Robust adaptive synchronization of the chaotic fractional‐order satellite system subject to uncertainties and unknown inputs
This article addresses the robust adaptive synchronization for a three‐dimensional unknown chaotic fractional‐order satellite system. It is considered that the satellite system is under unknown moments of inertia and exogenous disturbance torques. It is assumed that the upper bound of the exogenous...
Saved in:
Published in | IET control theory & applications Vol. 19; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.01.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | This article addresses the robust adaptive synchronization for a three‐dimensional unknown chaotic fractional‐order satellite system. It is considered that the satellite system is under unknown moments of inertia and exogenous disturbance torques. It is assumed that the upper bound of the exogenous disturbance is unknown, which makes the controller design more complex. The control is designed with the aim of synchronization of two satellites with perturbing torques considering unknown parameters. The proposed controller consists of three parts: (1) a linear term of the synchronization error, (2) the nonlinear part of the synchronization error, and (3) online estimations of the unknown parameters and disturbance, which are established by fractional‐order adaptation laws. The proposed robust adaptive control scheme uses Lyapunov theory and fractional concepts to guarantee the asymptotic stability of the closed‐loop system. The proposed controller is robust to unknown parameters and disturbance torques by taking advantage of the adaptive estimation. The computational simulations show the success of the theoretical attainments. |
---|---|
AbstractList | This article addresses the robust adaptive synchronization for a three‐dimensional unknown chaotic fractional‐order satellite system. It is considered that the satellite system is under unknown moments of inertia and exogenous disturbance torques. It is assumed that the upper bound of the exogenous disturbance is unknown, which makes the controller design more complex. The control is designed with the aim of synchronization of two satellites with perturbing torques considering unknown parameters. The proposed controller consists of three parts: (1) a linear term of the synchronization error, (2) the nonlinear part of the synchronization error, and (3) online estimations of the unknown parameters and disturbance, which are established by fractional‐order adaptation laws. The proposed robust adaptive control scheme uses Lyapunov theory and fractional concepts to guarantee the asymptotic stability of the closed‐loop system. The proposed controller is robust to unknown parameters and disturbance torques by taking advantage of the adaptive estimation. The computational simulations show the success of the theoretical attainments. |
Author | Yaghoubi, Zahra Elmi, Mojgan Adeli, Mahdieh |
Author_xml | – sequence: 1 givenname: Zahra orcidid: 0000-0001-7262-4611 surname: Yaghoubi fullname: Yaghoubi, Zahra organization: Computer Engineering Imam Khomeini International University Qazvin Iran – sequence: 2 givenname: Mojgan surname: Elmi fullname: Elmi, Mojgan organization: Department of Electrical Engineering Amirkabir University of Technology Tehran Iran – sequence: 3 givenname: Mahdieh orcidid: 0000-0003-4836-0825 surname: Adeli fullname: Adeli, Mahdieh organization: Electrical Engineering Department Kermanshah University of Technology Kermanshah Iran |
BookMark | eNo9kM9KxDAYxIOs4O7qxSfIWeiapE1qj7L4DxYE0XP5mn6hWbvJkqTKehAfwWf0SdyqeJphmJnDb0Ymzjsk5JSzBWdFda5TJxZclCo_IFNeSp5dKCkm_74ojsgsxjVjUqpCTsn7g2-GmCi0sE32BWncOd0F7-wbJOsd9YamDqnuwCerqQmgxxz6r49PH1oMNELCvrdp3MaEGxqHZo060eTp4DSGBNYli5GCa_fJs_Ovjlq3HVI8JocG-ognfzonT9dXj8vbbHV_c7e8XGVaCJWyvOVQoUZoVcs0CsGrEpUqWjBGlJXJS81ZVaGRJpdcFUxpkAANE43U-1Y-J2e_vzr4GAOaehvsBsKu5qweydUjufqHXP4NE2xpSQ |
Cites_doi | 10.1049/cth2.12495 10.3390/fractalfract8040188 10.1109/ACCESS.2023.3286015 10.1080/00207721.2022.2063965 10.1007/s12555-019-0035-3 10.1007/s13042-017-0644-1 10.1049/iet-cta.2020.0226 10.1016/S0167-2789(99)00114-1 10.1109/ACCESS.2022.3209993 10.1049/cth2.12209 10.1177/01423312211056131 10.1017/CBO9780511815652 10.1590/S0103-17592008000100002 10.1016/j.chaos.2022.112883 10.1016/j.matcom.2020.01.002 10.1080/21642583.2023.2207602 10.1016/j.ins.2018.04.069 10.1177/1077546320982453 10.1002/acs.3207 10.1016/j.heliyon.2022.e11730 10.1007/s40435-022-01049-6 10.1016/j.amc.2016.08.039 10.1016/j.camwa.2009.08.019 10.1016/j.fss.2021.11.004 10.5755/j01.itc.51.2.29411 10.1080/21642583.2022.2040059 10.1080/02286203.2022.2080415 10.1007/s11071-014-1864-5 10.1186/s13662-018-1863-9 10.1049/cth2.12360 10.1109/TNNLS.2023.3274959 10.1007/s12555-020-0782-1 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1049/cth2.12763 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-8652 |
ExternalDocumentID | 10_1049_cth2_12763 |
GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 4IJ 5GY 6IK 8FE 8FG 8VB 96U AAHJG AAJGR AAMMB AAYXX ABJCF ABQXS ABUWG ACCMX ACESK ACGFS ACIWK ACXQS ADEYR AEFGJ AEGXH AENEX AFAZI AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU AZQEC BENPR BGLVJ BPHCQ CCPQU CITATION CS3 DU5 DWQXO EBS EJD F8P GNUQQ GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IDLOA IGS IPLJI ITC K1G K6V K7- L6V LAI M43 M7S MCNEO MS~ O9- OK1 P62 PHGZM PHGZT PQQKQ PROAC PTHSS QWB RNS ROL RUI U5U UNMZH ZL0 ~ZZ |
ID | FETCH-LOGICAL-c226t-3d1a9ecead6d0ce22197e664daff279f37c1099ef5f3516406ca5aab02b5c4da3 |
ISSN | 1751-8644 |
IngestDate | Sun Jul 06 05:10:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c226t-3d1a9ecead6d0ce22197e664daff279f37c1099ef5f3516406ca5aab02b5c4da3 |
ORCID | 0000-0003-4836-0825 0000-0001-7262-4611 |
OpenAccessLink | https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/cth2.12763 |
ParticipantIDs | crossref_primary_10_1049_cth2_12763 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
PublicationDecade | 2020 |
PublicationTitle | IET control theory & applications |
PublicationYear | 2025 |
References | e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 Shukla V.K. (e_1_2_12_21_1) 2023 e_1_2_12_20_1 Yaghoubi Z. (e_1_2_12_8_1) 2019; 29 e_1_2_12_22_1 e_1_2_12_23_1 e_1_2_12_24_1 e_1_2_12_25_1 e_1_2_12_26_1 Djaouida S. (e_1_2_12_33_1) 2014; 8 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 Yaghoubi Z. (e_1_2_12_3_1) 2020; 48 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
References_xml | – ident: e_1_2_12_10_1 doi: 10.1049/cth2.12495 – ident: e_1_2_12_12_1 doi: 10.3390/fractalfract8040188 – ident: e_1_2_12_17_1 doi: 10.1109/ACCESS.2023.3286015 – ident: e_1_2_12_20_1 doi: 10.1080/00207721.2022.2063965 – volume: 8 start-page: 734 issue: 4 year: 2014 ident: e_1_2_12_33_1 article-title: Synchronization of a perturbed satellite attitude motion publication-title: Int. J. Mech. Mechatronics Eng. – ident: e_1_2_12_4_1 doi: 10.1007/s12555-019-0035-3 – ident: e_1_2_12_30_1 doi: 10.1007/s13042-017-0644-1 – ident: e_1_2_12_24_1 doi: 10.1049/iet-cta.2020.0226 – ident: e_1_2_12_34_1 doi: 10.1016/S0167-2789(99)00114-1 – ident: e_1_2_12_14_1 doi: 10.1109/ACCESS.2022.3209993 – ident: e_1_2_12_11_1 doi: 10.1049/cth2.12209 – ident: e_1_2_12_27_1 doi: 10.1177/01423312211056131 – ident: e_1_2_12_32_1 doi: 10.1017/CBO9780511815652 – ident: e_1_2_12_36_1 doi: 10.1590/S0103-17592008000100002 – ident: e_1_2_12_26_1 doi: 10.1016/j.chaos.2022.112883 – volume: 29 start-page: 643 year: 2019 ident: e_1_2_12_8_1 article-title: Cluster consensus of general fractional‐order nonlinear multi agent systems via adaptive sliding mode controller publication-title: Arch. Control Sci. – ident: e_1_2_12_5_1 doi: 10.1016/j.matcom.2020.01.002 – ident: e_1_2_12_9_1 doi: 10.1080/21642583.2023.2207602 – ident: e_1_2_12_29_1 doi: 10.1016/j.ins.2018.04.069 – ident: e_1_2_12_18_1 doi: 10.1177/1077546320982453 – ident: e_1_2_12_22_1 doi: 10.1002/acs.3207 – ident: e_1_2_12_25_1 doi: 10.1016/j.heliyon.2022.e11730 – ident: e_1_2_12_19_1 doi: 10.1007/s40435-022-01049-6 – ident: e_1_2_12_37_1 doi: 10.1016/j.amc.2016.08.039 – ident: e_1_2_12_31_1 doi: 10.1016/j.camwa.2009.08.019 – start-page: 1 year: 2023 ident: e_1_2_12_21_1 article-title: Study of generalized synchronization and anti‐synchronization between different dimensional fractional‐order chaotic systems with uncertainties publication-title: Differ. Equ. Dyn. Syst. – ident: e_1_2_12_7_1 doi: 10.1016/j.fss.2021.11.004 – ident: e_1_2_12_16_1 doi: 10.5755/j01.itc.51.2.29411 – ident: e_1_2_12_15_1 doi: 10.1080/21642583.2022.2040059 – volume: 48 start-page: 239 year: 2020 ident: e_1_2_12_3_1 article-title: Hybrid neural‐network control of mobile robot system via anti‐control of chaos publication-title: Mech. Syst. Control. – ident: e_1_2_12_13_1 doi: 10.1080/02286203.2022.2080415 – ident: e_1_2_12_35_1 doi: 10.1007/s11071-014-1864-5 – ident: e_1_2_12_28_1 doi: 10.1186/s13662-018-1863-9 – ident: e_1_2_12_23_1 doi: 10.1049/cth2.12360 – ident: e_1_2_12_6_1 doi: 10.1109/TNNLS.2023.3274959 – ident: e_1_2_12_2_1 doi: 10.1007/s12555-020-0782-1 |
SSID | ssj0055645 |
Score | 2.4278777 |
Snippet | This article addresses the robust adaptive synchronization for a three‐dimensional unknown chaotic fractional‐order satellite system. It is considered that the... |
SourceID | crossref |
SourceType | Index Database |
Title | Robust adaptive synchronization of the chaotic fractional‐order satellite system subject to uncertainties and unknown inputs |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcYMGQJblVK48ROfByo00DqhKZOmrhUtmMvoC2p2uTADsCfwN_IX8KznaRpx2FwiSIraaN-X957tr_3FaE3ghlIugkPdCxhgmIFhKliLFBEKJXJkChpe4dnJ-z4LP54Ts8Hgx891VJdybG6_mtfyf-gCmOAq-2S_Qdkuw-FATgHfOEICMPxVhiflrJeVyORiaVTAK2_FcqZ3V53haCtK1UuSuvLala-i0FcdhIH57w5Wgvny1npxth5tK6lXZ-xhSnkPa8asM6rbquhLuxCnFVILmvvA9VWtx-m80777jokvRynv0neRRlxkZe1dFqCzyJfddlhennlBmfl14sNcw8z7fu4ZyLPvui8v1hBaG-xwsfXhIZByrzl41j3x-h2UOa75LsR62FuAwCpKifjkLRhcstQeyfRdfJDt_Ee84W9d-HuvYP2CMwzyBDtvZuefDptkzm1Zjuup7Z57tbhNuZvN9_cq2l6xcn8AbrfzCrwoafIQzTQxSN0r-c1-Rh992TBLVnwDllwaTBghhuy4A1Zfv_85WiCO5pgTxPc0ARXJd6iCQaa4IYm2NPkCTo7ms7fHwfNn2_Aa0pYFURZKLhWEGhYNlGaQGZLNGNxJowhCTdRouymqjbURBTm3BOmBBVCToikCq6KnqJhURb6GcIR1am1PVSc8thoykNlMqEgHSiRppLuo9ftz7dYeo-VxU2Int_qqhfo7oZ3L9GwWtX6AMrGSr5qoP0DheR4-w |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+adaptive+synchronization+of+the+chaotic+fractional%E2%80%90order+satellite+system+subject+to+uncertainties+and+unknown+inputs&rft.jtitle=IET+control+theory+%26+applications&rft.au=Yaghoubi%2C+Zahra&rft.au=Elmi%2C+Mojgan&rft.au=Adeli%2C+Mahdieh&rft.date=2025-01-01&rft.issn=1751-8644&rft.eissn=1751-8652&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Fcth2.12763&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cth2_12763 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8644&client=summon |