Robust adaptive synchronization of the chaotic fractional‐order satellite system subject to uncertainties and unknown inputs

This article addresses the robust adaptive synchronization for a three‐dimensional unknown chaotic fractional‐order satellite system. It is considered that the satellite system is under unknown moments of inertia and exogenous disturbance torques. It is assumed that the upper bound of the exogenous...

Full description

Saved in:
Bibliographic Details
Published inIET control theory & applications Vol. 19; no. 1
Main Authors Yaghoubi, Zahra, Elmi, Mojgan, Adeli, Mahdieh
Format Journal Article
LanguageEnglish
Published 01.01.2025
Online AccessGet full text

Cover

Loading…
Abstract This article addresses the robust adaptive synchronization for a three‐dimensional unknown chaotic fractional‐order satellite system. It is considered that the satellite system is under unknown moments of inertia and exogenous disturbance torques. It is assumed that the upper bound of the exogenous disturbance is unknown, which makes the controller design more complex. The control is designed with the aim of synchronization of two satellites with perturbing torques considering unknown parameters. The proposed controller consists of three parts: (1) a linear term of the synchronization error, (2) the nonlinear part of the synchronization error, and (3) online estimations of the unknown parameters and disturbance, which are established by fractional‐order adaptation laws. The proposed robust adaptive control scheme uses Lyapunov theory and fractional concepts to guarantee the asymptotic stability of the closed‐loop system. The proposed controller is robust to unknown parameters and disturbance torques by taking advantage of the adaptive estimation. The computational simulations show the success of the theoretical attainments.
AbstractList This article addresses the robust adaptive synchronization for a three‐dimensional unknown chaotic fractional‐order satellite system. It is considered that the satellite system is under unknown moments of inertia and exogenous disturbance torques. It is assumed that the upper bound of the exogenous disturbance is unknown, which makes the controller design more complex. The control is designed with the aim of synchronization of two satellites with perturbing torques considering unknown parameters. The proposed controller consists of three parts: (1) a linear term of the synchronization error, (2) the nonlinear part of the synchronization error, and (3) online estimations of the unknown parameters and disturbance, which are established by fractional‐order adaptation laws. The proposed robust adaptive control scheme uses Lyapunov theory and fractional concepts to guarantee the asymptotic stability of the closed‐loop system. The proposed controller is robust to unknown parameters and disturbance torques by taking advantage of the adaptive estimation. The computational simulations show the success of the theoretical attainments.
Author Yaghoubi, Zahra
Elmi, Mojgan
Adeli, Mahdieh
Author_xml – sequence: 1
  givenname: Zahra
  orcidid: 0000-0001-7262-4611
  surname: Yaghoubi
  fullname: Yaghoubi, Zahra
  organization: Computer Engineering Imam Khomeini International University Qazvin Iran
– sequence: 2
  givenname: Mojgan
  surname: Elmi
  fullname: Elmi, Mojgan
  organization: Department of Electrical Engineering Amirkabir University of Technology Tehran Iran
– sequence: 3
  givenname: Mahdieh
  orcidid: 0000-0003-4836-0825
  surname: Adeli
  fullname: Adeli, Mahdieh
  organization: Electrical Engineering Department Kermanshah University of Technology Kermanshah Iran
BookMark eNo9kM9KxDAYxIOs4O7qxSfIWeiapE1qj7L4DxYE0XP5mn6hWbvJkqTKehAfwWf0SdyqeJphmJnDb0Ymzjsk5JSzBWdFda5TJxZclCo_IFNeSp5dKCkm_74ojsgsxjVjUqpCTsn7g2-GmCi0sE32BWncOd0F7-wbJOsd9YamDqnuwCerqQmgxxz6r49PH1oMNELCvrdp3MaEGxqHZo060eTp4DSGBNYli5GCa_fJs_Ovjlq3HVI8JocG-ognfzonT9dXj8vbbHV_c7e8XGVaCJWyvOVQoUZoVcs0CsGrEpUqWjBGlJXJS81ZVaGRJpdcFUxpkAANE43U-1Y-J2e_vzr4GAOaehvsBsKu5qweydUjufqHXP4NE2xpSQ
Cites_doi 10.1049/cth2.12495
10.3390/fractalfract8040188
10.1109/ACCESS.2023.3286015
10.1080/00207721.2022.2063965
10.1007/s12555-019-0035-3
10.1007/s13042-017-0644-1
10.1049/iet-cta.2020.0226
10.1016/S0167-2789(99)00114-1
10.1109/ACCESS.2022.3209993
10.1049/cth2.12209
10.1177/01423312211056131
10.1017/CBO9780511815652
10.1590/S0103-17592008000100002
10.1016/j.chaos.2022.112883
10.1016/j.matcom.2020.01.002
10.1080/21642583.2023.2207602
10.1016/j.ins.2018.04.069
10.1177/1077546320982453
10.1002/acs.3207
10.1016/j.heliyon.2022.e11730
10.1007/s40435-022-01049-6
10.1016/j.amc.2016.08.039
10.1016/j.camwa.2009.08.019
10.1016/j.fss.2021.11.004
10.5755/j01.itc.51.2.29411
10.1080/21642583.2022.2040059
10.1080/02286203.2022.2080415
10.1007/s11071-014-1864-5
10.1186/s13662-018-1863-9
10.1049/cth2.12360
10.1109/TNNLS.2023.3274959
10.1007/s12555-020-0782-1
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1049/cth2.12763
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8652
ExternalDocumentID 10_1049_cth2_12763
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHJG
AAJGR
AAMMB
AAYXX
ABJCF
ABQXS
ABUWG
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
AEFGJ
AEGXH
AENEX
AFAZI
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
CS3
DU5
DWQXO
EBS
EJD
F8P
GNUQQ
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IDLOA
IGS
IPLJI
ITC
K1G
K6V
K7-
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OK1
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
QWB
RNS
ROL
RUI
U5U
UNMZH
ZL0
~ZZ
ID FETCH-LOGICAL-c226t-3d1a9ecead6d0ce22197e664daff279f37c1099ef5f3516406ca5aab02b5c4da3
ISSN 1751-8644
IngestDate Sun Jul 06 05:10:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-3d1a9ecead6d0ce22197e664daff279f37c1099ef5f3516406ca5aab02b5c4da3
ORCID 0000-0003-4836-0825
0000-0001-7262-4611
OpenAccessLink https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/cth2.12763
ParticipantIDs crossref_primary_10_1049_cth2_12763
PublicationCentury 2000
PublicationDate 2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationTitle IET control theory & applications
PublicationYear 2025
References e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
Shukla V.K. (e_1_2_12_21_1) 2023
e_1_2_12_20_1
Yaghoubi Z. (e_1_2_12_8_1) 2019; 29
e_1_2_12_22_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
Djaouida S. (e_1_2_12_33_1) 2014; 8
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_36_1
Yaghoubi Z. (e_1_2_12_3_1) 2020; 48
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – ident: e_1_2_12_10_1
  doi: 10.1049/cth2.12495
– ident: e_1_2_12_12_1
  doi: 10.3390/fractalfract8040188
– ident: e_1_2_12_17_1
  doi: 10.1109/ACCESS.2023.3286015
– ident: e_1_2_12_20_1
  doi: 10.1080/00207721.2022.2063965
– volume: 8
  start-page: 734
  issue: 4
  year: 2014
  ident: e_1_2_12_33_1
  article-title: Synchronization of a perturbed satellite attitude motion
  publication-title: Int. J. Mech. Mechatronics Eng.
– ident: e_1_2_12_4_1
  doi: 10.1007/s12555-019-0035-3
– ident: e_1_2_12_30_1
  doi: 10.1007/s13042-017-0644-1
– ident: e_1_2_12_24_1
  doi: 10.1049/iet-cta.2020.0226
– ident: e_1_2_12_34_1
  doi: 10.1016/S0167-2789(99)00114-1
– ident: e_1_2_12_14_1
  doi: 10.1109/ACCESS.2022.3209993
– ident: e_1_2_12_11_1
  doi: 10.1049/cth2.12209
– ident: e_1_2_12_27_1
  doi: 10.1177/01423312211056131
– ident: e_1_2_12_32_1
  doi: 10.1017/CBO9780511815652
– ident: e_1_2_12_36_1
  doi: 10.1590/S0103-17592008000100002
– ident: e_1_2_12_26_1
  doi: 10.1016/j.chaos.2022.112883
– volume: 29
  start-page: 643
  year: 2019
  ident: e_1_2_12_8_1
  article-title: Cluster consensus of general fractional‐order nonlinear multi agent systems via adaptive sliding mode controller
  publication-title: Arch. Control Sci.
– ident: e_1_2_12_5_1
  doi: 10.1016/j.matcom.2020.01.002
– ident: e_1_2_12_9_1
  doi: 10.1080/21642583.2023.2207602
– ident: e_1_2_12_29_1
  doi: 10.1016/j.ins.2018.04.069
– ident: e_1_2_12_18_1
  doi: 10.1177/1077546320982453
– ident: e_1_2_12_22_1
  doi: 10.1002/acs.3207
– ident: e_1_2_12_25_1
  doi: 10.1016/j.heliyon.2022.e11730
– ident: e_1_2_12_19_1
  doi: 10.1007/s40435-022-01049-6
– ident: e_1_2_12_37_1
  doi: 10.1016/j.amc.2016.08.039
– ident: e_1_2_12_31_1
  doi: 10.1016/j.camwa.2009.08.019
– start-page: 1
  year: 2023
  ident: e_1_2_12_21_1
  article-title: Study of generalized synchronization and anti‐synchronization between different dimensional fractional‐order chaotic systems with uncertainties
  publication-title: Differ. Equ. Dyn. Syst.
– ident: e_1_2_12_7_1
  doi: 10.1016/j.fss.2021.11.004
– ident: e_1_2_12_16_1
  doi: 10.5755/j01.itc.51.2.29411
– ident: e_1_2_12_15_1
  doi: 10.1080/21642583.2022.2040059
– volume: 48
  start-page: 239
  year: 2020
  ident: e_1_2_12_3_1
  article-title: Hybrid neural‐network control of mobile robot system via anti‐control of chaos
  publication-title: Mech. Syst. Control.
– ident: e_1_2_12_13_1
  doi: 10.1080/02286203.2022.2080415
– ident: e_1_2_12_35_1
  doi: 10.1007/s11071-014-1864-5
– ident: e_1_2_12_28_1
  doi: 10.1186/s13662-018-1863-9
– ident: e_1_2_12_23_1
  doi: 10.1049/cth2.12360
– ident: e_1_2_12_6_1
  doi: 10.1109/TNNLS.2023.3274959
– ident: e_1_2_12_2_1
  doi: 10.1007/s12555-020-0782-1
SSID ssj0055645
Score 2.4278777
Snippet This article addresses the robust adaptive synchronization for a three‐dimensional unknown chaotic fractional‐order satellite system. It is considered that the...
SourceID crossref
SourceType Index Database
Title Robust adaptive synchronization of the chaotic fractional‐order satellite system subject to uncertainties and unknown inputs
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcYMGQJblVK48ROfByo00DqhKZOmrhUtmMvoC2p2uTADsCfwN_IX8KznaRpx2FwiSIraaN-X957tr_3FaE3ghlIugkPdCxhgmIFhKliLFBEKJXJkChpe4dnJ-z4LP54Ts8Hgx891VJdybG6_mtfyf-gCmOAq-2S_Qdkuw-FATgHfOEICMPxVhiflrJeVyORiaVTAK2_FcqZ3V53haCtK1UuSuvLala-i0FcdhIH57w5Wgvny1npxth5tK6lXZ-xhSnkPa8asM6rbquhLuxCnFVILmvvA9VWtx-m80777jokvRynv0neRRlxkZe1dFqCzyJfddlhennlBmfl14sNcw8z7fu4ZyLPvui8v1hBaG-xwsfXhIZByrzl41j3x-h2UOa75LsR62FuAwCpKifjkLRhcstQeyfRdfJDt_Ee84W9d-HuvYP2CMwzyBDtvZuefDptkzm1Zjuup7Z57tbhNuZvN9_cq2l6xcn8AbrfzCrwoafIQzTQxSN0r-c1-Rh992TBLVnwDllwaTBghhuy4A1Zfv_85WiCO5pgTxPc0ARXJd6iCQaa4IYm2NPkCTo7ms7fHwfNn2_Aa0pYFURZKLhWEGhYNlGaQGZLNGNxJowhCTdRouymqjbURBTm3BOmBBVCToikCq6KnqJhURb6GcIR1am1PVSc8thoykNlMqEgHSiRppLuo9ftz7dYeo-VxU2Int_qqhfo7oZ3L9GwWtX6AMrGSr5qoP0DheR4-w
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+adaptive+synchronization+of+the+chaotic+fractional%E2%80%90order+satellite+system+subject+to+uncertainties+and+unknown+inputs&rft.jtitle=IET+control+theory+%26+applications&rft.au=Yaghoubi%2C+Zahra&rft.au=Elmi%2C+Mojgan&rft.au=Adeli%2C+Mahdieh&rft.date=2025-01-01&rft.issn=1751-8644&rft.eissn=1751-8652&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Fcth2.12763&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cth2_12763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8644&client=summon