Appl. Math. doi: 10.1137/140977977 – volume: 133 start-page: 395 year: 2022 ident: 10206_CR37 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.03.034 – volume: 73 start-page: 1067 issue: 4 year: 2001 ident: 10206_CR22 publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.73.1067 – ident: 10206_CR7 doi: 10.1007/978-3-319-75961-6 – ident: 10206_CR51 doi: 10.1609/aaai.v35i1.16132 – volume: 16 start-page: 2970 issue: 6 year: 2015 ident: 10206_CR32 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2436897 – volume: 419 start-page: 1 issue: 1 year: 2005 ident: 10206_CR25 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2005.08.005 – volume: 7 start-page: 85 issue: 1 year: 2010 ident: 10206_CR62 publication-title: J. Hyperbolic Differ. Equ. doi: 10.1142/S0219891610002025 – volume: 587 start-page: 126485 year: 2022 ident: 10206_CR42 publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2021.126485 – ident: 10206_CR50 doi: 10.1002/mma.10053 – volume: 36 start-page: 275 issue: 3 year: 2002 ident: 10206_CR17 publication-title: Transp. Res. B Methodol. doi: 10.1016/s0191-2615(00)00050-3 – volume: 181 start-page: 792 issue: 6 year: 2012 ident: 10206_CR4 publication-title: J. Math. Sci. doi: 10.1007/s10958-012-0715-5 – volume: 141 start-page: 04015015 issue: 9 year: 2015 ident: 10206_CR33 publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)TE.1943-5436.0000781 – volume: 130 start-page: 103240 year: 2021 ident: 10206_CR54 publication-title: Transp. Res. Part C Emerg. doi: 10.1016/j.trc.2021.103240 – volume: 3 start-page: 503 year: 2022 ident: 10206_CR52 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/ojits.2022.3182925 – volume: 10 start-page: 17 year: 2021 ident: 10206_CR63 publication-title: Axioms doi: 10.3390/axioms10010017 – volume: 10 start-page: 102 issue: 2 year: 2021 ident: 10206_CR8 publication-title: Axioms doi: 10.3390/axioms10020102 – volume: 31 start-page: 466 issue: 8–9 year: 1990 ident: 10206_CR19 publication-title: Traffic Eng. Control. – volume: 23 start-page: 6164 issue: 7 year: 2021 ident: 10206_CR43 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/tits.2021.3083957 – volume: 53 start-page: 106 year: 2018 ident: 10206_CR9 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.08.029 – volume: 2553 start-page: 150 issue: 1 year: 2016 ident: 10206_CR30 publication-title: Transp. Res. Rec. doi: 10.3141/2553-16 – ident: 10206_CR28 – ident: 10206_CR53 doi: 10.1109/cdc45484.2021.9683295 – ident: 10206_CR60 doi: 10.1007/978-3-0348-8629-1 – volume: 4 start-page: 445 issue: 4 year: 2015 ident: 10206_CR21 publication-title: EURO J. Transp. Logist. doi: 10.1007/s13676-014-0045-5 – volume: 9 start-page: 54739 year: 2021 ident: 10206_CR40 publication-title: IEEE Access doi: 10.1109/access.2021.3071174 – ident: 10206_CR44 doi: 10.1109/tkde.2020.3001195 – ident: 10206_CR56 – volume: 63 start-page: 708 issue: 2 year: 2002 ident: 10206_CR61 publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139901393184 – volume: 10 start-page: 857 issue: 4 year: 2015 ident: 10206_CR5 publication-title: Netw Heterog Media doi: 10.3934/nhm.2015.10.857 – volume: 2674 start-page: 68 issue: 10 year: 2020 ident: 10206_CR38 publication-title: Transp. Res. Rec. doi: 10.1177/0361198120935875 – volume: 44 start-page: 3043 issue: 4 year: 2019 ident: 10206_CR2 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-018-3390-0 – volume: 7 start-page: 379 year: 2014 ident: 10206_CR27 publication-title: Discrete Contin. Dyn. Syst. Ser. - S. doi: 10.3934/dcdss.2014.7.379 – volume: 583 start-page: 126293 year: 2021 ident: 10206_CR48 publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2021.126293 – ident: 10206_CR14 – volume: 134 start-page: 103444 year: 2022 ident: 10206_CR20 publication-title: Transp. Res. C: Emerg. Technol. doi: 10.1016/j.trc.2021.103444 |
SSID | ssj0009675 |
Score | 2.3823464 |
Snippet | In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Boundary conditions Density Machine learning Machinery condition monitoring Macroscopic models Neural networks Roads & highways Sensors Traffic congestion Traffic flow Traffic models Vehicles |
Title | Inverting the fundamental diagram and forecasting boundary conditions: how machine learning can improve macroscopic models for traffic flow |
URI | https://www.proquest.com/docview/3141067289 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5c59JL36Vp07KH3swWWbtaSb05xSEUklMCuYl9aFtDbAVZaUj_Qv5CfmxnX5ISUmh6EUY2Y1vzaXZ29M03CH2W1FCRiIzoRCeE6ZwRkStB8poruPcKzV0j7dExPzxl38-ys8nkdsRauuzkF_X7wb6S__EqnAO_2i7ZR3i2Nwon4DX4F47gYTj-k4-tSEbbxYYnY5s6glY_eN3SrtyjAUhLayW27nPSTVFqry3bXHu2lq0J_GyuZmtHq6zjHIkflg9mmyjb5pcludrlVDUXK-WH52w9P7EVVoJiZs6bq3Gau_DMAse1VW5uRKw5rnuZ2KE-D1fKDZaaHYnrgTgUoo97Y7le2XJM05eEN43xLfLL85UYVy5SNmKB-GAL6SWB_ZqPv3UIwHlKysRrQsYI7aVpAxL5g4E_iY3QjDHivgvyYE6KYZmLj_bvrX49J3HQb7Y2KrBRORtV8QTtpLAJSadoZ3Gwv388iDpzJ-Tc_4_QlBVaM-_9kruJz9113yUzJy_Qs7ALwQsPqZdoUm9eoedhR4JDvN--Rjc9wjC4DY8QhgPCMCAMjxCGI8LwgLCvGPCFA75wxBcGfOGALzzCF_b4skZxwBe2-HqDTg-WJ98OSRjfQRTk9B0pqYHwMBdmLmSWl7I0NDPUaC5ZIaWwWoimrGVqFRrnVBmdQfKoVWlUrkWpOH2LpptmU79DOJsLyvRcpZRrBq6ATbbKINO2Qgh5mRS7aBavbXXhVVqqv_tzF-3Fy1-Fu3lbUUt45mC6fP8oYx_Q0wHbe2jatZf1R8hTO_kpwOUPdCqW-w |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverting+the+fundamental+diagram+and+forecasting+boundary+conditions%3A+how+machine+learning+can+improve+macroscopic+models+for+traffic+flow&rft.jtitle=Advances+in+computational+mathematics&rft.au=Briani%2C+Maya&rft.au=Cristiani%2C+Emiliano&rft.au=Onofri%2C+Elia&rft.date=2024-12-01&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=50&rft.issue=6&rft_id=info:doi/10.1007%2Fs10444-024-10206-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_024_10206_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |