Inverting the fundamental diagram and forecasting boundary conditions: how machine learning can improve macroscopic models for traffic flow

In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and veloc...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 50; no. 6
Main Authors Briani, Maya, Cristiani, Emiliano, Onofri, Elia
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle. By means of a machine learning model based on an LSTM recursive neural network, we extrapolate two important pieces of information: (1) if congestion is appearing under the sensor, and (2) the total amount of vehicles which is going to pass under the sensor in the next future (30 min). These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors. The first piece of information is used to invert the (concave) fundamental diagram, thus recovering the density of vehicles from the flux data, and then inject directly the density datum in the model. This allows one to better approximate the dynamics between sensors, especially if an accident/bottleneck happens in a not monitored stretch of the road. The second piece of information is used instead as boundary conditions for the equations underlying the traffic model, to better predict the total amount of vehicles on the road at any future time. Some examples motivated by real scenarios will be discussed. Real data are provided by the Italian motorway company Autovie Venete S.p.A.
AbstractList In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular traffic. This is done to complement respective advantages of data-driven and model-driven approaches. We consider here a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle. By means of a machine learning model based on an LSTM recursive neural network, we extrapolate two important pieces of information: (1) if congestion is appearing under the sensor, and (2) the total amount of vehicles which is going to pass under the sensor in the next future (30 min). These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors. The first piece of information is used to invert the (concave) fundamental diagram, thus recovering the density of vehicles from the flux data, and then inject directly the density datum in the model. This allows one to better approximate the dynamics between sensors, especially if an accident/bottleneck happens in a not monitored stretch of the road. The second piece of information is used instead as boundary conditions for the equations underlying the traffic model, to better predict the total amount of vehicles on the road at any future time. Some examples motivated by real scenarios will be discussed. Real data are provided by the Italian motorway company Autovie Venete S.p.A.
ArticleNumber 115
Author Onofri, Elia
Cristiani, Emiliano
Briani, Maya
Author_xml – sequence: 1
  givenname: Maya
  orcidid: 0000-0003-3900-0991
  surname: Briani
  fullname: Briani, Maya
– sequence: 2
  givenname: Emiliano
  orcidid: 0000-0002-7015-2371
  surname: Cristiani
  fullname: Cristiani, Emiliano
– sequence: 3
  givenname: Elia
  orcidid: 0000-0001-8391-2563
  surname: Onofri
  fullname: Onofri, Elia
BookMark eNotkMtOwzAQRS0EEqXwA6wssTbYefjBDlU8KlViA2tr4kebKrGLnRbxDfw0SctqRnOPZu7cK3QeYnAI3TJ6zygVD5nRqqoILSrCaEE5kWdoxmpREDUK52NPmSKCcXmJrnLeUkoVF_UM_S7DwaWhDWs8bBz2-2Chd2GADtsW1gl6DMFiH5MzkI9cEyco_WATg22HNob8iDfxG_dgNm1wuHOQwkQaCLjtdyke3CSmmE3ctQb30bouT0vxkMD7ceS7-H2NLjx02d381zn6fHn-WLyR1fvrcvG0IqYo-EBU6Y0BBp5BUwvVKF_WvvSWN5VsGqBScK9cUwhVClYab2vJpDXKG2FBGV7O0d1p7-jsa-_yoLdxn8J4UpesYpSLQqqRKk7U5Dsn5_Uutf34t2ZUT6HrU-h6DF0fQ9ey_ANO_Xrw
Cites_doi 10.1016/j.arcontrol.2017.03.005
10.1098/rspa.1955.0089
10.1002/9781118032954
10.1016/j.scs.2021.102858
10.1007/978-3-319-78695-7
10.1002/atr.172
10.1049/iet-its.2016.0208
10.1109/TITS.2013.2278192
10.1109/tits.2022.3157439
10.3934/nhm.2014.9.519
10.1109/tkde.2020.3025580
10.1016/j.physa.2022.127079
10.1287/opre.4.1.42
10.1016/j.trb.2017.01.011
10.1016/0191-2615(94)90002-7
10.1016/j.trb.2021.02.007
10.1680/ipeds.1952.11259
10.1137/s0036139997332099
10.1016/j.eswa.2021.116140
10.1109/MT-ITS56129.2023.10241626
10.1016/j.eswa.2022.116585
10.1016/j.trc.2019.07.003
10.1137/090746677
10.1109/TITS.2021.3106259
10.1007/s13177-021-00260-7
10.1007/978-3-642-32460-4
10.1137/140977977
10.1016/j.future.2022.03.034
10.1103/revmodphys.73.1067
10.1007/978-3-319-75961-6
10.1609/aaai.v35i1.16132
10.1109/TITS.2015.2436897
10.1016/j.physrep.2005.08.005
10.1142/S0219891610002025
10.1016/j.physa.2021.126485
10.1002/mma.10053
10.1016/s0191-2615(00)00050-3
10.1007/s10958-012-0715-5
10.1061/(ASCE)TE.1943-5436.0000781
10.1016/j.trc.2021.103240
10.1109/ojits.2022.3182925
10.3390/axioms10010017
10.3390/axioms10020102
10.1109/tits.2021.3083957
10.1016/j.apm.2017.08.029
10.3141/2553-16
10.1109/cdc45484.2021.9683295
10.1007/978-3-0348-8629-1
10.1007/s13676-014-0045-5
10.1109/access.2021.3071174
10.1109/tkde.2020.3001195
10.1137/S0036139901393184
10.3934/nhm.2015.10.857
10.1177/0361198120935875
10.1007/s13369-018-3390-0
10.3934/dcdss.2014.7.379
10.1016/j.physa.2021.126293
10.1016/j.trc.2021.103444
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2024
Copyright_xml – notice: Copyright Springer Nature B.V. 2024
DBID AAYXX
CITATION
DOI 10.1007/s10444-024-10206-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_024_10206_8
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
ABRTQ
ID FETCH-LOGICAL-c226t-93fcca1af1ab579b9f35f3fd6b48bba0876f9eb2793713cfd5818dc9fc7da9c63
ISSN 1019-7168
IngestDate Fri Jul 25 09:54:05 EDT 2025
Tue Jul 01 02:55:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-93fcca1af1ab579b9f35f3fd6b48bba0876f9eb2793713cfd5818dc9fc7da9c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8391-2563
0000-0003-3900-0991
0000-0002-7015-2371
PQID 3141067289
PQPubID 2043875
ParticipantIDs proquest_journals_3141067289
crossref_primary_10_1007_s10444_024_10206_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationYear 2024
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References S Wang (10206_CR41) 2022; 34
Y Gu (10206_CR45) 2019; 106
G Carlier (10206_CR4) 2012; 181
G Zheng (10206_CR39) 2022; 195
W Chen (10206_CR32) 2015; 16
10206_CR15
10206_CR59
10206_CR14
CF Daganzo (10206_CR18) 1994; 28
10206_CR58
A Aw (10206_CR16) 2000; 60
EL Manibardo (10206_CR43) 2021; 23
D Helbing (10206_CR22) 2001; 73
Y Wang (10206_CR49) 2014; 15
G Bretti (10206_CR27) 2014; 7
S Fan (10206_CR29) 2015; 75
10206_CR51
AJ Huang (10206_CR52) 2022; 3
10206_CR50
10206_CR53
Z Zhang (10206_CR38) 2020; 2674
W Fang (10206_CR42) 2022; 587
10206_CR57
JG Wardrop (10206_CR3) 1952; 1
N Bellomo (10206_CR23) 2011; 53
10206_CR56
Y-L Hsueh (10206_CR46) 2021; 19
MJ Lighthill (10206_CR12) 1955; 229
A Messner (10206_CR19) 1990; 31
K Wang (10206_CR48) 2021; 583
10206_CR60
ML Delle Monache (10206_CR63) 2021; 10
W Xiangxue (10206_CR2) 2019; 44
10206_CR28
H Yan (10206_CR37) 2022; 133
RM Colombo (10206_CR61) 2002; 63
Y Yuan (10206_CR55) 2021; 146
HM Zhang (10206_CR17) 2002; 36
R Shi (10206_CR11) 2022; 23
S Modi (10206_CR36) 2022; 189
RM Colombo (10206_CR62) 2010; 7
D Ni (10206_CR9) 2018; 53
S Maerivoet (10206_CR25) 2005; 419
M Briani (10206_CR26) 2014; 9
ZS Qian (10206_CR31) 2017; 99
K Lee (10206_CR40) 2021; 9
10206_CR1
Y Wang (10206_CR20) 2022; 134
F van Wageningen-Kessels (10206_CR30) 2016; 2553
T Seo (10206_CR24) 2017; 43
Z Mo (10206_CR54) 2021; 130
10206_CR34
Z Zhao (10206_CR47) 2017; 11
F van Wageningen-Kessels (10206_CR21) 2015; 4
M Briani (10206_CR8) 2021; 10
PI Richards (10206_CR13) 1956; 4
W Du (10206_CR35) 2021; 69
E Cristiani (10206_CR5) 2015; 10
10206_CR7
10206_CR6
H Wang (10206_CR10) 2013; 47
AH Chow (10206_CR33) 2015; 141
10206_CR44
References_xml – volume: 43
  start-page: 128
  year: 2017
  ident: 10206_CR24
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2017.03.005
– volume: 229
  start-page: 317
  year: 1955
  ident: 10206_CR12
  publication-title: Proc. R. Soc. Lond. Ser. A
  doi: 10.1098/rspa.1955.0089
– ident: 10206_CR15
  doi: 10.1002/9781118032954
– volume: 69
  start-page: 102858
  year: 2021
  ident: 10206_CR35
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.102858
– ident: 10206_CR6
  doi: 10.1007/978-3-319-78695-7
– volume: 47
  start-page: 126
  year: 2013
  ident: 10206_CR10
  publication-title: J. Adv. Transp.
  doi: 10.1002/atr.172
– volume: 11
  start-page: 68
  issue: 2
  year: 2017
  ident: 10206_CR47
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2016.0208
– volume: 15
  start-page: 214
  issue: 1
  year: 2014
  ident: 10206_CR49
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2278192
– ident: 10206_CR1
  doi: 10.1109/tits.2022.3157439
– volume: 9
  start-page: 519
  year: 2014
  ident: 10206_CR26
  publication-title: Netw. Heterog. Media
  doi: 10.3934/nhm.2014.9.519
– volume: 34
  start-page: 3681
  issue: 8
  year: 2022
  ident: 10206_CR41
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/tkde.2020.3025580
– ident: 10206_CR34
  doi: 10.1016/j.physa.2022.127079
– volume: 4
  start-page: 42
  issue: 1
  year: 1956
  ident: 10206_CR13
  publication-title: Oper. Res.
  doi: 10.1287/opre.4.1.42
– volume: 99
  start-page: 183
  year: 2017
  ident: 10206_CR31
  publication-title: Transp. Res. B Methodol.
  doi: 10.1016/j.trb.2017.01.011
– volume: 28
  start-page: 269
  issue: 4
  year: 1994
  ident: 10206_CR18
  publication-title: Transp. Res. B Methodol.
  doi: 10.1016/0191-2615(94)90002-7
– volume: 146
  start-page: 88
  year: 2021
  ident: 10206_CR55
  publication-title: Transp. Res. B Methodol.
  doi: 10.1016/j.trb.2021.02.007
– volume: 1
  start-page: 325
  issue: 3
  year: 1952
  ident: 10206_CR3
  publication-title: Proc. Inst. Civ. Eng.
  doi: 10.1680/ipeds.1952.11259
– volume: 60
  start-page: 916
  issue: 3
  year: 2000
  ident: 10206_CR16
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/s0036139997332099
– volume: 189
  start-page: 116140
  year: 2022
  ident: 10206_CR36
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116140
– ident: 10206_CR57
  doi: 10.1109/MT-ITS56129.2023.10241626
– volume: 195
  start-page: 116585
  year: 2022
  ident: 10206_CR39
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116585
– volume: 106
  start-page: 1
  year: 2019
  ident: 10206_CR45
  publication-title: Transp. Res. Part C Emerg.
  doi: 10.1016/j.trc.2019.07.003
– volume: 53
  start-page: 409
  issue: 3
  year: 2011
  ident: 10206_CR23
  publication-title: SIAM Rev.
  doi: 10.1137/090746677
– ident: 10206_CR58
– volume: 23
  start-page: 11688
  issue: 8
  year: 2022
  ident: 10206_CR11
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3106259
– volume: 19
  start-page: 510
  issue: 3
  year: 2021
  ident: 10206_CR46
  publication-title: Int. J. Intell. Transp. Syst. Res.
  doi: 10.1007/s13177-021-00260-7
– ident: 10206_CR59
  doi: 10.1007/978-3-642-32460-4
– volume: 75
  start-page: 813
  issue: 2
  year: 2015
  ident: 10206_CR29
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/140977977
– volume: 133
  start-page: 395
  year: 2022
  ident: 10206_CR37
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2022.03.034
– volume: 73
  start-page: 1067
  issue: 4
  year: 2001
  ident: 10206_CR22
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/revmodphys.73.1067
– ident: 10206_CR7
  doi: 10.1007/978-3-319-75961-6
– ident: 10206_CR51
  doi: 10.1609/aaai.v35i1.16132
– volume: 16
  start-page: 2970
  issue: 6
  year: 2015
  ident: 10206_CR32
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2436897
– volume: 419
  start-page: 1
  issue: 1
  year: 2005
  ident: 10206_CR25
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2005.08.005
– volume: 7
  start-page: 85
  issue: 1
  year: 2010
  ident: 10206_CR62
  publication-title: J. Hyperbolic Differ. Equ.
  doi: 10.1142/S0219891610002025
– volume: 587
  start-page: 126485
  year: 2022
  ident: 10206_CR42
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2021.126485
– ident: 10206_CR50
  doi: 10.1002/mma.10053
– volume: 36
  start-page: 275
  issue: 3
  year: 2002
  ident: 10206_CR17
  publication-title: Transp. Res. B Methodol.
  doi: 10.1016/s0191-2615(00)00050-3
– volume: 181
  start-page: 792
  issue: 6
  year: 2012
  ident: 10206_CR4
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-012-0715-5
– volume: 141
  start-page: 04015015
  issue: 9
  year: 2015
  ident: 10206_CR33
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000781
– volume: 130
  start-page: 103240
  year: 2021
  ident: 10206_CR54
  publication-title: Transp. Res. Part C Emerg.
  doi: 10.1016/j.trc.2021.103240
– volume: 3
  start-page: 503
  year: 2022
  ident: 10206_CR52
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/ojits.2022.3182925
– volume: 10
  start-page: 17
  year: 2021
  ident: 10206_CR63
  publication-title: Axioms
  doi: 10.3390/axioms10010017
– volume: 10
  start-page: 102
  issue: 2
  year: 2021
  ident: 10206_CR8
  publication-title: Axioms
  doi: 10.3390/axioms10020102
– volume: 31
  start-page: 466
  issue: 8–9
  year: 1990
  ident: 10206_CR19
  publication-title: Traffic Eng. Control.
– volume: 23
  start-page: 6164
  issue: 7
  year: 2021
  ident: 10206_CR43
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/tits.2021.3083957
– volume: 53
  start-page: 106
  year: 2018
  ident: 10206_CR9
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.08.029
– volume: 2553
  start-page: 150
  issue: 1
  year: 2016
  ident: 10206_CR30
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2553-16
– ident: 10206_CR28
– ident: 10206_CR53
  doi: 10.1109/cdc45484.2021.9683295
– ident: 10206_CR60
  doi: 10.1007/978-3-0348-8629-1
– volume: 4
  start-page: 445
  issue: 4
  year: 2015
  ident: 10206_CR21
  publication-title: EURO J. Transp. Logist.
  doi: 10.1007/s13676-014-0045-5
– volume: 9
  start-page: 54739
  year: 2021
  ident: 10206_CR40
  publication-title: IEEE Access
  doi: 10.1109/access.2021.3071174
– ident: 10206_CR44
  doi: 10.1109/tkde.2020.3001195
– ident: 10206_CR56
– volume: 63
  start-page: 708
  issue: 2
  year: 2002
  ident: 10206_CR61
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139901393184
– volume: 10
  start-page: 857
  issue: 4
  year: 2015
  ident: 10206_CR5
  publication-title: Netw Heterog Media
  doi: 10.3934/nhm.2015.10.857
– volume: 2674
  start-page: 68
  issue: 10
  year: 2020
  ident: 10206_CR38
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198120935875
– volume: 44
  start-page: 3043
  issue: 4
  year: 2019
  ident: 10206_CR2
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-018-3390-0
– volume: 7
  start-page: 379
  year: 2014
  ident: 10206_CR27
  publication-title: Discrete Contin. Dyn. Syst. Ser. - S.
  doi: 10.3934/dcdss.2014.7.379
– volume: 583
  start-page: 126293
  year: 2021
  ident: 10206_CR48
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2021.126293
– ident: 10206_CR14
– volume: 134
  start-page: 103444
  year: 2022
  ident: 10206_CR20
  publication-title: Transp. Res. C: Emerg. Technol.
  doi: 10.1016/j.trc.2021.103444
SSID ssj0009675
Score 2.3823464
Snippet In this paper, we develop new methods to join machine learning techniques and macroscopic differential models, aimed at estimate and forecast vehicular...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Boundary conditions
Density
Machine learning
Machinery condition monitoring
Macroscopic models
Neural networks
Roads & highways
Sensors
Traffic congestion
Traffic flow
Traffic models
Vehicles
Title Inverting the fundamental diagram and forecasting boundary conditions: how machine learning can improve macroscopic models for traffic flow
URI https://www.proquest.com/docview/3141067289
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5c59JL36Vp07KH3swWWbtaSb05xSEUklMCuYl9aFtDbAVZaUj_Qv5CfmxnX5ISUmh6EUY2Y1vzaXZ29M03CH2W1FCRiIzoRCeE6ZwRkStB8poruPcKzV0j7dExPzxl38-ys8nkdsRauuzkF_X7wb6S__EqnAO_2i7ZR3i2Nwon4DX4F47gYTj-k4-tSEbbxYYnY5s6glY_eN3SrtyjAUhLayW27nPSTVFqry3bXHu2lq0J_GyuZmtHq6zjHIkflg9mmyjb5pcludrlVDUXK-WH52w9P7EVVoJiZs6bq3Gau_DMAse1VW5uRKw5rnuZ2KE-D1fKDZaaHYnrgTgUoo97Y7le2XJM05eEN43xLfLL85UYVy5SNmKB-GAL6SWB_ZqPv3UIwHlKysRrQsYI7aVpAxL5g4E_iY3QjDHivgvyYE6KYZmLj_bvrX49J3HQb7Y2KrBRORtV8QTtpLAJSadoZ3Gwv388iDpzJ-Tc_4_QlBVaM-_9kruJz9113yUzJy_Qs7ALwQsPqZdoUm9eoedhR4JDvN--Rjc9wjC4DY8QhgPCMCAMjxCGI8LwgLCvGPCFA75wxBcGfOGALzzCF_b4skZxwBe2-HqDTg-WJ98OSRjfQRTk9B0pqYHwMBdmLmSWl7I0NDPUaC5ZIaWwWoimrGVqFRrnVBmdQfKoVWlUrkWpOH2LpptmU79DOJsLyvRcpZRrBq6ATbbKINO2Qgh5mRS7aBavbXXhVVqqv_tzF-3Fy1-Fu3lbUUt45mC6fP8oYx_Q0wHbe2jatZf1R8hTO_kpwOUPdCqW-w
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverting+the+fundamental+diagram+and+forecasting+boundary+conditions%3A+how+machine+learning+can+improve+macroscopic+models+for+traffic+flow&rft.jtitle=Advances+in+computational+mathematics&rft.au=Briani%2C+Maya&rft.au=Cristiani%2C+Emiliano&rft.au=Onofri%2C+Elia&rft.date=2024-12-01&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=50&rft.issue=6&rft_id=info:doi/10.1007%2Fs10444-024-10206-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_024_10206_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon