Research on the Reform Path of Music Teaching in Colleges and Universities in the Era of Artificial Intelligence

In recent years, the rapid development of artificial intelligence technology represented by knowledge graphs and deep learning has provided an opportunity for educational innovation and learning mode change. A smart music learning model for colleges and universities is developed in this paper with t...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and nonlinear sciences Vol. 9; no. 1
Main Author Zhang, Kai
Format Journal Article
LanguageEnglish
Published Beirut Sciendo 01.01.2024
De Gruyter Poland
Subjects
Online AccessGet full text
ISSN2444-8656
2444-8656
DOI10.2478/amns-2024-0142

Cover

Loading…
Abstract In recent years, the rapid development of artificial intelligence technology represented by knowledge graphs and deep learning has provided an opportunity for educational innovation and learning mode change. A smart music learning model for colleges and universities is developed in this paper with the help of artificial intelligence technology. Learning data analysis is achieved through the use of a community discovery algorithm based on graph data in the model. In order to construct the learning community, the AGNES hierarchical clustering algorithm is used to cluster individual samples in the dataset. Learning big data and music professional ability are correlated through the mining of learner portrait features. Personalized learning paths are generated using the improved convolutional neural network. As experimental subjects, sophomore music majors at X institution were tested and analyzed for the teaching model in the end. The results show that the maximum learning interaction coefficient of the experimental subjects can be obtained as 5.34 and the maximum learning path coefficient as 2.84 under the smart learning mode. The correlation coefficients of the use of the smart learning mode with the usual test scores and the learning effort values are between 0.318 and 0.502. Teachers can obtain precise teaching data from this paper to quantitatively characterize subject competence goals and facilitate the smooth implementation of smart learning.
AbstractList In recent years, the rapid development of artificial intelligence technology represented by knowledge graphs and deep learning has provided an opportunity for educational innovation and learning mode change. A smart music learning model for colleges and universities is developed in this paper with the help of artificial intelligence technology. Learning data analysis is achieved through the use of a community discovery algorithm based on graph data in the model. In order to construct the learning community, the AGNES hierarchical clustering algorithm is used to cluster individual samples in the dataset. Learning big data and music professional ability are correlated through the mining of learner portrait features. Personalized learning paths are generated using the improved convolutional neural network. As experimental subjects, sophomore music majors at X institution were tested and analyzed for the teaching model in the end. The results show that the maximum learning interaction coefficient of the experimental subjects can be obtained as 5.34 and the maximum learning path coefficient as 2.84 under the smart learning mode. The correlation coefficients of the use of the smart learning mode with the usual test scores and the learning effort values are between 0.318 and 0.502. Teachers can obtain precise teaching data from this paper to quantitatively characterize subject competence goals and facilitate the smooth implementation of smart learning.
Author Zhang, Kai
Author_xml – sequence: 1
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  email: zhangkai1786@163.com
  organization: Henan Polytechnic, Zhengzhou, Henan, 450000, China
BookMark eNptkM9LwzAcxYNMcM5dPQc8d-ZX0_Y4xtSBoox5Dln6TZfRpTPplP33tlTQg6fv4_He-8LnGo184wGhW0pmTGT5vT74mDDCREKoYBdozIQQSS5TOfqjr9A0xj0hhHHKpWRjdFxDBB3MDjcetzvAa7BNOOA33XaWxS-n6AzegDY75yvsPF40dQ0VRKx9id-9-4QQXes6ww0Ly6D75jy0zjrjdI1XvoW6dhV4Azfo0uo6wvTnTtDmYblZPCXPr4-rxfw5MYxJmgiTEiNBCFtaCxnlqcltLoQGCpzTzBSabCErRW751ghREFZuLclkQdOClnyC7obZY2g-ThBbtW9OwXcfFacFpWlapLJLzYaUCU2MAaw6BnfQ4awoUT1X1XNVPVfVc-0K-VD40nULoYQqnM6d-F3_v1hQ_g0zzYA_
Cites_doi 10.3991/ijet.v15i16.15939
10.1080/08839514.2023.2221503
10.1155/2021/9141339
10.3991/ijet.v16i05.20311
10.1080/09540091.2019.1709045
10.53106/160792642022012301013
10.3233/JIFS-179800
10.1088/1742-6596/1915/2/022051
10.1142/S0219265921430064
10.1504/IJGUC.2023.10056305
10.1142/S0218488522500064
10.1155/2021/6456734
10.3991/ijet.v15i22.18199
10.1142/S0218194022500681
10.1155/2021/1704995
10.1504/IJCAT.2023.132103
ContentType Journal Article
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/amns-2024-0142
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Music
EISSN 2444-8656
ExternalDocumentID 10_2478_amns_2024_0142
10_2478_amns_2024_014291
GroupedDBID 9WM
AATOW
ABFKT
ADBLJ
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BENPR
CCPQU
EBS
M~E
OK1
PHGZM
PHGZT
PIMPY
QD8
SLJYH
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2261-4c50c6e44fdffe7135c8f844ae1e3317c9a0be7d48f3bc44902dbf07691591d3
IEDL.DBID BENPR
ISSN 2444-8656
IngestDate Mon Jun 30 11:42:06 EDT 2025
Tue Jul 01 03:14:41 EDT 2025
Thu Jul 10 10:29:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2261-4c50c6e44fdffe7135c8f844ae1e3317c9a0be7d48f3bc44902dbf07691591d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3191155956?pq-origsite=%requestingapplication%
PQID 3191155956
PQPubID 6761185
PageCount 15
ParticipantIDs proquest_journals_3191155956
crossref_primary_10_2478_amns_2024_0142
walterdegruyter_journals_10_2478_amns_2024_014291
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Beirut
PublicationPlace_xml – name: Beirut
PublicationTitle Applied mathematics and nonlinear sciences
PublicationYear 2024
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2024101012510377268_j_amns-2024-0142_ref_009
2024101012510377268_j_amns-2024-0142_ref_008
2024101012510377268_j_amns-2024-0142_ref_019
2024101012510377268_j_amns-2024-0142_ref_007
2024101012510377268_j_amns-2024-0142_ref_018
2024101012510377268_j_amns-2024-0142_ref_006
2024101012510377268_j_amns-2024-0142_ref_017
2024101012510377268_j_amns-2024-0142_ref_005
2024101012510377268_j_amns-2024-0142_ref_016
2024101012510377268_j_amns-2024-0142_ref_004
2024101012510377268_j_amns-2024-0142_ref_015
2024101012510377268_j_amns-2024-0142_ref_003
2024101012510377268_j_amns-2024-0142_ref_014
2024101012510377268_j_amns-2024-0142_ref_002
2024101012510377268_j_amns-2024-0142_ref_013
2024101012510377268_j_amns-2024-0142_ref_001
2024101012510377268_j_amns-2024-0142_ref_012
2024101012510377268_j_amns-2024-0142_ref_011
2024101012510377268_j_amns-2024-0142_ref_010
References_xml – ident: 2024101012510377268_j_amns-2024-0142_ref_001
  doi: 10.3991/ijet.v15i16.15939
– ident: 2024101012510377268_j_amns-2024-0142_ref_003
  doi: 10.1080/08839514.2023.2221503
– ident: 2024101012510377268_j_amns-2024-0142_ref_013
  doi: 10.1155/2021/9141339
– ident: 2024101012510377268_j_amns-2024-0142_ref_014
  doi: 10.3991/ijet.v16i05.20311
– ident: 2024101012510377268_j_amns-2024-0142_ref_007
  doi: 10.1080/09540091.2019.1709045
– ident: 2024101012510377268_j_amns-2024-0142_ref_017
– ident: 2024101012510377268_j_amns-2024-0142_ref_004
  doi: 10.53106/160792642022012301013
– ident: 2024101012510377268_j_amns-2024-0142_ref_002
  doi: 10.3233/JIFS-179800
– ident: 2024101012510377268_j_amns-2024-0142_ref_010
  doi: 10.1088/1742-6596/1915/2/022051
– ident: 2024101012510377268_j_amns-2024-0142_ref_006
  doi: 10.1142/S0219265921430064
– ident: 2024101012510377268_j_amns-2024-0142_ref_011
  doi: 10.1504/IJGUC.2023.10056305
– ident: 2024101012510377268_j_amns-2024-0142_ref_016
– ident: 2024101012510377268_j_amns-2024-0142_ref_018
  doi: 10.1142/S0218488522500064
– ident: 2024101012510377268_j_amns-2024-0142_ref_012
  doi: 10.1155/2021/6456734
– ident: 2024101012510377268_j_amns-2024-0142_ref_009
  doi: 10.3991/ijet.v15i22.18199
– ident: 2024101012510377268_j_amns-2024-0142_ref_019
  doi: 10.1142/S0218194022500681
– ident: 2024101012510377268_j_amns-2024-0142_ref_015
  doi: 10.1155/2021/1704995
– ident: 2024101012510377268_j_amns-2024-0142_ref_008
– ident: 2024101012510377268_j_amns-2024-0142_ref_005
  doi: 10.1504/IJCAT.2023.132103
SSID ssj0002313662
Score 2.243337
Snippet In recent years, the rapid development of artificial intelligence technology represented by knowledge graphs and deep learning has provided an opportunity for...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms 68T01
Artificial intelligence
Colleges & universities
Hierarchical clustering algorithm
Learner profiling
Music
Personalized learning
Smart learning model
Teaching
Title Research on the Reform Path of Music Teaching in Colleges and Universities in the Era of Artificial Intelligence
URI https://www.degruyter.com/doi/10.2478/amns-2024-0142
https://www.proquest.com/docview/3191155956
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vXjxURWrtexB8BSax-Z1EpWWKrSUUrG3kH2JB5PatIj_3plk06qIkFs2Q9hvdubbmWGGkCsRa82Z0hY4Y2lhpsniUvkWd10ntXkIFB3jHaNxMHxij3N_bgJuhSmrrG1iaahlLjBG3gNVcTCF5gc3i3cLp0ZhdtWM0NglTTDBEWh4864_nkw3URZgL14QuFW3RpeFUS99ywpQDRdrL5j70xttKeb-R5mslupluf5c1cnR0ucMDsm-IYv0tkL3iOyorEUODHGk5lgWLdIspzUfk0VdR0fzjAKzo1OFnJROgObRXNNyGZ2ZAkr6mlETNyhomkm6KdKA2zO-RAn9ZYpf4i9UvSbow7cmnidkNujP7oeWGalgCRcjTUz4tggUY1pqrXA8n4h0xFiqHOUBlRAxAKRCySLtccFYbLuSazsMYqA9jvROSSPLM3VGKKbXYhEBG5Qxc4ROIyk8nnLugAUAjNvkut7ZZFE1zkjgwoEYJIhBghgkiEGbdOqNT8wBKpIt3G3i_AJju-pvgbFz_r_IC7JnNACeDmmslmt1CdxixbtgIp9HXaNGX7as0R4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7R5NBeeLZqeJQ9FHGyiNcbxz6gqtCghEeEUCpxW3lfqAecEAdF-VH8R2bsNSlVxQ3JN9uj1c7nmW9nxjMA33XqnBLWBeiMTUCZpkAZ2wkU52HWVl2k6BTvuBrG_d_i_LZzuwJP9b8wVFZZ28TSUJuxphj5EUIlpBRaJ_4xeQhoahRlV-sRGhUsLuxijke24njwC_V7wPlZb3TaD_xUgUBzCrYI3Wnr2ArhjHOWJtTpxCVCZDa0EXpTneIabdeIxEVKC5G2uVEOj_spev7QRCj2AzRFhEyhAc2T3vD65iWog2QpimNeNYfkopscZfd5gUjkVOoh-Gvnt2S0q_MyN27s3fRxMatzsaWLO1uHVc9N2c8KTBuwYvNNWPM8lXkrUGxCsxwOvQWTumyPjXOGRJLdWKLA7BpZJRs7Vj7GRr5ek_3JmQ9TFCzLDXupCcHDOt0kCb1pRm_SEqrWFmzwV8_QzzB6j73-Ao18nNuvwCibl-oEyadJRahdlhgdqUypEA0OQqoFh_XOyknVp0Pi-YZ0IEkHknQgSQct2K03XvrvtZBLdLUg_EcZy6f-LzANt98WuQ8f-6OrS3k5GF7swCePBrx2oTGbPto9pDUz9c2DiYF8Z_g-Aw6yDFA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kBfFS31itugfBU2gem9exaGt91aIVegvZl3gwLU2L-O-dSTatSk9CbslsYGZn5pvHzhJyIWKtOVPaAmcsLaw0WVwq3-Ku66Q2DwGiY77jcRD0X9nd2B-bQBHPwhR2XxbVyvZU6qJVmYVRO_3IcpCoiy0TDExuPfQhcqiReqd_8_K0zKoAWvGCwC2nM64h_O19VpCy8VkUp6V6my2-5lUxtPAxvR3SMOCQdkpp7pINle2RbQMUqVHDfJ9Mq345OskoIDj6rBB70iHAOTrRtLi8mY5MoyR9z6jJD-Q0zSRdNmNAlIwvcYXuLEVK_HU5U4Le_hjWeUBGve7oqm-ZqxMs4WJGiQnfFoFiTEutFV7DJyIdMZYqR3kAGUQMglChZJH2uGAstl3JtR0GMcAbR3qHpJZNMnVEKJbRYhEB6pMxc4ROIyk8nnLugKaDLJvksuJoMi0HZCQQWCDvE-R9grxPkPdN0qoYnhhFyROwAA5WRv2gSZw_Qlh9tX7B2Dn-B8052Rxe95KH28H9CdkyOwOeFqnNZwt1Chhjzs_MxvoGjfPPcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+Reform+Path+of+Music+Teaching+in+Colleges+and+Universities+in+the+Era+of+Artificial+Intelligence&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Zhang%2C+Kai&rft.date=2024-01-01&rft.pub=Sciendo&rft.eissn=2444-8656&rft.volume=9&rft.issue=1&rft_id=info:doi/10.2478%2Famns-2024-0142&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2024_014291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon