Efficient computation of the sinc matrix function for the integration of second-order differential equations
This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in space of partial differential equations. Since these differential equations exhibit (pronounced or highly) oscillatory behavior, standard numeri...
Saved in:
Published in | Advances in computational mathematics Vol. 50; no. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in space of partial differential equations. Since these differential equations exhibit (pronounced or highly) oscillatory behavior, standard numerical methods are known to perform poorly. Our approach consists in directly discretizing the problem by means of Gautschi-type integrators based on sinc matrix functions. The novelty contained here is that of using a suitable rational approximation formula for the sinc matrix function to apply a rational Krylov-like approximation method with suitable choices of poles. In particular, we discuss the application of the whole strategy to a finite element discretization of the wave equation. |
---|---|
AbstractList | This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in space of partial differential equations. Since these differential equations exhibit (pronounced or highly) oscillatory behavior, standard numerical methods are known to perform poorly. Our approach consists in directly discretizing the problem by means of Gautschi-type integrators based on sinc matrix functions. The novelty contained here is that of using a suitable rational approximation formula for the sinc matrix function to apply a rational Krylov-like approximation method with suitable choices of poles. In particular, we discuss the application of the whole strategy to a finite element discretization of the wave equation. |
ArticleNumber | 109 |
Author | Durastante, Fabio Aceto, Lidia |
Author_xml | – sequence: 1 givenname: Lidia orcidid: 0000-0002-4537-2444 surname: Aceto fullname: Aceto, Lidia – sequence: 2 givenname: Fabio orcidid: 0000-0002-1412-8289 surname: Durastante fullname: Durastante, Fabio |
BookMark | eNo9kE1LAzEQhoNUsK3-AU8Bz9FJNptsjlLqBxS86Dmk2URT2qRNsmD_vWsrnmaY9-EdeGZoElN0CN1SuKcA8qFQ4JwTYJxQYMDI8QJNaSsZUWMwGXegikgquis0K2UDAErIdoq2S--DDS5WbNNuP1RTQ4o4eVy_HC4hWrwzNYdv7IdoT5lP-RSGWN1n_ueLsyn2JOXeZdwH710eW4PZYncYTlS5RpfebIu7-Ztz9PG0fF-8kNXb8-vicUUsY6ISRW3btVxI1XK5Nn3XS2mlY1JxMEp6Np6UE0y1ay-EMVZC57gUfO2Z8oY2c3R37t3ndBhcqXqThhzHl7qhXMmWNsBGip0pm1Mp2Xm9z2Fn8lFT0L9W9dmqHq3qk1V9bH4AcWVuSg |
Cites_doi | 10.1145/1206040.1206044 10.1137/23M1559439 10.1137/100788860 10.1002/gamm.201310002 10.1007/BF01386037 10.1016/j.jcp.2006.01.014 10.1016/S0377-0427(00)00654-3 10.1137/22M1503300 10.1137/S0036142995280572 10.1017/S0962492910000048 10.1137/040617868 10.1007/s002110050456 10.1137/17M1116672 10.1137/060659831 10.1016/j.apnum.2008.03.035 10.2307/2006116 10.1007/978-94-017-7761-2 10.1007/978-94-017-7761-2 10.1007/978-3-030-55874-1_33 10.2307/2039747 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2024 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2024 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10444-024-10202-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_024_10202_y |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX ABRTQ |
ID | FETCH-LOGICAL-c226t-91c5854679547bad8d77c7e27940a97f2ad89e6295bf66aac708e4764bf29fa13 |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 11:13:37 EDT 2025 Tue Jul 01 02:55:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c226t-91c5854679547bad8d77c7e27940a97f2ad89e6295bf66aac708e4764bf29fa13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1412-8289 0000-0002-4537-2444 |
PQID | 3149751302 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_3149751302 crossref_primary_10_1007_s10444_024_10202_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationYear | 2024 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | AH Al-Mohy (10202_CR22) 2011; 33 10202_CR6 10202_CR3 10202_CR2 10202_CR23 10202_CR24 H Tal-Ezer (10202_CR5) 2007; 29 MA Botchev (10202_CR8) 2006; 216 D Kahaner (10202_CR21) 1989 10202_CR18 10202_CR19 H Berland (10202_CR25) 2007; 33 K Bergermann (10202_CR10) 2024; 45 M Hochbruck (10202_CR7) 1999; 83 M Crouzeix (10202_CR13) 2017; 38 10202_CR16 10202_CR14 10202_CR15 10202_CR11 M Hochbruck (10202_CR4) 1997; 34 B Skaflestad (10202_CR17) 2009; 59 GA Baker (10202_CR1) 1977; 31 S Güttel (10202_CR12) 2013; 36 LN Trefethen (10202_CR20) 2008; 50 10202_CR9 |
References_xml | – volume: 33 start-page: 4 issue: 1 year: 2007 ident: 10202_CR25 publication-title: ACM Trans. Math. Softw. doi: 10.1145/1206040.1206044 – volume: 45 start-page: 744 issue: 1 year: 2024 ident: 10202_CR10 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/23M1559439 – volume: 33 start-page: 488 issue: 2 year: 2011 ident: 10202_CR22 publication-title: SIAM J. Sci. Comput. doi: 10.1137/100788860 – volume: 36 start-page: 8 issue: 1 year: 2013 ident: 10202_CR12 publication-title: GAMM-Mitt. doi: 10.1002/gamm.201310002 – ident: 10202_CR6 doi: 10.1007/BF01386037 – volume: 216 start-page: 654 issue: 2 year: 2006 ident: 10202_CR8 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.01.014 – ident: 10202_CR18 – ident: 10202_CR19 doi: 10.1016/S0377-0427(00)00654-3 – ident: 10202_CR3 doi: 10.1137/22M1503300 – volume: 34 start-page: 1911 issue: 5 year: 1997 ident: 10202_CR4 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142995280572 – ident: 10202_CR23 – ident: 10202_CR16 – ident: 10202_CR2 doi: 10.1017/S0962492910000048 – volume: 29 start-page: 2426 issue: 6 year: 2007 ident: 10202_CR5 publication-title: SIAM J. Sci. Comput. doi: 10.1137/040617868 – volume-title: Numer. Methods. Softw. year: 1989 ident: 10202_CR21 – volume: 83 start-page: 403 issue: 3 year: 1999 ident: 10202_CR7 publication-title: Numer. Math. doi: 10.1007/s002110050456 – volume: 38 start-page: 649 issue: 2 year: 2017 ident: 10202_CR13 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/17M1116672 – volume: 50 start-page: 67 issue: 1 year: 2008 ident: 10202_CR20 publication-title: SIAM Rev. doi: 10.1137/060659831 – volume: 59 start-page: 783 issue: 3–4 year: 2009 ident: 10202_CR17 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2008.03.035 – volume: 31 start-page: 818 issue: 140 year: 1977 ident: 10202_CR1 publication-title: Math. Comp. doi: 10.2307/2006116 – ident: 10202_CR24 doi: 10.1007/978-94-017-7761-2 10.1007/978-94-017-7761-2 – ident: 10202_CR9 – ident: 10202_CR15 – ident: 10202_CR11 doi: 10.1007/978-3-030-55874-1_33 – ident: 10202_CR14 doi: 10.2307/2039747 |
SSID | ssj0009675 |
Score | 2.37034 |
Snippet | This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Approximation Discretization Mathematical analysis Numerical methods Partial differential equations Wave equations |
Title | Efficient computation of the sinc matrix function for the integration of second-order differential equations |
URI | https://www.proquest.com/docview/3149751302 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXLj0AVTQ0soHbiujxJnEm-PSskKV4AQSt8h2HAkJlsJmJeDXM35uFoFUeolW3sjZzXyehz3zDSEHqlSgs0IzJVtgULQFq-VYswpKiQuMayVt7fDpWXVyAX8uy8FBu6su6dWhfnq1ruR_pIpjKFdbJfsOyaZJcQA_o3zxihLG6z_J-NjxP9jTfO2aMyT3z3qT86uZHt1YBv6HkbVeK0mFkSUi3D-3YXHLHA9n6pnS2810c7cY7OlFulqfOOBSaQdPtoUoiQU2-eoTbVyrJgz_26tkBH4v7qV1TH13vqlUPh8sbkBwGCRzeJ2JXiLDsMurURP0qOCszjy1Y1S0nmE2AKp6VX9nsZ4ZAJh7FrqznD0urVU8oX9hxFJq4ZKG2c7R4ByNm6N5_EA2OMYSqAw3JtOjo7MlN3Pl-JjT_wi1VaHC8sUvWfVfVs2380nOP5OPIZigE4-ML2TNzLbIpxBY0KC259vkOgGFDsRFbzuK0qIWKNQDhUagUASK-3IAFHv_ECh0CBSagLJDLqbH579OWGizwTT63j2aO40xIxrMugSBS3bcCqGF4aipM1mLjuNQbSpel6qrKim1yMYGRAWq43Un8-IrWZ_dzswuodDKrAMhcy0laMhVl3Ohcp2XWgKX4z0yii-v-evZVJq3BbZH9uP7bcKqmzcFhvSitMft39412XeyuQTvPlnv7xfmB_qTvfoZ8PAMRR94eA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+computation+of+the+sinc+matrix+function+for+the+integration+of+second-order+differential+equations&rft.jtitle=Advances+in+computational+mathematics&rft.au=Aceto%2C+Lidia&rft.au=Durastante%2C+Fabio&rft.date=2024-12-01&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=50&rft.issue=6&rft_id=info:doi/10.1007%2Fs10444-024-10202-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_024_10202_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |