Optimal 1D Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer

In this paper, we study an unmanned aerial vehicle (UAV)-enabled wireless power transfer network, where a UAV flies at a constant altitude in the sky to provide wireless energy supply for a set of ground nodes with a linear topology. Our objective is to maximize the minimum received energy among all...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 67; no. 8; pp. 5674 - 5688
Main Authors Hu, Yulin, Yuan, Xiaopeng, Xu, Jie, Schmeink, Anke
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study an unmanned aerial vehicle (UAV)-enabled wireless power transfer network, where a UAV flies at a constant altitude in the sky to provide wireless energy supply for a set of ground nodes with a linear topology. Our objective is to maximize the minimum received energy among all ground nodes by optimizing the UAV's one-dimensional (1D) trajectory, subject to the maximum UAV flying speed constraint. Different from previous works that only provided heuristic and locally optimal solutions, this paper is the first to present the globally optimal 1D UAV trajectory solution to the considered min-energy maximization problem. Toward this end, we first show that for any given speed-constrained UAV trajectory, we can always construct a maximum-speed trajectory and a speed-free trajectory, such that their combination can achieve the same received energy at all these ground nodes. Next, we transform the UAV-speed-constrained trajectory design problem into an equivalent UAV-speed-free problem, which is then optimally solved via the Lagrange dual method. The optimal 1D UAV trajectory solution follows the so-called successive hover-and-fly structure, i.e., the UAV successively hovers at a finite number of hovering points each for an optimized hovering duration, and flies among these hovering points at the maximum speed. Building upon the optimal UAV trajectory structure, we further present a low-complexity UAV trajectory design by first transforming the original problem into an equivalent non-convex problem with only the UAV hovering locations and durations as optimization variables and then updating the trajectory via the successive convex approximation technique. Our analysis shows that the low-complexity design is guaranteed to converge to a suboptimal solution at a significantly lower complexity irrespective of the geographical network size. Numerical results show that the proposed low-complexity design actually achieves the same performance as the proposed optimal solution, and both of them outperform the benchmark algorithms in prior works under different scenarios.
AbstractList In this paper, we study an unmanned aerial vehicle (UAV)-enabled wireless power transfer network, where a UAV flies at a constant altitude in the sky to provide wireless energy supply for a set of ground nodes with a linear topology. Our objective is to maximize the minimum received energy among all ground nodes by optimizing the UAV’s one-dimensional (1D) trajectory, subject to the maximum UAV flying speed constraint. Different from previous works that only provided heuristic and locally optimal solutions, this paper is the first to present the globally optimal 1D UAV trajectory solution to the considered min-energy maximization problem. Toward this end, we first show that for any given speed-constrained UAV trajectory, we can always construct a maximum-speed trajectory and a speed-free trajectory, such that their combination can achieve the same received energy at all these ground nodes. Next, we transform the UAV-speed-constrained trajectory design problem into an equivalent UAV-speed-free problem, which is then optimally solved via the Lagrange dual method. The optimal 1D UAV trajectory solution follows the so-called successive hover-and-fly structure, i.e., the UAV successively hovers at a finite number of hovering points each for an optimized hovering duration, and flies among these hovering points at the maximum speed. Building upon the optimal UAV trajectory structure, we further present a low-complexity UAV trajectory design by first transforming the original problem into an equivalent non-convex problem with only the UAV hovering locations and durations as optimization variables and then updating the trajectory via the successive convex approximation technique. Our analysis shows that the low-complexity design is guaranteed to converge to a suboptimal solution at a significantly lower complexity irrespective of the geographical network size. Numerical results show that the proposed low-complexity design actually achieves the same performance as the proposed optimal solution, and both of them outperform the benchmark algorithms in prior works under different scenarios.
Author Yuan, Xiaopeng
Xu, Jie
Schmeink, Anke
Hu, Yulin
Author_xml – sequence: 1
  givenname: Yulin
  orcidid: 0000-0002-1047-9436
  surname: Hu
  fullname: Hu, Yulin
  email: hu@umic.rwthaachen.de
  organization: ISEK Research Group, RWTH Aachen University, Aachen, Germany
– sequence: 2
  givenname: Xiaopeng
  surname: Yuan
  fullname: Yuan, Xiaopeng
  email: xiaopeng.yuan@rwth-aachen.de
  organization: ISEK Research Group, RWTH Aachen University, Aachen, Germany
– sequence: 3
  givenname: Jie
  orcidid: 0000-0002-4854-8839
  surname: Xu
  fullname: Xu, Jie
  email: jiexu@gdut.edu.cn
  organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China
– sequence: 4
  givenname: Anke
  orcidid: 0000-0002-9929-2925
  surname: Schmeink
  fullname: Schmeink, Anke
  email: schmeink@umic.rwth-aachen.de
  organization: ISEK Research Group, RWTH Aachen University, Aachen, Germany
BookMark eNp9kE1PAjEURRuDiYD-Ad00cT3YdtppuySAHwmIC9Bl0ymvZsg4g-1MDP_eQYgLF65uXnLPu8kZoF5VV4DQNSUjSom-W02Wi8WIEapHTFPKND9DfSqESogSsof6hGiSZFKqCzSIcUsI4SRN--h5uWuKD1tiOsWrYLfgmjrs8RRi8V5hXwe8Hr8ms8rmJWzwoi2boo0Q8FsRoIQY8Uv91Z0dWkUP4RKde1tGuDrlEK3vZ6vJYzJfPjxNxvPEMSaaBCQwon2mU2chlZ763HFQyjmf55Iz4JmlGwICMsnBMk6Bak4I806mzm_SIbo9_t2F-rOF2Jht3YaqmzSMSSE0ZanqWurYcqGOMYA3rmhsU9RVE2xRGkrMwZ75sWcO9szJXoeyP-gudJ7C_n_o5ggVAPALqExTkfH0G4ohfVM
CODEN IECMBT
CitedBy_id crossref_primary_10_1109_JSAC_2022_3196108
crossref_primary_10_3390_s22239215
crossref_primary_10_1109_TVT_2020_3026788
crossref_primary_10_1109_JSAC_2021_3088693
crossref_primary_10_1109_TCOMM_2022_3170458
crossref_primary_10_1109_TVT_2021_3090849
crossref_primary_10_3390_s23062994
crossref_primary_10_1109_JSAC_2021_3088690
crossref_primary_10_1109_LWC_2020_3013296
crossref_primary_10_1109_OJVT_2024_3508026
crossref_primary_10_3390_mi13060977
crossref_primary_10_1109_TVT_2022_3147567
crossref_primary_10_1109_JIOT_2020_3005133
crossref_primary_10_3390_s23187779
crossref_primary_10_1109_TVT_2022_3212868
crossref_primary_10_1109_TVT_2020_2980683
crossref_primary_10_1007_s11235_024_01128_3
crossref_primary_10_3390_app13085136
crossref_primary_10_1109_TVT_2022_3186787
crossref_primary_10_3390_rs13132611
crossref_primary_10_1109_JIOT_2023_3274549
crossref_primary_10_1016_j_comcom_2023_05_013
crossref_primary_10_1109_TVT_2020_3015246
crossref_primary_10_1109_JIOT_2023_3281584
crossref_primary_10_1109_OJSP_2020_3036276
crossref_primary_10_3390_s20092598
crossref_primary_10_1109_JIOT_2021_3126290
crossref_primary_10_1109_JSYST_2022_3215279
crossref_primary_10_1109_TMC_2023_3240763
crossref_primary_10_1109_TMC_2022_3188473
crossref_primary_10_1109_JSAC_2021_3088627
crossref_primary_10_3390_electronics12204275
crossref_primary_10_3390_s21134281
crossref_primary_10_32604_cmc_2022_025736
crossref_primary_10_1109_TCOMM_2020_2971488
crossref_primary_10_1016_j_comcom_2023_12_011
crossref_primary_10_1109_TVT_2019_2961993
crossref_primary_10_1016_j_comnet_2021_108415
crossref_primary_10_1109_TGCN_2021_3093718
crossref_primary_10_3390_drones7060354
crossref_primary_10_3390_photonics11121136
crossref_primary_10_1109_TGCN_2020_2988270
crossref_primary_10_1109_TWC_2020_3007766
crossref_primary_10_1109_TWC_2020_2989302
crossref_primary_10_3390_s19184032
crossref_primary_10_1109_ACCESS_2020_3021672
crossref_primary_10_1109_TGCN_2020_3007588
crossref_primary_10_1109_TWC_2021_3092293
crossref_primary_10_3390_en17071617
crossref_primary_10_1109_JIOT_2021_3094651
crossref_primary_10_1109_TITS_2023_3300777
crossref_primary_10_1109_TWC_2021_3067163
crossref_primary_10_1109_TCOMM_2021_3124957
crossref_primary_10_3390_s22186859
crossref_primary_10_3390_drones6060147
crossref_primary_10_1109_TWC_2023_3281730
crossref_primary_10_1007_s11370_022_00452_4
crossref_primary_10_1109_TVT_2024_3387752
crossref_primary_10_1109_TWC_2022_3222067
crossref_primary_10_1109_TWC_2022_3149636
crossref_primary_10_1109_TCOMM_2020_3025568
crossref_primary_10_1007_s11036_019_01398_1
crossref_primary_10_1109_JSAC_2021_3088681
crossref_primary_10_1109_JSAC_2021_3088682
crossref_primary_10_1109_TGCN_2021_3073916
crossref_primary_10_3390_drones8110668
crossref_primary_10_1109_ACCESS_2020_2994494
crossref_primary_10_1109_TWC_2020_3030773
crossref_primary_10_3390_s19224884
crossref_primary_10_1049_iet_com_2019_1207
crossref_primary_10_1109_ACCESS_2023_3349208
crossref_primary_10_3390_electronics13214237
crossref_primary_10_1109_TWC_2020_3035425
crossref_primary_10_1016_j_pmcj_2023_101820
crossref_primary_10_2139_ssrn_4187010
crossref_primary_10_1109_JIOT_2022_3150616
crossref_primary_10_3390_s20113034
Cites_doi 10.1109/MCOM.2015.7081084
10.1109/TCOMM.2016.2611512
10.1109/COMST.2015.2495297
10.1109/GLOCOMW.2017.8269097
10.1109/LWC.2017.2752161
10.1109/JSAC.2018.2864426
10.1109/ICC.2018.8422584
10.1109/LCOMM.2018.2800737
10.1109/LWC.2014.2342736
10.1109/JSAC.2018.2864421
10.1109/LWC.2017.2776922
10.1109/MCOM.2016.7470933
10.1109/TVT.2018.2811942
10.1109/TCOMM.2014.2359878
10.1109/ICC.2018.8422581
10.1109/TWC.2016.2531652
10.1109/TCOMM.2018.2880468
10.1109/TWC.2018.2838134
10.1109/LCOMM.2016.2553103
10.1109/TWC.2017.2789293
10.1109/LCOMM.2016.2578312
10.1109/TWC.2017.2785305
10.1561/2200000050
10.1109/TCOMM.2006.877962
10.1109/LCOMM.2016.2633248
10.1017/CBO9780511804441
10.1109/COMST.2014.2368999
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCOMM.2019.2911294
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 5688
ExternalDocumentID 10_1109_TCOMM_2019_2911294
8691564
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871137
  funderid: 10.13039/501100001809
– fundername: German Research Foundation (DFG) research
  grantid: SCHM 2643/17
– fundername: Southeast University
  grantid: 2019D08
  funderid: 10.13039/501100008081
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
ZCA
ZCG
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c225t-e7e209f693cae37f1fbc4e88ccfbb742e46a1d0e5e674ea241e194002fc73cfd3
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Mon Jun 30 10:15:38 EDT 2025
Tue Jul 01 02:51:30 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Wed Aug 27 02:41:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c225t-e7e209f693cae37f1fbc4e88ccfbb742e46a1d0e5e674ea241e194002fc73cfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4854-8839
0000-0002-9929-2925
0000-0002-1047-9436
PQID 2275591238
PQPubID 85472
PageCount 15
ParticipantIDs crossref_primary_10_1109_TCOMM_2019_2911294
proquest_journals_2275591238
crossref_citationtrail_10_1109_TCOMM_2019_2911294
ieee_primary_8691564
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
boyd (ref26) 2017
ref12
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
clerckx (ref29) 2018
arnold (ref25) 1993
hunger (ref28) 2005
ref24
ref23
ref20
ref22
ref21
xie (ref15) 0
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1109/MCOM.2015.7081084
– ident: ref10
  doi: 10.1109/TCOMM.2016.2611512
– ident: ref3
  doi: 10.1109/COMST.2015.2495297
– ident: ref16
  doi: 10.1109/GLOCOMW.2017.8269097
– ident: ref5
  doi: 10.1109/LWC.2017.2752161
– year: 2018
  ident: ref29
  publication-title: Fundamentals of wireless information and power transfer From RF energy harvester models to signal and system designs
– ident: ref19
  doi: 10.1109/JSAC.2018.2864426
– ident: ref20
  doi: 10.1109/ICC.2018.8422584
– ident: ref9
  doi: 10.1109/LCOMM.2018.2800737
– ident: ref4
  doi: 10.1109/LWC.2014.2342736
– ident: ref14
  doi: 10.1109/JSAC.2018.2864421
– year: 2005
  ident: ref28
  publication-title: Floating Point Operations in Matrix-Vector Calculus
– ident: ref12
  doi: 10.1109/LWC.2017.2776922
– ident: ref1
  doi: 10.1109/MCOM.2016.7470933
– ident: ref13
  doi: 10.1109/TVT.2018.2811942
– ident: ref22
  doi: 10.1109/TCOMM.2014.2359878
– year: 2017
  ident: ref26
  publication-title: EE364b Convex Optimization II Course Notes
– ident: ref32
  doi: 10.1109/ICC.2018.8422581
– ident: ref8
  doi: 10.1109/TWC.2016.2531652
– year: 0
  ident: ref15
  article-title: Throughput maximization for UAV-enabled wireless powered communication networks
  publication-title: IEEE Internet of Things Journal
– start-page: 242
  year: 1993
  ident: ref25
  publication-title: Four Unit Mathematics
– ident: ref21
  doi: 10.1109/TCOMM.2018.2880468
– ident: ref17
  doi: 10.1109/TWC.2018.2838134
– ident: ref11
  doi: 10.1109/LCOMM.2016.2553103
– ident: ref7
  doi: 10.1109/TWC.2017.2789293
– ident: ref2
  doi: 10.1109/LCOMM.2016.2578312
– ident: ref18
  doi: 10.1109/TWC.2017.2785305
– ident: ref27
