Evaluation of the mechanism of aromatase cytochrome P450

Aromatase (CYP19) catalyzes three consecutive hydroxylation reactions converting C19 androgens to aromatic C18 estrogenic steroids. In this study, five human aromatase mutants (E302D, S478A, S478T, H480K, and H480Q) were prepared using a mammalian cell expression system. These mutants were evaluated...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of biochemistry Vol. 268; no. 2; pp. 243 - 251
Main Authors Kao, Yeh‐Chih, Korzekwa, Kenneth R., Laughton, Charles A., Chen, Shiuan
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science Ltd 01.01.2001
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aromatase (CYP19) catalyzes three consecutive hydroxylation reactions converting C19 androgens to aromatic C18 estrogenic steroids. In this study, five human aromatase mutants (E302D, S478A, S478T, H480K, and H480Q) were prepared using a mammalian cell expression system. These mutants were evaluated by enzyme kinetic analysis, inhibitory profile studies, and reaction intermediate measurements. Three steroidal inhibitors [4‐hydroxyandrostenedione (4‐OHA), 7α‐(4′‐amino)phenylthio‐1,4‐androstandiene‐3,17‐dione (7α‐APTADD), and bridge (2,19‐methyleneoxy) androstene‐3,17‐dione (MDL 101003)], and four nonsteroidal inhibitors [aminoglutethimide (AG), CGS 20267, ICI D1033, and vorozole (R83842)] were used in the inhibitory profile studies. Our computer model of aromatase suggests that Glu302 is situated in the conserved I‐helix region and located near the C‐19 position of the steroid substrate. The model was supported by significant changes in kinetic parameters and a sevenfold increase in the Ki value of MDL 101,003 for the mutant E302D. As S478A was found to have kinetic properties similar to the wild‐type enzyme and a much higher activity than S478T, Ser478 is thought to be situated in a rather restricted environment. There was a 10‐fold increase in the Ki value of 7α‐APTADD for S478T over that for the wild‐type enzyme, suggesting that Ser478 might be near the C‐7 position of the substrate. The reaction intermediate analysis revealed that significantly more 19‐ol intermediate was generated by both S478A and S478T than the wild‐type enzyme. These results would support a hypothesis that Ser478 plays a role in the first and second hydroxylation reactions. A positive charged amino acid is preferred at position 480 as shown by the fact that H480K has a significantly higher activity than H480Q. The Ki value of 4‐OHA for H480Q was found to be three times that of the wild‐type enzyme. In addition, significantly more 19‐ol and 19‐al intermediates were detected for both mutants H480K and H480Q than for the wild‐type enzyme. Evaluation of the two mutations at His480 allows us to propose that this residue may participate in the aromatization reaction (the third step) by acting as a hydrogen bond donor for the C‐3 keto group of the substrate. Furthermore, new products were generated when the enzyme was mutated at Ser478 and His480. Thus, these two residues must play an important role in the catalysis and are likely closer to the substrate binding site than previously predicted.
AbstractList Aromatase (CYP19) catalyzes three consecutive hydroxylation reactions converting C19 androgens to aromatic C18 estrogenic steroids. In this study, five human aromatase mutants (E302D, S478A, S478T, H480K, and H480Q) were prepared using a mammalian cell expression system. These mutants were evaluated by enzyme kinetic analysis, inhibitory profile studies, and reaction intermediate measurements. Three steroidal inhibitors [4‐hydroxyandrostenedione (4‐OHA), 7α‐(4′‐amino)phenylthio‐1,4‐androstandiene‐3,17‐dione (7α‐APTADD), and bridge (2,19‐methyleneoxy) androstene‐3,17‐dione (MDL 101003)], and four nonsteroidal inhibitors [aminoglutethimide (AG), CGS 20267, ICI D1033, and vorozole (R83842)] were used in the inhibitory profile studies. Our computer model of aromatase suggests that Glu302 is situated in the conserved I‐helix region and located near the C‐19 position of the steroid substrate. The model was supported by significant changes in kinetic parameters and a sevenfold increase in the Ki value of MDL 101,003 for the mutant E302D. As S478A was found to have kinetic properties similar to the wild‐type enzyme and a much higher activity than S478T, Ser478 is thought to be situated in a rather restricted environment. There was a 10‐fold increase in the Ki value of 7α‐APTADD for S478T over that for the wild‐type enzyme, suggesting that Ser478 might be near the C‐7 position of the substrate. The reaction intermediate analysis revealed that significantly more 19‐ol intermediate was generated by both S478A and S478T than the wild‐type enzyme. These results would support a hypothesis that Ser478 plays a role in the first and second hydroxylation reactions. A positive charged amino acid is preferred at position 480 as shown by the fact that H480K has a significantly higher activity than H480Q. The Ki value of 4‐OHA for H480Q was found to be three times that of the wild‐type enzyme. In addition, significantly more 19‐ol and 19‐al intermediates were detected for both mutants H480K and H480Q than for the wild‐type enzyme. Evaluation of the two mutations at His480 allows us to propose that this residue may participate in the aromatization reaction (the third step) by acting as a hydrogen bond donor for the C‐3 keto group of the substrate. Furthermore, new products were generated when the enzyme was mutated at Ser478 and His480. Thus, these two residues must play an important role in the catalysis and are likely closer to the substrate binding site than previously predicted.
Author Chen, Shiuan
Kao, Yeh‐Chih
Laughton, Charles A.
Korzekwa, Kenneth R.
Author_xml – sequence: 1
  givenname: Yeh‐Chih
  surname: Kao
  fullname: Kao, Yeh‐Chih
– sequence: 2
  givenname: Kenneth R.
  surname: Korzekwa
  fullname: Korzekwa, Kenneth R.
– sequence: 3
  givenname: Charles A.
  surname: Laughton
  fullname: Laughton, Charles A.
– sequence: 4
  givenname: Shiuan
  surname: Chen
  fullname: Chen, Shiuan
BookMark eNo9z9tKxDAQBuAgK9hdfYe-QOtMTk1uBF26rrCgoF6HNCa0pQdpq27f3q2KVzPz_zDwrcmq6ztPSIyQInB5XafIGU0QGEspAKaASsn0eEai_2JFolPDE6qFvCDrcawBQGqZRUTln7b5sFPVd3Ef4qn0cetdabtqbJfADn1rJzv62M1T78rT6eMnLuCSnAfbjP7qb27I6y5_2e6Tw-P9w_b2kDhKpUyC5FRLEKHIguCehhAcd2-KZd5zDZkvJNeYOeCoNBUoKHCFTFKG3mFh2Ybc_P79qho_m_ehau0wGwSz8E1tFqVZlGbhmx--OZpdfve8rOwbfA1QwQ
CitedBy_id crossref_primary_10_1016_j_jsbmb_2009_01_013
crossref_primary_10_1016_j_jsbmb_2005_09_003
crossref_primary_10_1016_j_mce_2010_09_012
crossref_primary_10_1021_bi100910y
crossref_primary_10_1080_00304940609355990
crossref_primary_10_1016_j_jsbmb_2015_07_018
crossref_primary_10_1210_en_2011_0119
crossref_primary_10_1210_me_2006_0281
crossref_primary_10_1002_bab_1088
crossref_primary_10_1042_BCJ20190633
crossref_primary_10_1016_S0960_0760_03_00361_3
crossref_primary_10_1021_ci300151h
crossref_primary_10_1016_j_bmcl_2017_11_010
crossref_primary_10_1016_j_cbpa_2018_09_010
crossref_primary_10_1016_j_mce_2008_10_003
crossref_primary_10_1158_0008_5472_CAN_06_2206
crossref_primary_10_1016_j_steroids_2011_02_037
crossref_primary_10_29235_1561_8323_2018_62_3_281_292
crossref_primary_10_1016_j_bmc_2019_08_001
crossref_primary_10_1007_s42452_019_1051_x
crossref_primary_10_1517_17460441_2013_768983
crossref_primary_10_1016_j_jsbmb_2007_05_020
crossref_primary_10_4137_JEN_S11268
crossref_primary_10_1111_j_1432_1033_2004_04380_x
crossref_primary_10_1016_j_jbspin_2005_02_005
crossref_primary_10_1016_j_jsbmb_2009_11_010
crossref_primary_10_1021_acs_jmedchem_6b00849
crossref_primary_10_1016_j_jsbmb_2006_06_026
crossref_primary_10_1016_j_neubiorev_2021_11_014
crossref_primary_10_1016_j_bcp_2007_11_010
crossref_primary_10_1016_j_jsbmb_2006_11_023
crossref_primary_10_1081_DMR_120015691
crossref_primary_10_1016_j_bmc_2015_04_036
crossref_primary_10_1016_j_comtox_2021_100176
crossref_primary_10_1515_BC_2008_134
crossref_primary_10_1196_annals_1386_022
crossref_primary_10_1246_cl_2002_582
crossref_primary_10_1038_nature07614
crossref_primary_10_2174_1573408016666200325120248
crossref_primary_10_1016_j_steroids_2023_109249
crossref_primary_10_1080_14756360500220574
crossref_primary_10_1021_bi400669h
crossref_primary_10_1016_S0006_2952_02_01361_8
crossref_primary_10_1016_j_rhum_2005_02_010
crossref_primary_10_1021_jm2000689
crossref_primary_10_1080_17460441_2019_1646245
crossref_primary_10_1021_jm800945c
crossref_primary_10_1039_C5RA19602G
crossref_primary_10_1074_jbc_M406847200
crossref_primary_10_1007_s10886_013_0335_7
crossref_primary_10_1007_s10822_005_9024_0
crossref_primary_10_1111_j_1749_6632_2009_03703_x
crossref_primary_10_1016_j_jinorgbio_2023_112150
crossref_primary_10_1016_j_steroids_2006_10_009
crossref_primary_10_1016_j_watres_2020_116515
crossref_primary_10_1002_prot_20829
crossref_primary_10_1016_S0925_4439_02_00096_0
crossref_primary_10_1002_med_10010
crossref_primary_10_1016_j_jsbmb_2009_09_012
crossref_primary_10_1046_j_1432_1033_2002_02779_x
ContentType Journal Article
DOI 10.1046/j.1432-1033.2001.01886.x
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1432-1033
EndPage 251
ExternalDocumentID FEBS1886
Genre article
GroupedDBID -DZ
-~X
.55
.GA
.GJ
.Y3
10A
1OC
24P
29G
31~
36B
3O-
4.4
51W
51X
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5RE
66C
7PT
8-1
8-4
8-5
930
A01
A03
AAEVG
AAHHS
AAZKR
ABDBF
ABEFU
ABJNI
ACCFJ
ACFBH
ACGFS
ACMXC
ACNCT
ACXQS
ADBBV
ADIZJ
ADZOD
AEEZP
AEIMD
AEQDE
AETEA
AEUQT
AFBPY
AFPWT
AFZJQ
AI.
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
BAWUL
BY8
C45
CAG
CO8
COF
CS3
D-7
D-F
DIK
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
G-S
G8K
GODZA
GX1
HZI
IH2
IHE
IPNFZ
L7B
LH4
LP6
LP7
LW6
MVM
O9-
OBS
OHT
OVD
P4B
P4D
QB0
RIG
ROL
SDH
SUPJJ
SV3
TEORI
TR2
TUS
UB1
VH1
WH7
WOW
WQJ
WRC
WXI
X7M
XG1
Y6R
YFH
YSK
YUY
ZGI
ZXP
ID FETCH-LOGICAL-c2266-f6429605fb7f54e2fffc4cd837ee4907eb64917c0418925152048136231ec1ba3
IEDL.DBID 24P
ISSN 0014-2956
IngestDate Sat Aug 24 01:02:43 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2266-f6429605fb7f54e2fffc4cd837ee4907eb64917c0418925152048136231ec1ba3
OpenAccessLink https://doklady.belnauka.by/jour/article/download/519/522
PageCount 9
ParticipantIDs wiley_primary_10_1046_j_1432_1033_2001_01886_x_FEBS1886
PublicationCentury 2000
PublicationDate January 2001
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – month: 01
  year: 2001
  text: January 2001
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle European journal of biochemistry
PublicationYear 2001
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
References 1994; 310
1997; 389
1997; 61
1987; 84
1991; 266
1993; 44
1976; 72
1992; 267
1995; 208
1996; 93
1977; 74
1977; 249
1998; 106
1989; 180
1992; 43
1998; 95
1995; 4
1970; 227
1996; 10
1996; 56
1989; 28
References_xml – volume: 106
  start-page: 85
  year: 1998
  end-page: 92
  article-title: Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: a site‐directed mutagenesis study
  publication-title: Environ. Health Perspect.
– volume: 95
  start-page: 5998
  year: 1998
  end-page: 6003
  article-title: Crystallographic comparison of the estrogen and progesterone receptor's ligand binding domains
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 61
  start-page: 107
  year: 1997
  end-page: 115
  article-title: Binding characteristics of aromatase inhibitors and phytoestrogens to human aromatase
  publication-title: J. Steroid Biochem. Mol. Biol.
– volume: 310
  start-page: 397
  year: 1994
  end-page: 401
  article-title: Essential role of His163 of cytochrome P450 1A2 in catalytic functions associated with cytochrome b5
  publication-title: Arch. Biochem. Biophys.
– volume: 56
  start-page: 3451
  year: 1996
  end-page: 3460
  article-title: Binding characteristics of seven inhibitors of human aromatase. A site‐directed mutagenesis study
  publication-title: Cancer Res.
– volume: 227
  start-page: 680
  year: 1970
  end-page: 685
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature (London)
– volume: 267
  start-page: 22587
  year: 1992
  end-page: 22594
  article-title: Functional domains of aromatase cytochrome P450 inferred form comparative analyses of amino acid sequences and substantiated by site‐directed mutagenesis
  publication-title: J. Biol. Chem.
– volume: 208
  start-page: 96
  year: 1995
  end-page: 102
  article-title: Role of Thr‐252 in cytochrome P450cam: a study with unnatural amino acid mutagenesis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 180
  start-page: 147
  year: 1989
  end-page: 151
  article-title: A general method of site‐specific mutagenesis using a modification of the polymerase chain reaction
  publication-title: Anal. Biochem.
– volume: 249
  start-page: 5364
  year: 1977
  end-page: 5372
  article-title: Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione
  publication-title: J. Biol. Chem.
– volume: 44
  start-page: 375
  year: 1993
  end-page: 387
  article-title: Mechanistic studies on aromatase and related C‐C bond cleaving P450 enzymes
  publication-title: J. Steroid Biochem. Mol. Biol.
– volume: 10
  start-page: 428
  year: 1996
  end-page: 434
  article-title: Peroxidative reactions of diversozymes
  publication-title: FASEB J.
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal. Biochem.
– volume: 266
  start-page: 11939
  year: 1991
  end-page: 11946
  article-title: Structure–function relationships of human aromatase cytochrome P‐450 using molecular modeling and site‐directed mutagenesis
  publication-title: J. Biol. Chem.
– volume: 44
  start-page: 389
  year: 1993
  end-page: 397
  article-title: Mechanism of human placental aromatae: a new active site model
  publication-title: J. Steroid Biochem. Mol. Biol.
– volume: 84
  start-page: 4831
  year: 1987
  end-page: 4835
  article-title: A human β‐actin expression vector system directs high‐level accumulation of antisense transcripts
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 43
  start-page: 693
  year: 1992
  end-page: 701
  article-title: Kinetic properties of aromatase mutants Pro308Phe, Asp309Asn, and Asp309Ala, and their interactions with aromatase inhibitors
  publication-title: J. Steroid Biochem. Mol. Biol.
– volume: 44
  start-page: 367
  year: 1993
  end-page: 373
  article-title: Studies on the mechanism of aromatase and other cytochrome P450 mediated deformylation reactions
  publication-title: J. Steroid Biochem. Mol. Biol.
– volume: 267
  start-page: 762
  year: 1992
  end-page: 768
  article-title: A site‐directed mutagenesis study of human placental aromatase
  publication-title: J. Biol. Chem.
– volume: 93
  start-page: 4644
  year: 1996
  end-page: 4648
  article-title: Peroxo‐iron and oxenoid‐iron species as alternative oxygenating agents in cytochrome P450‐catalyzed reactions: Switching by threonine‐302 to alanine mutagenesis of cytochrome P450 2B4
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 4
  start-page: 1065
  year: 1995
  end-page: 1080
  article-title: A three‐dimensional model of aromatase cytochrome P450
  publication-title: Protein Sci.
– volume: 389
  start-page: 753
  year: 1997
  end-page: 757
  article-title: Molecular basis of agonism and antagonism in the oestrogen receptor
  publication-title: Nature
– volume: 74
  start-page: 5463
  year: 1977
  end-page: 5467
  article-title: DNA sequencing with chain‐terminating inhibitors
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 28
  start-page: 6848
  year: 1989
  end-page: 6857
  article-title: Site‐directed mutageneses of rat liver cytochrome P‐450d: catalytic activities toward benzphetamine and 7‐ethoxycoumarin
  publication-title: Biochemistry
SSID ssj0006967
Score 1.4881873
Snippet Aromatase (CYP19) catalyzes three consecutive hydroxylation reactions converting C19 androgens to aromatic C18 estrogenic steroids. In this study, five human...
SourceID wiley
SourceType Publisher
StartPage 243
SubjectTerms aromatase
aromatase inhibitors
reaction mechanism
site‐directed mutagenesis
Title Evaluation of the mechanism of aromatase cytochrome P450
URI https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1432-1033.2001.01886.x
Volume 268
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2kHvQi2ip-swfxtiWbnWw3x1paiqAUtNBbSDa76KGJ1Ar23zuzSQuCJyGHEEgOs5mZ93Zn3jB2B86ryJeJyL1CggJlIYzUqYhjb1JM1x6AupGfnvV0Do-LZNHWP1EvTKMPsdtwI88I8ZocPC-aKSRRULclJ1cxhhGliObJfiSN0X3Ek_uIcgz94THMdlFZp7rRz5QgYiQFbVXP9oTzry_9xqsh4UyO2VGLFPmwWdoTtueqLusNK2TJyw2_56F2M2yKd9nBaDu3rcfMeCfgzWvPEeDxpaP-3vfPJT3IVzWiVExe3G7WtX0jvQI-gyQ6ZfPJ-HU0Fe18BGERNGnhkTsgAUl8MfAJuNh7b8GWSDmdAyS9rtCAbMxGIE2KOCYhkV6JGUtJZ2WRqzPWqerKnTPuLJXDkJHKHKw2qfSYyi2UeYn5PIULNgimyD4aDYwsnF2DDtxBxRnZjiZayizYLvvOJuOHF7q9_PebV-ywKfii65p11qsvd4MIYF3chqX9Afqrok4
link.rule.ids 315,786,790,11589,27957,27958,46087,46511
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kHupFtFV8uwfxltrNTrbJsZaWqm0p2EJvIdnsoocmUivYf-_MJi0InoQcQmBzmGVmvm-ejN2BsbJts8BLrESCAlnqhUJFnu_bMEJ3bQGoG3k8UcM5PC-CRbUOiHphyvkQu4AbaYaz16TgFJB-qNKSlZZLH-2IlMTzRKstwlC1EFDu04Jv0lIfpjuzrCJVDtAU4PnICqqynm2K868__QaszuMMjthhBRV5t7zbY7Zn8gZrdnOkycsNv-eueNNFxRus3tsubmuysL-b4M0LyxHh8aWhBt_3zyV9SFYFwlT0Xlxv1oV-o4EFfApB-4TNB_1Zb-hVCxI8jahJeRbJAzKQwKYdG4DxrbUadIac0xhA1mtSBUjHdBtEGCGQCWhKr0CXJYXRIk3kKavlRW7OGDea6mFISFkCWoWRsOjLNWRJhg49gnPWcaKIP8ohGLFLXoNy5EH6McmOVlqK2Mku_o4H_cdXer3498lbVh_OxqN49DR5uWQHZfUXPVestl59mWuEA-v0xl3zD9Cdpa8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1EQb2Itorf7kG8pWaTyXZzrLWhfpWCFnoLyWYXPbQptYL9985s0oLgScghBDaHWWbmvZ2Zt4xdg7Ghb4vIy2yIBAWK3FNCxl4QWBVjurYANI38MpD9ETyOo3Hd_0SzMJU-xPrAjTzDxWty8Flhb-uqZO3kYYBhJAyJ5omWL5SSLcSTWyB9RUQsgOE6KstYVvqZArwASUHd1bOqcP71p9941SWcZJ_t1UiRd6qtPWAbZtpgzc4UWfJkyW-46910h-INttNd3dvWZKq3FvDmpeUI8PjE0Hzvx-eEPmTzElEqJi-ul4tSv5NeAR9C5B-yUdJ76_a9-n4ETyNokp5F7oAEJLJ520ZgAmutBl0g5TQGkPSaXAKyMe2DUDHimIhEegVmrFAYLfIsPGKb03Jqjhk3mtphyEhFBlqqWFhM5RqKrMB8HsMJaztTpLNKAyN1tWuQjjuEQUq2oxstRepsl36nSe_ulV5P_73yim0P75P0-WHwdMZ2q94ves7Z5mL-ZS4QDCzyS7fLPxmDpOE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+mechanism+of+aromatase+cytochrome+P450&rft.jtitle=European+journal+of+biochemistry&rft.au=Kao%2C+Yeh%E2%80%90Chih&rft.au=Korzekwa%2C+Kenneth+R.&rft.au=Laughton%2C+Charles+A.&rft.au=Chen%2C+Shiuan&rft.date=2001-01-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0014-2956&rft.eissn=1432-1033&rft.volume=268&rft.issue=2&rft.spage=243&rft.epage=251&rft_id=info:doi/10.1046%2Fj.1432-1033.2001.01886.x&rft.externalDBID=10.1046%252Fj.1432-1033.2001.01886.x&rft.externalDocID=FEBS1886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2956&client=summon