Efficient computation of the sinc matrix function for the integration of second-order differential equations

This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in space of partial differential equations. Since these differential equations exhibit (pronounced or highly) oscillatory behavior, standard numeri...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 50; no. 6
Main Authors Aceto, Lidia, Durastante, Fabio
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in space of partial differential equations. Since these differential equations exhibit (pronounced or highly) oscillatory behavior, standard numerical methods are known to perform poorly. Our approach consists in directly discretizing the problem by means of Gautschi-type integrators based on sinc matrix functions. The novelty contained here is that of using a suitable rational approximation formula for the sinc matrix function to apply a rational Krylov-like approximation method with suitable choices of poles. In particular, we discuss the application of the whole strategy to a finite element discretization of the wave equation.
AbstractList This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in space of partial differential equations. Since these differential equations exhibit (pronounced or highly) oscillatory behavior, standard numerical methods are known to perform poorly. Our approach consists in directly discretizing the problem by means of Gautschi-type integrators based on sinc matrix functions. The novelty contained here is that of using a suitable rational approximation formula for the sinc matrix function to apply a rational Krylov-like approximation method with suitable choices of poles. In particular, we discuss the application of the whole strategy to a finite element discretization of the wave equation.
ArticleNumber 109
Author Durastante, Fabio
Aceto, Lidia
Author_xml – sequence: 1
  givenname: Lidia
  orcidid: 0000-0002-4537-2444
  surname: Aceto
  fullname: Aceto, Lidia
– sequence: 2
  givenname: Fabio
  orcidid: 0000-0002-1412-8289
  surname: Durastante
  fullname: Durastante, Fabio
BookMark eNo9kE1LAzEQhoNUsK3-AU8Bz9FJNptsjlLqBxS86Dmk2URT2qRNsmD_vWsrnmaY9-EdeGZoElN0CN1SuKcA8qFQ4JwTYJxQYMDI8QJNaSsZUWMwGXegikgquis0K2UDAErIdoq2S--DDS5WbNNuP1RTQ4o4eVy_HC4hWrwzNYdv7IdoT5lP-RSGWN1n_ueLsyn2JOXeZdwH710eW4PZYncYTlS5RpfebIu7-Ztz9PG0fF-8kNXb8-vicUUsY6ISRW3btVxI1XK5Nn3XS2mlY1JxMEp6Np6UE0y1ay-EMVZC57gUfO2Z8oY2c3R37t3ndBhcqXqThhzHl7qhXMmWNsBGip0pm1Mp2Xm9z2Fn8lFT0L9W9dmqHq3qk1V9bH4AcWVuSg
Cites_doi 10.1145/1206040.1206044
10.1137/23M1559439
10.1137/100788860
10.1002/gamm.201310002
10.1007/BF01386037
10.1016/j.jcp.2006.01.014
10.1016/S0377-0427(00)00654-3
10.1137/22M1503300
10.1137/S0036142995280572
10.1017/S0962492910000048
10.1137/040617868
10.1007/s002110050456
10.1137/17M1116672
10.1137/060659831
10.1016/j.apnum.2008.03.035
10.2307/2006116
10.1007/978-94-017-7761-2 10.1007/978-94-017-7761-2
10.1007/978-3-030-55874-1_33
10.2307/2039747
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2024
Copyright_xml – notice: Copyright Springer Nature B.V. 2024
DBID AAYXX
CITATION
DOI 10.1007/s10444-024-10202-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_024_10202_y
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
ABRTQ
ID FETCH-LOGICAL-c226t-91c5854679547bad8d77c7e27940a97f2ad89e6295bf66aac708e4764bf29fa13
ISSN 1019-7168
IngestDate Fri Jul 25 11:13:37 EDT 2025
Tue Jul 01 02:55:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-91c5854679547bad8d77c7e27940a97f2ad89e6295bf66aac708e4764bf29fa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1412-8289
0000-0002-4537-2444
PQID 3149751302
PQPubID 2043875
ParticipantIDs proquest_journals_3149751302
crossref_primary_10_1007_s10444_024_10202_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationYear 2024
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References AH Al-Mohy (10202_CR22) 2011; 33
10202_CR6
10202_CR3
10202_CR2
10202_CR23
10202_CR24
H Tal-Ezer (10202_CR5) 2007; 29
MA Botchev (10202_CR8) 2006; 216
D Kahaner (10202_CR21) 1989
10202_CR18
10202_CR19
H Berland (10202_CR25) 2007; 33
K Bergermann (10202_CR10) 2024; 45
M Hochbruck (10202_CR7) 1999; 83
M Crouzeix (10202_CR13) 2017; 38
10202_CR16
10202_CR14
10202_CR15
10202_CR11
M Hochbruck (10202_CR4) 1997; 34
B Skaflestad (10202_CR17) 2009; 59
GA Baker (10202_CR1) 1977; 31
S Güttel (10202_CR12) 2013; 36
LN Trefethen (10202_CR20) 2008; 50
10202_CR9
References_xml – volume: 33
  start-page: 4
  issue: 1
  year: 2007
  ident: 10202_CR25
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1206040.1206044
– volume: 45
  start-page: 744
  issue: 1
  year: 2024
  ident: 10202_CR10
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/23M1559439
– volume: 33
  start-page: 488
  issue: 2
  year: 2011
  ident: 10202_CR22
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/100788860
– volume: 36
  start-page: 8
  issue: 1
  year: 2013
  ident: 10202_CR12
  publication-title: GAMM-Mitt.
  doi: 10.1002/gamm.201310002
– ident: 10202_CR6
  doi: 10.1007/BF01386037
– volume: 216
  start-page: 654
  issue: 2
  year: 2006
  ident: 10202_CR8
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.01.014
– ident: 10202_CR18
– ident: 10202_CR19
  doi: 10.1016/S0377-0427(00)00654-3
– ident: 10202_CR3
  doi: 10.1137/22M1503300
– volume: 34
  start-page: 1911
  issue: 5
  year: 1997
  ident: 10202_CR4
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142995280572
– ident: 10202_CR23
– ident: 10202_CR16
– ident: 10202_CR2
  doi: 10.1017/S0962492910000048
– volume: 29
  start-page: 2426
  issue: 6
  year: 2007
  ident: 10202_CR5
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040617868
– volume-title: Numer. Methods. Softw.
  year: 1989
  ident: 10202_CR21
– volume: 83
  start-page: 403
  issue: 3
  year: 1999
  ident: 10202_CR7
  publication-title: Numer. Math.
  doi: 10.1007/s002110050456
– volume: 38
  start-page: 649
  issue: 2
  year: 2017
  ident: 10202_CR13
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/17M1116672
– volume: 50
  start-page: 67
  issue: 1
  year: 2008
  ident: 10202_CR20
  publication-title: SIAM Rev.
  doi: 10.1137/060659831
– volume: 59
  start-page: 783
  issue: 3–4
  year: 2009
  ident: 10202_CR17
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.03.035
– volume: 31
  start-page: 818
  issue: 140
  year: 1977
  ident: 10202_CR1
  publication-title: Math. Comp.
  doi: 10.2307/2006116
– ident: 10202_CR24
  doi: 10.1007/978-94-017-7761-2 10.1007/978-94-017-7761-2
– ident: 10202_CR9
– ident: 10202_CR15
– ident: 10202_CR11
  doi: 10.1007/978-3-030-55874-1_33
– ident: 10202_CR14
  doi: 10.2307/2039747
SSID ssj0009675
Score 2.37034
Snippet This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Approximation
Discretization
Mathematical analysis
Numerical methods
Partial differential equations
Wave equations
Title Efficient computation of the sinc matrix function for the integration of second-order differential equations
URI https://www.proquest.com/docview/3149751302
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXLj0AVTQ0soHbiujxJnEm-PSskKV4AQSt8h2HAkJlsJmJeDXM35uFoFUeolW3sjZzXyehz3zDSEHqlSgs0IzJVtgULQFq-VYswpKiQuMayVt7fDpWXVyAX8uy8FBu6su6dWhfnq1ruR_pIpjKFdbJfsOyaZJcQA_o3zxihLG6z_J-NjxP9jTfO2aMyT3z3qT86uZHt1YBv6HkbVeK0mFkSUi3D-3YXHLHA9n6pnS2810c7cY7OlFulqfOOBSaQdPtoUoiQU2-eoTbVyrJgz_26tkBH4v7qV1TH13vqlUPh8sbkBwGCRzeJ2JXiLDsMurURP0qOCszjy1Y1S0nmE2AKp6VX9nsZ4ZAJh7FrqznD0urVU8oX9hxFJq4ZKG2c7R4ByNm6N5_EA2OMYSqAw3JtOjo7MlN3Pl-JjT_wi1VaHC8sUvWfVfVs2380nOP5OPIZigE4-ML2TNzLbIpxBY0KC259vkOgGFDsRFbzuK0qIWKNQDhUagUASK-3IAFHv_ECh0CBSagLJDLqbH579OWGizwTT63j2aO40xIxrMugSBS3bcCqGF4aipM1mLjuNQbSpel6qrKim1yMYGRAWq43Un8-IrWZ_dzswuodDKrAMhcy0laMhVl3Ohcp2XWgKX4z0yii-v-evZVJq3BbZH9uP7bcKqmzcFhvSitMft39412XeyuQTvPlnv7xfmB_qTvfoZ8PAMRR94eA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+computation+of+the+sinc+matrix+function+for+the+integration+of+second-order+differential+equations&rft.jtitle=Advances+in+computational+mathematics&rft.au=Aceto%2C+Lidia&rft.au=Durastante%2C+Fabio&rft.date=2024-12-01&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=50&rft.issue=6&rft_id=info:doi/10.1007%2Fs10444-024-10202-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_024_10202_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon