Appraisal of improved salt selectivity in polyvinylidene difluoride membranes for water desalination: Methods, mechanism, and prospects
The advancement of robust technology in water desalination presents several approaches and challenges. Polymer membrane separation has been acknowledged as a promising technique for effectively addressing water desalination. Polyvinylidene difluoride (PVDF), as one of the polymer membranes, has seen...
Saved in:
Published in | Monatshefte für Chemie Vol. 156; no. 3; pp. 233 - 246 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The advancement of robust technology in water desalination presents several approaches and challenges. Polymer membrane separation has been acknowledged as a promising technique for effectively addressing water desalination. Polyvinylidene difluoride (PVDF), as one of the polymer membranes, has seen increasingly rapid advances in the field of separation process due to its preferable properties, such as reusability properties, mechanical strength, hydrophilicity/hydrophobicity properties, thermal properties, antifouling properties, and chemical resistance. Several enhancement approaches have been employed to modify its surface to gain better properties, such as free radical polymerization, photo-induced polymerization, and plasma-induced polymerization. The modification of the PVDF membrane can impact its structure, pore size, pore size distribution, and porosity. As a consequence, the mass transfer of a certain amount of salt and salt ions is interfered with the membrane surface. This review aims to evaluate the advancement of techniques related to the salt selectivity enhancement in the case of the PVDF membranes used for desalination of water, explain the reasons for these advances, and suggest the perspectives for this direction of research. As such, this review gives an elaborate assessment of the processes incorporated in the alteration of PVDF membranes such that enhanced separation and rejection of salts is done while allowing for the free flow of the solvent water. It also examines the molecular as well as structural factors that influence the factors with understanding how the performance of membranes could be influenced by those modifications. In contrast to the existing literature on the subject, this review focuses on how membrane structure properties relate with membrane modification which has not been sufficiently addressed in research. In addition, this review examines the potential of PVDF membranes in desalination applications in view of the recent developments in the membranes that would enable the membranes to be used in industrial processes. In doing so, this review also seeks to address the current challenges related to the theory and practice of desalination technologies and considers the new avenues of their development in light of the most promising current research findings. |
---|---|
AbstractList | The advancement of robust technology in water desalination presents several approaches and challenges. Polymer membrane separation has been acknowledged as a promising technique for effectively addressing water desalination. Polyvinylidene difluoride (PVDF), as one of the polymer membranes, has seen increasingly rapid advances in the field of separation process due to its preferable properties, such as reusability properties, mechanical strength, hydrophilicity/hydrophobicity properties, thermal properties, antifouling properties, and chemical resistance. Several enhancement approaches have been employed to modify its surface to gain better properties, such as free radical polymerization, photo-induced polymerization, and plasma-induced polymerization. The modification of the PVDF membrane can impact its structure, pore size, pore size distribution, and porosity. As a consequence, the mass transfer of a certain amount of salt and salt ions is interfered with the membrane surface. This review aims to evaluate the advancement of techniques related to the salt selectivity enhancement in the case of the PVDF membranes used for desalination of water, explain the reasons for these advances, and suggest the perspectives for this direction of research. As such, this review gives an elaborate assessment of the processes incorporated in the alteration of PVDF membranes such that enhanced separation and rejection of salts is done while allowing for the free flow of the solvent water. It also examines the molecular as well as structural factors that influence the factors with understanding how the performance of membranes could be influenced by those modifications. In contrast to the existing literature on the subject, this review focuses on how membrane structure properties relate with membrane modification which has not been sufficiently addressed in research. In addition, this review examines the potential of PVDF membranes in desalination applications in view of the recent developments in the membranes that would enable the membranes to be used in industrial processes. In doing so, this review also seeks to address the current challenges related to the theory and practice of desalination technologies and considers the new avenues of their development in light of the most promising current research findings. |
Author | Tangahu, Bieby Voijant Soedjono, Eddy Setiadi Yuniarto, Adhi Zainiyah, Isti Faizati Sharma, Sunny Ratnasari, Anisa Hadibarata, Tony Thakur, Samrendra Singh |
Author_xml | – sequence: 1 givenname: Anisa orcidid: 0000-0002-7582-3576 surname: Ratnasari fullname: Ratnasari, Anisa – sequence: 2 givenname: Eddy Setiadi surname: Soedjono fullname: Soedjono, Eddy Setiadi – sequence: 3 givenname: Bieby Voijant surname: Tangahu fullname: Tangahu, Bieby Voijant – sequence: 4 givenname: Adhi surname: Yuniarto fullname: Yuniarto, Adhi – sequence: 5 givenname: Isti Faizati surname: Zainiyah fullname: Zainiyah, Isti Faizati – sequence: 6 givenname: Tony surname: Hadibarata fullname: Hadibarata, Tony – sequence: 7 givenname: Sunny surname: Sharma fullname: Sharma, Sunny – sequence: 8 givenname: Samrendra Singh surname: Thakur fullname: Thakur, Samrendra Singh |
BookMark | eNotkM1OwzAQhC1UJNrCC3CyxLUG_8VJuFUVf1IRFzhbTuyorhI72G5RnoDXxlAuuxppdmb1LcDMeWcAuCb4lmBc3sU8sECYFggzWhM0nYE54YwjzstiBuYYU4FqyssLsIhxj7PmmM3B93ocg7JR9dB30A5j8EejYdYJRtObNtmjTRO0Do6-n47WTb3VxhmobdcffMgCDmZognImws4H-KWSCVCbnGGdSta7e_hq0s7ruMrWdqecjcMKKqdhrotjLomX4LxTfTRX_3sJPh4f3jfPaPv29LJZb1FLqUiooi0VLatNwzGpSVMJTjUhmoqSNILWHWu54IWuKNWCEdxgwUVdkYqooi2VYktwc8rNzZ8HE5Pc-0NwuVIyUuaTilc0u-jJ1eb_YjCdHIMdVJgkwfIXuDwBlxm4_AMuJ_YDYr13gQ |
Cites_doi | 10.1021/cr800208y 10.1016/j.memsci.2018.03.041 10.1016/j.memsci.2014.03.037 10.1002/app.46843 10.1002/app.41362 10.3389/fchem.2020.00417 10.1002/anie.201901596 10.1016/j.memsci.2021.119180 10.1016/j.memsci.2016.04.010 10.1039/C9PY00472F 10.3390/membranes9090111 10.1016/j.jwpe.2021.101923 10.3390/membranes11020153 10.1016/j.desal.2021.115128 10.1016/j.matlet.2015.04.145 10.1002/tox.23719 10.1016/j.jiec.2019.01.045 10.1016/j.cej.2020.125289 10.1039/D1TA03195C 10.1016/j.scitotenv.2020.142721 10.1016/j.memsci.2021.120094 10.1016/j.mtbio.2021.100186 10.1002/app.42080 10.1007/s11069-021-05040-w 10.1016/j.seppur.2023.124981 10.1016/j.seppur.2020.117231 10.3390/polym14224793 10.1021/ma0479060 10.1016/j.mattod.2021.06.013 10.1016/j.cis.2021.102491 10.1016/j.colsurfa.2017.01.088 10.1016/j.progpolymsci.2006.11.002 10.1016/j.memsci.2020.118987 10.1016/j.seppur.2022.120490 10.1016/j.matpr.2021.02.804 10.1007/s10118-021-2616-x 10.1016/j.desal.2018.04.021 10.1016/j.seppur.2020.116536 10.1016/j.seppur.2020.116589 10.1016/j.progpolymsci.2020.101231 10.1016/j.memsci.2018.11.056 10.1007/s00289-022-04454-1 10.1038/s41598-023-27515-5 10.1016/j.memsci.2023.122123 10.1016/j.chemosphere.2022.136998 10.1016/j.desal.2014.01.006 10.1016/j.coche.2022.100894 10.1021/acs.est.1c05649 10.1016/j.jcis.2022.09.148 10.1016/j.memsci.2019.117736 10.33263/BRIAC106.72847294 10.1016/j.cherd.2019.12.016 10.1016/j.cscee.2023.100588 10.1016/j.desal.2017.12.012 10.1016/j.memsci.2023.122044 10.1016/j.apsusc.2018.11.114 10.1016/j.jece.2022.107633 10.1007/s11696-024-03569-1 10.1016/j.gce.2021.02.002 10.1039/D0TA08169H 10.1021/acsomega.8b01063 10.1038/s41467-021-25026-3 10.1016/j.combustflame.2020.06.011 10.1016/j.memsci.2012.06.033 10.1016/j.memsci.2020.117955 10.3390/membranes10060121 10.3390/surfaces2020026 10.1016/j.jclepro.2021.126404 10.1016/j.polymertesting.2020.106381 10.1080/21655979.2023.2252234 10.1201/9781315184357 10.1007/s11356-020-11265-2 10.1016/j.seppur.2024.127913 10.1016/j.jece.2019.103295 10.1186/s12889-021-11800-x 10.1016/j.scitotenv.2017.09.056 10.1016/j.memsci.2019.03.086 10.1016/j.eng.2020.08.017 10.1177/09540083221104391 10.1016/j.techfore.2021.120727 10.1039/D2CC06595A 10.1002/tqem.22332 10.1038/s41467-020-15771-2 10.1007/978-3-030-64183-2 10.1016/j.memsci.2020.118790 10.1016/j.jwpe.2021.102393 10.1016/j.jclepro.2019.04.226 10.1080/21622515.2023.2167125 10.1016/j.memsci.2021.119126 10.1016/j.cis.2021.102524 10.3390/cells12050690 10.1016/j.memsci.2023.122129 10.1016/j.seppur.2023.125027 10.1016/j.colsurfa.2017.08.039 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00706-025-03291-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1434-4475 |
EndPage | 246 |
ExternalDocumentID | 10_1007_s00706_025_03291_y |
GroupedDBID | -Y2 -~X .86 .VR 06C 06D 0R~ 0VY 123 1N0 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJKR AANZL AAPKM AARHV AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABDBE ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFEXP AFLOW AFOHR AFQWF AFWTZ AFZKB AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WIP WJK WK8 Y6R YLTOR YQT Z45 ZMTXR ZY4 ~EX ABRTQ |
ID | FETCH-LOGICAL-c226t-82c26c39eb40191b8642d11d2671b629f3c4645d822d6310b064698181a5c7aa3 |
ISSN | 0026-9247 |
IngestDate | Fri Jul 25 11:10:58 EDT 2025 Sun Jul 06 05:07:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c226t-82c26c39eb40191b8642d11d2671b629f3c4645d822d6310b064698181a5c7aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7582-3576 |
PQID | 3176318482 |
PQPubID | 2043522 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3176318482 crossref_primary_10_1007_s00706_025_03291_y |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Monatshefte für Chemie |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | Z Pan (3291_CR52) 2019; 572 T Yun (3291_CR85) 2020; 604 A Ratnasari (3291_CR58) 2024; 78 Y Liang (3291_CR40) 2020; 11 Y Fei (3291_CR17) 2019; 10 MR Adam (3291_CR2) 2022; 10 T Palanisamy (3291_CR51) 2021; 40 Y-C Lin (3291_CR41) 2021; 624 P Patel (3291_CR54) 2021; 47 S Kim (3291_CR35) 2020; 597 X Chen (3291_CR9) 2019; 227 DR Fadlilah (3291_CR16) 2020; 10 R Zheng (3291_CR94) 2018; 555 G Zapsas (3291_CR86) 2020; 104 C He (3291_CR23) 2021; 12 A Ratnasari (3291_CR56) 2023; 14 R-Y Yue (3291_CR84) 2020; 241 C Zhang (3291_CR88) 2013 I Kolesnyk (3291_CR36) 2020; 250 M Khodakarami (3291_CR32) 2021; 296 Q Zhou (3291_CR97) 2014; 337 H Xu (3291_CR79) 2020; 8 J-L Wang (3291_CR72) 2024; 328 S Afridi (3291_CR3) 2023; 80 L Teng (3291_CR69) 2023; 630 R Li (3291_CR38) 2021; 619 D Vanham (3291_CR71) 2018; 613–614 P Zhang (3291_CR92) 2022; 34 K Zuo (3291_CR98) 2021; 50 I Abd-Elaty (3291_CR1) 2022; 110 A Anand (3291_CR4) 2018; 429 R Dallaev (3291_CR12) 2022; 14 J Kucera (3291_CR37) 2019; 9 NI Mat Nawi (3291_CR45) 2020; 10 S Liang (3291_CR39) 2014; 463 D Daniel (3291_CR13) 2021; 21 K Tu (3291_CR70) 2015; 132 X-H Ma (3291_CR43) 2015; 156 S El Meragawi (3291_CR15) 2023; 39 A Ratnasari (3291_CR59) 2024; 34 K Saxena (3291_CR60) 2023; 12 B Zhong (3291_CR95) 2023; 38 S Huang (3291_CR28) 2020; 219 M Iqbal (3291_CR29) 2019; 2 S Mansoori (3291_CR44) 2020; 84 J Zhang (3291_CR89) 2021; 9 S Wang (3291_CR74) 2020; 396 X-M Wu (3291_CR76) 2012; 421–422 S Park (3291_CR53) 2018; 3 I Sriyanti (3291_CR65) 2024; 9 MF Ismail (3291_CR30) 2022; 299 J Meng (3291_CR47) 2021; 512 Y Yang (3291_CR83) 2023; 687 A Bardhan (3291_CR5) 2022 H-H Gong (3291_CR20) 2021; 39 A Matin (3291_CR46) 2021; 765 KJ Moses (3291_CR49) 2018; 135 S Mushtaq (3291_CR50) 2023; 13 SMJ Seyed Sabour (3291_CR61) 2024; 349 H Sun (3291_CR66) 2015; 132 H Sun (3291_CR67) 2019; 582 FS de Moreira (3291_CR48) 2021; 167 M Shammi (3291_CR62) 2021 Y Chen (3291_CR10) 2021; 629 A Ratnasari (3291_CR57) 2020; 10 F Beygmohammdi (3291_CR7) 2020; 154 J Wei (3291_CR75) 2021; 11 W Zhai (3291_CR87) 2020; 239 Y Chen (3291_CR11) 2022; 286 H Zhou (3291_CR96) 2022; 644 V Sinha (3291_CR64) 2019; 7 W Xie (3291_CR78) 2023; 311 J Xu (3291_CR80) 2016; 512 S Kim (3291_CR34) 2019; 470 Y Kakihana (3291_CR31) 2017; 533 L Xie (3291_CR77) 2021; 295 S Hu (3291_CR26) 2005; 38 Z-X Low (3291_CR42) 2021; 2 P Yadav (3291_CR82) 2021; 622 M Bassyouni (3291_CR6) 2019; 73 B-X Gu (3291_CR22) 2023; 688 L Wang (3291_CR73) 2021; 55 S Gray (3291_CR21) 2018 L Zhang (3291_CR91) 2023; 688 Q Zhang (3291_CR93) 2019; 58 K Takeuchi (3291_CR68) 2018; 443 HM El-Husseiny (3291_CR14) 2022; 13 C Förster (3291_CR19) 2023; 59 WA Braunecker (3291_CR8) 2007; 32 ADF da Ferreira (3291_CR18) 2021; 28 D Rana (3291_CR55) 2010; 110 PP Sharma (3291_CR63) 2017; 520 A Yadav (3291_CR81) 2021; 44 J Zhang (3291_CR90) 2021; 7 C-C Hu (3291_CR25) 2023; 327 K Huang (3291_CR27) 2020; 8 CS Heluany (3291_CR24) 2023; 12 KC Khulbe (3291_CR33) 2021 |
References_xml | – volume: 110 start-page: 2448 year: 2010 ident: 3291_CR55 publication-title: Chem Rev doi: 10.1021/cr800208y – volume-title: Encyclopedia of Tribology year: 2013 ident: 3291_CR88 – volume: 555 start-page: 197 year: 2018 ident: 3291_CR94 publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.03.041 – volume: 463 start-page: 94 year: 2014 ident: 3291_CR39 publication-title: J Membr Sci doi: 10.1016/j.memsci.2014.03.037 – volume: 135 start-page: 46843 year: 2018 ident: 3291_CR49 publication-title: J Appl Polym Sci doi: 10.1002/app.46843 – volume: 132 start-page: 41362 year: 2015 ident: 3291_CR70 publication-title: J Appl Polym Sci doi: 10.1002/app.41362 – volume: 8 start-page: 417 year: 2020 ident: 3291_CR79 publication-title: Front Chem doi: 10.3389/fchem.2020.00417 – volume: 58 start-page: 6012 year: 2019 ident: 3291_CR93 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201901596 – volume: 629 year: 2021 ident: 3291_CR10 publication-title: J Membr Sci doi: 10.1016/j.memsci.2021.119180 – volume: 512 start-page: 73 year: 2016 ident: 3291_CR80 publication-title: J Membr Sci doi: 10.1016/j.memsci.2016.04.010 – volume: 10 start-page: 3895 year: 2019 ident: 3291_CR17 publication-title: Polym Chem doi: 10.1039/C9PY00472F – volume: 9 start-page: 111 year: 2019 ident: 3291_CR37 publication-title: Membranes doi: 10.3390/membranes9090111 – volume: 40 year: 2021 ident: 3291_CR51 publication-title: J Water Process Eng doi: 10.1016/j.jwpe.2021.101923 – volume: 11 start-page: 153 year: 2021 ident: 3291_CR75 publication-title: Membranes doi: 10.3390/membranes11020153 – volume: 512 year: 2021 ident: 3291_CR47 publication-title: Desalination doi: 10.1016/j.desal.2021.115128 – volume: 156 start-page: 58 year: 2015 ident: 3291_CR43 publication-title: Mater Lett doi: 10.1016/j.matlet.2015.04.145 – volume: 38 start-page: 381 year: 2023 ident: 3291_CR95 publication-title: Environ Toxic doi: 10.1002/tox.23719 – volume: 73 start-page: 19 year: 2019 ident: 3291_CR6 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2019.01.045 – volume: 10 start-page: 5592 year: 2020 ident: 3291_CR16 publication-title: Biointerface Res Appl Chem – volume: 396 year: 2020 ident: 3291_CR74 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.125289 – volume: 9 start-page: 15310 year: 2021 ident: 3291_CR89 publication-title: J Mater Chem A doi: 10.1039/D1TA03195C – volume: 765 year: 2021 ident: 3291_CR46 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.142721 – volume: 644 year: 2022 ident: 3291_CR96 publication-title: J Membr Sci doi: 10.1016/j.memsci.2021.120094 – volume: 13 year: 2022 ident: 3291_CR14 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2021.100186 – volume: 132 start-page: 42080 year: 2015 ident: 3291_CR66 publication-title: J Appl Polym Sci doi: 10.1002/app.42080 – volume: 110 start-page: 2353 year: 2022 ident: 3291_CR1 publication-title: Nat Hazards doi: 10.1007/s11069-021-05040-w – volume: 327 year: 2023 ident: 3291_CR25 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2023.124981 – volume: 250 year: 2020 ident: 3291_CR36 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2020.117231 – volume: 14 start-page: 4793 year: 2022 ident: 3291_CR12 publication-title: Polymers doi: 10.3390/polym14224793 – volume: 38 start-page: 6592 year: 2005 ident: 3291_CR26 publication-title: Macromolecules doi: 10.1021/ma0479060 – volume: 50 start-page: 516 year: 2021 ident: 3291_CR98 publication-title: Mater Today doi: 10.1016/j.mattod.2021.06.013 – volume: 295 year: 2021 ident: 3291_CR77 publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2021.102491 – volume: 520 start-page: 239 year: 2017 ident: 3291_CR63 publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2017.01.088 – volume: 32 start-page: 93 year: 2007 ident: 3291_CR8 publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2006.11.002 – volume: 622 year: 2021 ident: 3291_CR82 publication-title: J Membr Sci doi: 10.1016/j.memsci.2020.118987 – volume: 286 year: 2022 ident: 3291_CR11 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.120490 – volume: 47 start-page: 1409 year: 2021 ident: 3291_CR54 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2021.02.804 – volume: 39 start-page: 1110 year: 2021 ident: 3291_CR20 publication-title: Chin J Polym Sci doi: 10.1007/s10118-021-2616-x – volume: 443 start-page: 165 year: 2018 ident: 3291_CR68 publication-title: Desalination doi: 10.1016/j.desal.2018.04.021 – volume: 241 year: 2020 ident: 3291_CR84 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2020.116536 – volume: 239 year: 2020 ident: 3291_CR87 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2020.116589 – volume: 104 year: 2020 ident: 3291_CR86 publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2020.101231 – volume: 572 start-page: 596 year: 2019 ident: 3291_CR52 publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.11.056 – volume: 80 start-page: 8259 year: 2023 ident: 3291_CR3 publication-title: Polym Bull doi: 10.1007/s00289-022-04454-1 – volume: 13 start-page: 4572 year: 2023 ident: 3291_CR50 publication-title: Sci Rep doi: 10.1038/s41598-023-27515-5 – volume: 688 year: 2023 ident: 3291_CR22 publication-title: J Membr Sci doi: 10.1016/j.memsci.2023.122123 – volume: 311 year: 2023 ident: 3291_CR78 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136998 – volume: 337 start-page: 6 year: 2014 ident: 3291_CR97 publication-title: Desalination doi: 10.1016/j.desal.2014.01.006 – volume: 39 year: 2023 ident: 3291_CR15 publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2022.100894 – volume: 55 start-page: 16665 year: 2021 ident: 3291_CR73 publication-title: Environ Sci Technol doi: 10.1021/acs.est.1c05649 – volume: 630 start-page: 416 year: 2023 ident: 3291_CR69 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2022.09.148 – volume: 597 year: 2020 ident: 3291_CR35 publication-title: J Membr Sci doi: 10.1016/j.memsci.2019.117736 – volume: 10 start-page: 7284 year: 2020 ident: 3291_CR57 publication-title: Biointerface Res Appl Chem doi: 10.33263/BRIAC106.72847294 – volume: 154 start-page: 232 year: 2020 ident: 3291_CR7 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2019.12.016 – volume: 9 year: 2024 ident: 3291_CR65 publication-title: Case Stud Chem Environ Eng doi: 10.1016/j.cscee.2023.100588 – volume: 429 start-page: 119 year: 2018 ident: 3291_CR4 publication-title: Desalination doi: 10.1016/j.desal.2017.12.012 – volume: 687 year: 2023 ident: 3291_CR83 publication-title: J Membr Sci doi: 10.1016/j.memsci.2023.122044 – volume: 470 start-page: 411 year: 2019 ident: 3291_CR34 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2018.11.114 – volume: 10 year: 2022 ident: 3291_CR2 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2022.107633 – volume: 78 start-page: 6771 year: 2024 ident: 3291_CR58 publication-title: Chem Pap doi: 10.1007/s11696-024-03569-1 – volume: 2 start-page: 3 year: 2021 ident: 3291_CR42 publication-title: Green Chem Eng doi: 10.1016/j.gce.2021.02.002 – volume: 8 start-page: 20593 year: 2020 ident: 3291_CR27 publication-title: J Mater Chem A doi: 10.1039/D0TA08169H – volume: 3 start-page: 11262 year: 2018 ident: 3291_CR53 publication-title: ACS Omega doi: 10.1021/acsomega.8b01063 – volume: 12 start-page: 4667 year: 2021 ident: 3291_CR23 publication-title: Nat Commun doi: 10.1038/s41467-021-25026-3 – volume: 219 start-page: 467 year: 2020 ident: 3291_CR28 publication-title: Combust Flame doi: 10.1016/j.combustflame.2020.06.011 – volume: 421–422 start-page: 60 year: 2012 ident: 3291_CR76 publication-title: J Membr Sci doi: 10.1016/j.memsci.2012.06.033 – volume: 604 year: 2020 ident: 3291_CR85 publication-title: J Membr Sci doi: 10.1016/j.memsci.2020.117955 – volume: 10 start-page: 121 year: 2020 ident: 3291_CR45 publication-title: Membranes doi: 10.3390/membranes10060121 – volume: 2 start-page: 349 year: 2019 ident: 3291_CR29 publication-title: Surfaces doi: 10.3390/surfaces2020026 – volume: 296 year: 2021 ident: 3291_CR32 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.126404 – volume: 84 year: 2020 ident: 3291_CR44 publication-title: Polym Test doi: 10.1016/j.polymertesting.2020.106381 – volume: 14 start-page: 2252234 year: 2023 ident: 3291_CR56 publication-title: Bioengineered doi: 10.1080/21655979.2023.2252234 – volume-title: Advanced materials for membrane fabrication and modification year: 2018 ident: 3291_CR21 doi: 10.1201/9781315184357 – volume: 28 start-page: 12803 year: 2021 ident: 3291_CR18 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-11265-2 – volume: 349 year: 2024 ident: 3291_CR61 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2024.127913 – volume: 7 year: 2019 ident: 3291_CR64 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2019.103295 – volume: 21 start-page: 1723 year: 2021 ident: 3291_CR13 publication-title: BMC Public Health doi: 10.1186/s12889-021-11800-x – volume-title: Advancement in polymer-based membranes for water remediation year: 2022 ident: 3291_CR5 – volume: 613–614 start-page: 218 year: 2018 ident: 3291_CR71 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.09.056 – volume: 582 start-page: 1 year: 2019 ident: 3291_CR67 publication-title: J Membr Sci doi: 10.1016/j.memsci.2019.03.086 – volume: 7 start-page: 63 year: 2021 ident: 3291_CR90 publication-title: Engineering doi: 10.1016/j.eng.2020.08.017 – volume: 34 start-page: 1131 year: 2022 ident: 3291_CR92 publication-title: High Perform Polym doi: 10.1177/09540083221104391 – volume: 167 start-page: 120727 year: 2021 ident: 3291_CR48 publication-title: Technol Forecast Soc Change doi: 10.1016/j.techfore.2021.120727 – volume: 59 start-page: 1554 year: 2023 ident: 3291_CR19 publication-title: Chem Commun doi: 10.1039/D2CC06595A – volume: 34 year: 2024 ident: 3291_CR59 publication-title: Environ Qual Manag doi: 10.1002/tqem.22332 – volume: 11 start-page: 2015 year: 2020 ident: 3291_CR40 publication-title: Nat Commun doi: 10.1038/s41467-020-15771-2 – volume-title: Nanotechnology in membrane processes year: 2021 ident: 3291_CR33 doi: 10.1007/978-3-030-64183-2 – volume: 619 year: 2021 ident: 3291_CR38 publication-title: J Membr Sci doi: 10.1016/j.memsci.2020.118790 – volume: 44 year: 2021 ident: 3291_CR81 publication-title: J Water Process Eng doi: 10.1016/j.jwpe.2021.102393 – volume: 227 start-page: 772 year: 2019 ident: 3291_CR9 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.04.226 – volume: 12 start-page: 1 year: 2023 ident: 3291_CR60 publication-title: Environ Technol Rev doi: 10.1080/21622515.2023.2167125 – volume: 624 year: 2021 ident: 3291_CR41 publication-title: J Membr Sci doi: 10.1016/j.memsci.2021.119126 – volume-title: Water pollution and remediation heavy metals year: 2021 ident: 3291_CR62 – volume: 299 year: 2022 ident: 3291_CR30 publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2021.102524 – volume: 12 start-page: 690 year: 2023 ident: 3291_CR24 publication-title: Cells doi: 10.3390/cells12050690 – volume: 688 year: 2023 ident: 3291_CR91 publication-title: J Membr Sci doi: 10.1016/j.memsci.2023.122129 – volume: 328 year: 2024 ident: 3291_CR72 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2023.125027 – volume: 533 start-page: 133 year: 2017 ident: 3291_CR31 publication-title: Colloids Surf A doi: 10.1016/j.colsurfa.2017.08.039 |
SSID | ssj0002403 |
Score | 2.3892744 |
SecondaryResourceType | review_article |
Snippet | The advancement of robust technology in water desalination presents several approaches and challenges. Polymer membrane separation has been acknowledged as a... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 233 |
SubjectTerms | Desalination Difluorides Free flow Free radical polymerization Free radicals Hydrophobicity Mass transfer Membrane structures Membranes Polymerization Polymers Polyvinylidene fluorides Pore size Pore size distribution Porosity Separation Thermodynamic properties |
Title | Appraisal of improved salt selectivity in polyvinylidene difluoride membranes for water desalination: Methods, mechanism, and prospects |
URI | https://www.proquest.com/docview/3176318482 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgHOCC-BSDgXzg1gURx3ETbqPaNKF1XFqptyh2bBGpS1GTMXX_AP8279mOk2oIAYdGTSIllt8v78P-vfcIec_11KRGiUglikdc5iaCH48yaYz6aFAumDs8vxTnS_5lla4Gnq7NLunkB3X727yS_5EqXAO5YpbsP0g2PBQuwH-QLxxBwnD8KxmDC7kt69YXfrDLA-A_wnk3aW1_G9cZAonim_XuR93s1thDVGNblPX1ZlsjfVVfQcAMCs8SDm9K1zIcnlE3gfgxt22mrcSvNKYKI13D0z7hpTZbsx27uXNck2-_adPpicG9-M-z7cTWJtDjZQaWDjyrvWVG5FDjzkZIg_EpASKCQM5ZTu00KU9A9ty1RQmq1hUR95hKxorTlcPwNpi5Zck76t0xOlqsUYTUaRwky-NoNxizfgP_8mtxtry4KBanq8V98oBBEIFacMlOgp3GSoSOAOQG71OqbGLlnTfsuy37Vtu6Iosn5LGPIeiJA8RTck83z8jDWd-67zn5GYBBN4b2wKAIDDoCBq0bug8MOgCDBmBQAAa1wKBjYHyiHhbHNIDimAIkaIDEC7I8O13MziPfcSNS4IZ3UcYUEyrJtYSwO49lBtFpFccVE9NYCpYb-KAFTyvwKisBgYEEh1bk4PPFZaqmZZm8JAfNptGvCOVKizThKq7yimcll5wLnYI1MVXOZFkdkkk_ocV3V1ilCCW07fQXMP2Fnf5id0iO-jkv_AfYFuD6wiAynrHXf779hjwaIH1EDrrttX4LvmQn31lI_ALvbXgI |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Appraisal+of+improved+salt+selectivity+in+polyvinylidene+difluoride+membranes+for+water+desalination%3A+Methods%2C+mechanism%2C+and+prospects&rft.jtitle=Monatshefte+f%C3%BCr+Chemie&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0026-9247&rft.eissn=1434-4475&rft.volume=156&rft.issue=3&rft.spage=233&rft.epage=246&rft_id=info:doi/10.1007%2Fs00706-025-03291-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-9247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-9247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-9247&client=summon |