  doi: 10.1561/2200000050
– ident: ref30
  doi: 10.1109/TCOMM.2006.877962
– ident: ref6
  doi: 10.1109/LCOMM.2016.2633248
– ident: ref31
  doi: 10.1017/CBO9780511804441
– ident: ref24
  doi: 10.1109/COMST.2014.2368999
SSID ssj0004033
Score 2.5683558
Snippet In this paper, we study an unmanned aerial vehicle (UAV)-enabled wireless power transfer network, where a UAV flies at a constant altitude in the sky to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5674
SubjectTerms Algorithms
Complexity
Complexity theory
Constraints
energy fairness
Equivalence
Hovering
Network topology
Nodes
Optimization
successive hover-and-fly
Topology
Trajectories
Trajectory
trajectory design
Unmanned aerial vehicle
Unmanned aerial vehicles
Wireless communication
Wireless networks
wireless power transfer
Wireless power transmission
Wireless sensor networks
Title Optimal 1D Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer
URI https://ieeexplore.ieee.org/document/8691564
https://www.proquest.com/docview/2275591238
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjywQdI8nIfHqg9VSGkZWtQtSpzzAKVFJR3g12M7SXkKsWWwLctn-7tzvu8O4Ep6AYKm1DUwUJKcQKARMh-N1OY2zwQLPV0lIhr7oxm9nXvzGtxstTCIqMlnaKpP_S8_W_GNeirrhD5TuU3qUJeBW6HV-tBAWm6ZcVLR2YOwEshYrDPtTaJIsbiY6TDlX9AvIKSrqvy4ijW-DPchqmZW0EoezU2emvztW9LG_079APZKR5N0i51xCDVcHsHup_SDTRhP5H3xJBvZfSIx60E_4L-SviZ1EOnNkln33hhodVVGtFRXvWkQxZhdyBuS3KkSa0TDncD1McyGg2lvZJT1FQwuT3EuzYOOxYTPXJ6gGwhbpJxiGHIu0lSGzEj9xM4s9NAPKCYS69FWddQdwQOXi8w9gcZytcRTINyiPEtlfyFcBXdMcE86MxgiTTJm8xbY1YLHvEw-rmpgLGIdhFgs1kaKlZHi0kgtuN72eS5Sb_zZuqlWfduyXPAWtCu7xuXpfIkdJ5CBlMTs8Oz3Xuewo8YuiH5taOTrDV5I5yNPL_Wuewc2vdXh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU8IwEN5BPKgHX-iIoubgTQtNmz5yZEAGHwUP4HDr0HRzUAQH4aC_3iQt-BzHWw-bSSab5Nuk37cLcKaiAMkS5loYaElOINEKuY9WQgUVqeShZ6pERB2_3WfXA29QgIulFgYRDfkMq_rT_MtPJ2Kun8pqoc91bpMVWFW479FMrfWhgrTdPOekJrQH4UIiY_Nar9GNIs3j4lWH6wiDfYEhU1flx2FsEKa1BdFibBmx5LE6nyVV8fYtbeN_B78Nm3moSerZ2tiBAo53YeNTAsISdLrqxHhSRrRJFGo9mCf8V9I0tA6i4lnSr99bl0ZflRIj1tWvGkRzZkfqjCR3usgaMYAncboH_dZlr9G28goLllD7eKYchI7Npc9dMUQ3kFQmgmEYCiGTRF2akflDmtrooR8wHCq0R6orqTtSBK6QqbsPxfFkjAdAhM1Emqj2Uroa8LgUngpnMEQ2TDkVZaCLCY9Fnn5cV8EYxeYaYvPYOCnWTopzJ5XhfNnmOUu-8ad1Sc_60jKf8DJUFn6N8_35EjtOoK5SCrXDw99bncJauxfdxrdXnZsjWNf9ZLS_ChRn0zkeq1BklpyYFfgOiJDZKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+1D+Trajectory+Design+for+UAV-Enabled+Multiuser+Wireless+Power+Transfer&rft.jtitle=IEEE+transactions+on+communications&rft.au=Hu%2C+Yulin&rft.au=Yuan%2C+Xiaopeng&rft.au=Xu%2C+Jie&rft.au=Schmeink%2C+Anke&rft.date=2019-08-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=67&rft.issue=8&rft.spage=5674&rft.epage=5688&rft_id=info:doi/10.1109%2FTCOMM.2019.2911294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2019_2911294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon