Research on the Reform Path of Music Teaching in Colleges and Universities in the Era of Artificial Intelligence
In recent years, the rapid development of artificial intelligence technology represented by knowledge graphs and deep learning has provided an opportunity for educational innovation and learning mode change. A smart music learning model for colleges and universities is developed in this paper with t...
Saved in:
Published in | Applied mathematics and nonlinear sciences Vol. 9; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Beirut
Sciendo
01.01.2024
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
ISSN | 2444-8656 2444-8656 |
DOI | 10.2478/amns-2024-0142 |
Cover
Loading…
Abstract | In recent years, the rapid development of artificial intelligence technology represented by knowledge graphs and deep learning has provided an opportunity for educational innovation and learning mode change. A smart music learning model for colleges and universities is developed in this paper with the help of artificial intelligence technology. Learning data analysis is achieved through the use of a community discovery algorithm based on graph data in the model. In order to construct the learning community, the AGNES hierarchical clustering algorithm is used to cluster individual samples in the dataset. Learning big data and music professional ability are correlated through the mining of learner portrait features. Personalized learning paths are generated using the improved convolutional neural network. As experimental subjects, sophomore music majors at X institution were tested and analyzed for the teaching model in the end. The results show that the maximum learning interaction coefficient of the experimental subjects can be obtained as 5.34 and the maximum learning path coefficient as 2.84 under the smart learning mode. The correlation coefficients of the use of the smart learning mode with the usual test scores and the learning effort values are between 0.318 and 0.502. Teachers can obtain precise teaching data from this paper to quantitatively characterize subject competence goals and facilitate the smooth implementation of smart learning. |
---|---|
AbstractList | In recent years, the rapid development of artificial intelligence technology represented by knowledge graphs and deep learning has provided an opportunity for educational innovation and learning mode change. A smart music learning model for colleges and universities is developed in this paper with the help of artificial intelligence technology. Learning data analysis is achieved through the use of a community discovery algorithm based on graph data in the model. In order to construct the learning community, the AGNES hierarchical clustering algorithm is used to cluster individual samples in the dataset. Learning big data and music professional ability are correlated through the mining of learner portrait features. Personalized learning paths are generated using the improved convolutional neural network. As experimental subjects, sophomore music majors at X institution were tested and analyzed for the teaching model in the end. The results show that the maximum learning interaction coefficient of the experimental subjects can be obtained as 5.34 and the maximum learning path coefficient as 2.84 under the smart learning mode. The correlation coefficients of the use of the smart learning mode with the usual test scores and the learning effort values are between 0.318 and 0.502. Teachers can obtain precise teaching data from this paper to quantitatively characterize subject competence goals and facilitate the smooth implementation of smart learning. |
Author | Zhang, Kai |
Author_xml | – sequence: 1 givenname: Kai surname: Zhang fullname: Zhang, Kai email: zhangkai1786@163.com organization: Henan Polytechnic, Zhengzhou, Henan, 450000, China |
BookMark | eNptkM9LwzAcxYNMcM5dPQc8d-ZX0_Y4xtSBoox5Dln6TZfRpTPplP33tlTQg6fv4_He-8LnGo184wGhW0pmTGT5vT74mDDCREKoYBdozIQQSS5TOfqjr9A0xj0hhHHKpWRjdFxDBB3MDjcetzvAa7BNOOA33XaWxS-n6AzegDY75yvsPF40dQ0VRKx9id-9-4QQXes6ww0Ly6D75jy0zjrjdI1XvoW6dhV4Azfo0uo6wvTnTtDmYblZPCXPr4-rxfw5MYxJmgiTEiNBCFtaCxnlqcltLoQGCpzTzBSabCErRW751ghREFZuLclkQdOClnyC7obZY2g-ThBbtW9OwXcfFacFpWlapLJLzYaUCU2MAaw6BnfQ4awoUT1X1XNVPVfVc-0K-VD40nULoYQqnM6d-F3_v1hQ_g0zzYA_ |
Cites_doi | 10.3991/ijet.v15i16.15939 10.1080/08839514.2023.2221503 10.1155/2021/9141339 10.3991/ijet.v16i05.20311 10.1080/09540091.2019.1709045 10.53106/160792642022012301013 10.3233/JIFS-179800 10.1088/1742-6596/1915/2/022051 10.1142/S0219265921430064 10.1504/IJGUC.2023.10056305 10.1142/S0218488522500064 10.1155/2021/6456734 10.3991/ijet.v15i22.18199 10.1142/S0218194022500681 10.1155/2021/1704995 10.1504/IJCAT.2023.132103 |
ContentType | Journal Article |
Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.2478/amns-2024-0142 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Music |
EISSN | 2444-8656 |
ExternalDocumentID | 10_2478_amns_2024_0142 10_2478_amns_2024_014291 |
GroupedDBID | 9WM AATOW ABFKT ADBLJ AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR CCPQU EBS M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2261-4c50c6e44fdffe7135c8f844ae1e3317c9a0be7d48f3bc44902dbf07691591d3 |
IEDL.DBID | BENPR |
ISSN | 2444-8656 |
IngestDate | Mon Jun 30 11:42:06 EDT 2025 Tue Jul 01 03:14:41 EDT 2025 Thu Jul 10 10:29:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2261-4c50c6e44fdffe7135c8f844ae1e3317c9a0be7d48f3bc44902dbf07691591d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3191155956?pq-origsite=%requestingapplication% |
PQID | 3191155956 |
PQPubID | 6761185 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3191155956 crossref_primary_10_2478_amns_2024_0142 walterdegruyter_journals_10_2478_amns_2024_014291 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beirut |
PublicationPlace_xml | – name: Beirut |
PublicationTitle | Applied mathematics and nonlinear sciences |
PublicationYear | 2024 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2024101012510377268_j_amns-2024-0142_ref_009 2024101012510377268_j_amns-2024-0142_ref_008 2024101012510377268_j_amns-2024-0142_ref_019 2024101012510377268_j_amns-2024-0142_ref_007 2024101012510377268_j_amns-2024-0142_ref_018 2024101012510377268_j_amns-2024-0142_ref_006 2024101012510377268_j_amns-2024-0142_ref_017 2024101012510377268_j_amns-2024-0142_ref_005 2024101012510377268_j_amns-2024-0142_ref_016 2024101012510377268_j_amns-2024-0142_ref_004 2024101012510377268_j_amns-2024-0142_ref_015 2024101012510377268_j_amns-2024-0142_ref_003 2024101012510377268_j_amns-2024-0142_ref_014 2024101012510377268_j_amns-2024-0142_ref_002 2024101012510377268_j_amns-2024-0142_ref_013 2024101012510377268_j_amns-2024-0142_ref_001 2024101012510377268_j_amns-2024-0142_ref_012 2024101012510377268_j_amns-2024-0142_ref_011 2024101012510377268_j_amns-2024-0142_ref_010 |
References_xml | – ident: 2024101012510377268_j_amns-2024-0142_ref_001 doi: 10.3991/ijet.v15i16.15939 – ident: 2024101012510377268_j_amns-2024-0142_ref_003 doi: 10.1080/08839514.2023.2221503 – ident: 2024101012510377268_j_amns-2024-0142_ref_013 doi: 10.1155/2021/9141339 – ident: 2024101012510377268_j_amns-2024-0142_ref_014 doi: 10.3991/ijet.v16i05.20311 – ident: 2024101012510377268_j_amns-2024-0142_ref_007 doi: 10.1080/09540091.2019.1709045 – ident: 2024101012510377268_j_amns-2024-0142_ref_017 – ident: 2024101012510377268_j_amns-2024-0142_ref_004 doi: 10.53106/160792642022012301013 – ident: 2024101012510377268_j_amns-2024-0142_ref_002 doi: 10.3233/JIFS-179800 – ident: 2024101012510377268_j_amns-2024-0142_ref_010 doi: 10.1088/1742-6596/1915/2/022051 – ident: 2024101012510377268_j_amns-2024-0142_ref_006 doi: 10.1142/S0219265921430064 – ident: 2024101012510377268_j_amns-2024-0142_ref_011 doi: 10.1504/IJGUC.2023.10056305 – ident: 2024101012510377268_j_amns-2024-0142_ref_016 – ident: 2024101012510377268_j_amns-2024-0142_ref_018 doi: 10.1142/S0218488522500064 – ident: 2024101012510377268_j_amns-2024-0142_ref_012 doi: 10.1155/2021/6456734 – ident: 2024101012510377268_j_amns-2024-0142_ref_009 doi: 10.3991/ijet.v15i22.18199 – ident: 2024101012510377268_j_amns-2024-0142_ref_019 doi: 10.1142/S0218194022500681 – ident: 2024101012510377268_j_amns-2024-0142_ref_015 doi: 10.1155/2021/1704995 – ident: 2024101012510377268_j_amns-2024-0142_ref_008 – ident: 2024101012510377268_j_amns-2024-0142_ref_005 doi: 10.1504/IJCAT.2023.132103 |
SSID | ssj0002313662 |
Score | 2.243337 |
Snippet | In recent years, the rapid development of artificial intelligence technology represented by knowledge graphs and deep learning has provided an opportunity for... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | 68T01 Artificial intelligence Colleges & universities Hierarchical clustering algorithm Learner profiling Music Personalized learning Smart learning model Teaching |
Title | Research on the Reform Path of Music Teaching in Colleges and Universities in the Era of Artificial Intelligence |
URI | https://www.degruyter.com/doi/10.2478/amns-2024-0142 https://www.proquest.com/docview/3191155956 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vXjxURWrtexB8BSax-Z1EpWWKrSUUrG3kH2JB5PatIj_3plk06qIkFs2Q9hvdubbmWGGkCsRa82Z0hY4Y2lhpsniUvkWd10ntXkIFB3jHaNxMHxij3N_bgJuhSmrrG1iaahlLjBG3gNVcTCF5gc3i3cLp0ZhdtWM0NglTTDBEWh4864_nkw3URZgL14QuFW3RpeFUS99ywpQDRdrL5j70xttKeb-R5mslupluf5c1cnR0ucMDsm-IYv0tkL3iOyorEUODHGk5lgWLdIspzUfk0VdR0fzjAKzo1OFnJROgObRXNNyGZ2ZAkr6mlETNyhomkm6KdKA2zO-RAn9ZYpf4i9UvSbow7cmnidkNujP7oeWGalgCRcjTUz4tggUY1pqrXA8n4h0xFiqHOUBlRAxAKRCySLtccFYbLuSazsMYqA9jvROSSPLM3VGKKbXYhEBG5Qxc4ROIyk8nnLugAUAjNvkut7ZZFE1zkjgwoEYJIhBghgkiEGbdOqNT8wBKpIt3G3i_AJju-pvgbFz_r_IC7JnNACeDmmslmt1CdxixbtgIp9HXaNGX7as0R4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7R5NBeeLZqeJQ9FHGyiNcbxz6gqtCghEeEUCpxW3lfqAecEAdF-VH8R2bsNSlVxQ3JN9uj1c7nmW9nxjMA33XqnBLWBeiMTUCZpkAZ2wkU52HWVl2k6BTvuBrG_d_i_LZzuwJP9b8wVFZZ28TSUJuxphj5EUIlpBRaJ_4xeQhoahRlV-sRGhUsLuxijke24njwC_V7wPlZb3TaD_xUgUBzCrYI3Wnr2ArhjHOWJtTpxCVCZDa0EXpTneIabdeIxEVKC5G2uVEOj_spev7QRCj2AzRFhEyhAc2T3vD65iWog2QpimNeNYfkopscZfd5gUjkVOoh-Gvnt2S0q_MyN27s3fRxMatzsaWLO1uHVc9N2c8KTBuwYvNNWPM8lXkrUGxCsxwOvQWTumyPjXOGRJLdWKLA7BpZJRs7Vj7GRr5ek_3JmQ9TFCzLDXupCcHDOt0kCb1pRm_SEqrWFmzwV8_QzzB6j73-Ao18nNuvwCibl-oEyadJRahdlhgdqUypEA0OQqoFh_XOyknVp0Pi-YZ0IEkHknQgSQct2K03XvrvtZBLdLUg_EcZy6f-LzANt98WuQ8f-6OrS3k5GF7swCePBrx2oTGbPto9pDUz9c2DiYF8Z_g-Aw6yDFA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kBfFS31itugfBU2gem9exaGt91aIVegvZl3gwLU2L-O-dSTatSk9CbslsYGZn5pvHzhJyIWKtOVPaAmcsLaw0WVwq3-Ku66Q2DwGiY77jcRD0X9nd2B-bQBHPwhR2XxbVyvZU6qJVmYVRO_3IcpCoiy0TDExuPfQhcqiReqd_8_K0zKoAWvGCwC2nM64h_O19VpCy8VkUp6V6my2-5lUxtPAxvR3SMOCQdkpp7pINle2RbQMUqVHDfJ9Mq345OskoIDj6rBB70iHAOTrRtLi8mY5MoyR9z6jJD-Q0zSRdNmNAlIwvcYXuLEVK_HU5U4Le_hjWeUBGve7oqm-ZqxMs4WJGiQnfFoFiTEutFV7DJyIdMZYqR3kAGUQMglChZJH2uGAstl3JtR0GMcAbR3qHpJZNMnVEKJbRYhEB6pMxc4ROIyk8nnLugKaDLJvksuJoMi0HZCQQWCDvE-R9grxPkPdN0qoYnhhFyROwAA5WRv2gSZw_Qlh9tX7B2Dn-B8052Rxe95KH28H9CdkyOwOeFqnNZwt1Chhjzs_MxvoGjfPPcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+Reform+Path+of+Music+Teaching+in+Colleges+and+Universities+in+the+Era+of+Artificial+Intelligence&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Zhang%2C+Kai&rft.date=2024-01-01&rft.pub=Sciendo&rft.eissn=2444-8656&rft.volume=9&rft.issue=1&rft_id=info:doi/10.2478%2Famns-2024-0142&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2024_014291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |