Optimal 1D Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer
In this paper, we study an unmanned aerial vehicle (UAV)-enabled wireless power transfer network, where a UAV flies at a constant altitude in the sky to provide wireless energy supply for a set of ground nodes with a linear topology. Our objective is to maximize the minimum received energy among all...
Saved in:
Published in | IEEE transactions on communications Vol. 67; no. 8; pp. 5674 - 5688 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study an unmanned aerial vehicle (UAV)-enabled wireless power transfer network, where a UAV flies at a constant altitude in the sky to provide wireless energy supply for a set of ground nodes with a linear topology. Our objective is to maximize the minimum received energy among all ground nodes by optimizing the UAV's one-dimensional (1D) trajectory, subject to the maximum UAV flying speed constraint. Different from previous works that only provided heuristic and locally optimal solutions, this paper is the first to present the globally optimal 1D UAV trajectory solution to the considered min-energy maximization problem. Toward this end, we first show that for any given speed-constrained UAV trajectory, we can always construct a maximum-speed trajectory and a speed-free trajectory, such that their combination can achieve the same received energy at all these ground nodes. Next, we transform the UAV-speed-constrained trajectory design problem into an equivalent UAV-speed-free problem, which is then optimally solved via the Lagrange dual method. The optimal 1D UAV trajectory solution follows the so-called successive hover-and-fly structure, i.e., the UAV successively hovers at a finite number of hovering points each for an optimized hovering duration, and flies among these hovering points at the maximum speed. Building upon the optimal UAV trajectory structure, we further present a low-complexity UAV trajectory design by first transforming the original problem into an equivalent non-convex problem with only the UAV hovering locations and durations as optimization variables and then updating the trajectory via the successive convex approximation technique. Our analysis shows that the low-complexity design is guaranteed to converge to a suboptimal solution at a significantly lower complexity irrespective of the geographical network size. Numerical results show that the proposed low-complexity design actually achieves the same performance as the proposed optimal solution, and both of them outperform the benchmark algorithms in prior works under different scenarios. |
---|---|
AbstractList | In this paper, we study an unmanned aerial vehicle (UAV)-enabled wireless power transfer network, where a UAV flies at a constant altitude in the sky to provide wireless energy supply for a set of ground nodes with a linear topology. Our objective is to maximize the minimum received energy among all ground nodes by optimizing the UAV’s one-dimensional (1D) trajectory, subject to the maximum UAV flying speed constraint. Different from previous works that only provided heuristic and locally optimal solutions, this paper is the first to present the globally optimal 1D UAV trajectory solution to the considered min-energy maximization problem. Toward this end, we first show that for any given speed-constrained UAV trajectory, we can always construct a maximum-speed trajectory and a speed-free trajectory, such that their combination can achieve the same received energy at all these ground nodes. Next, we transform the UAV-speed-constrained trajectory design problem into an equivalent UAV-speed-free problem, which is then optimally solved via the Lagrange dual method. The optimal 1D UAV trajectory solution follows the so-called successive hover-and-fly structure, i.e., the UAV successively hovers at a finite number of hovering points each for an optimized hovering duration, and flies among these hovering points at the maximum speed. Building upon the optimal UAV trajectory structure, we further present a low-complexity UAV trajectory design by first transforming the original problem into an equivalent non-convex problem with only the UAV hovering locations and durations as optimization variables and then updating the trajectory via the successive convex approximation technique. Our analysis shows that the low-complexity design is guaranteed to converge to a suboptimal solution at a significantly lower complexity irrespective of the geographical network size. Numerical results show that the proposed low-complexity design actually achieves the same performance as the proposed optimal solution, and both of them outperform the benchmark algorithms in prior works under different scenarios. |
Author | Yuan, Xiaopeng Xu, Jie Schmeink, Anke Hu, Yulin |
Author_xml | – sequence: 1 givenname: Yulin orcidid: 0000-0002-1047-9436 surname: Hu fullname: Hu, Yulin email: hu@umic.rwthaachen.de organization: ISEK Research Group, RWTH Aachen University, Aachen, Germany – sequence: 2 givenname: Xiaopeng surname: Yuan fullname: Yuan, Xiaopeng email: xiaopeng.yuan@rwth-aachen.de organization: ISEK Research Group, RWTH Aachen University, Aachen, Germany – sequence: 3 givenname: Jie orcidid: 0000-0002-4854-8839 surname: Xu fullname: Xu, Jie email: jiexu@gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzhou, China – sequence: 4 givenname: Anke orcidid: 0000-0002-9929-2925 surname: Schmeink fullname: Schmeink, Anke email: schmeink@umic.rwth-aachen.de organization: ISEK Research Group, RWTH Aachen University, Aachen, Germany |
BookMark | eNp9kE1PAjEURRuDiYD-Ad00cT3YdtppuySAHwmIC9Bl0ymvZsg4g-1MDP_eQYgLF65uXnLPu8kZoF5VV4DQNSUjSom-W02Wi8WIEapHTFPKND9DfSqESogSsof6hGiSZFKqCzSIcUsI4SRN--h5uWuKD1tiOsWrYLfgmjrs8RRi8V5hXwe8Hr8ms8rmJWzwoi2boo0Q8FsRoIQY8Uv91Z0dWkUP4RKde1tGuDrlEK3vZ6vJYzJfPjxNxvPEMSaaBCQwon2mU2chlZ763HFQyjmf55Iz4JmlGwICMsnBMk6Bak4I806mzm_SIbo9_t2F-rOF2Jht3YaqmzSMSSE0ZanqWurYcqGOMYA3rmhsU9RVE2xRGkrMwZ75sWcO9szJXoeyP-gudJ7C_n_o5ggVAPALqExTkfH0G4ohfVM |
CODEN | IECMBT |
CitedBy_id | crossref_primary_10_1109_JSAC_2022_3196108 crossref_primary_10_3390_s22239215 crossref_primary_10_1109_TVT_2020_3026788 crossref_primary_10_1109_JSAC_2021_3088693 crossref_primary_10_1109_TCOMM_2022_3170458 crossref_primary_10_1109_TVT_2021_3090849 crossref_primary_10_3390_s23062994 crossref_primary_10_1109_JSAC_2021_3088690 crossref_primary_10_1109_LWC_2020_3013296 crossref_primary_10_1109_OJVT_2024_3508026 crossref_primary_10_3390_mi13060977 crossref_primary_10_1109_TVT_2022_3147567 crossref_primary_10_1109_JIOT_2020_3005133 crossref_primary_10_3390_s23187779 crossref_primary_10_1109_TVT_2022_3212868 crossref_primary_10_1109_TVT_2020_2980683 crossref_primary_10_1007_s11235_024_01128_3 crossref_primary_10_3390_app13085136 crossref_primary_10_1109_TVT_2022_3186787 crossref_primary_10_3390_rs13132611 crossref_primary_10_1109_JIOT_2023_3274549 crossref_primary_10_1016_j_comcom_2023_05_013 crossref_primary_10_1109_TVT_2020_3015246 crossref_primary_10_1109_JIOT_2023_3281584 crossref_primary_10_1109_OJSP_2020_3036276 crossref_primary_10_3390_s20092598 crossref_primary_10_1109_JIOT_2021_3126290 crossref_primary_10_1109_JSYST_2022_3215279 crossref_primary_10_1109_TMC_2023_3240763 crossref_primary_10_1109_TMC_2022_3188473 crossref_primary_10_1109_JSAC_2021_3088627 crossref_primary_10_3390_electronics12204275 crossref_primary_10_3390_s21134281 crossref_primary_10_32604_cmc_2022_025736 crossref_primary_10_1109_TCOMM_2020_2971488 crossref_primary_10_1016_j_comcom_2023_12_011 crossref_primary_10_1109_TVT_2019_2961993 crossref_primary_10_1016_j_comnet_2021_108415 crossref_primary_10_1109_TGCN_2021_3093718 crossref_primary_10_3390_drones7060354 crossref_primary_10_3390_photonics11121136 crossref_primary_10_1109_TGCN_2020_2988270 crossref_primary_10_1109_TWC_2020_3007766 crossref_primary_10_1109_TWC_2020_2989302 crossref_primary_10_3390_s19184032 crossref_primary_10_1109_ACCESS_2020_3021672 crossref_primary_10_1109_TGCN_2020_3007588 crossref_primary_10_1109_TWC_2021_3092293 crossref_primary_10_3390_en17071617 crossref_primary_10_1109_JIOT_2021_3094651 crossref_primary_10_1109_TITS_2023_3300777 crossref_primary_10_1109_TWC_2021_3067163 crossref_primary_10_1109_TCOMM_2021_3124957 crossref_primary_10_3390_s22186859 crossref_primary_10_3390_drones6060147 crossref_primary_10_1109_TWC_2023_3281730 crossref_primary_10_1007_s11370_022_00452_4 crossref_primary_10_1109_TVT_2024_3387752 crossref_primary_10_1109_TWC_2022_3222067 crossref_primary_10_1109_TWC_2022_3149636 crossref_primary_10_1109_TCOMM_2020_3025568 crossref_primary_10_1007_s11036_019_01398_1 crossref_primary_10_1109_JSAC_2021_3088681 crossref_primary_10_1109_JSAC_2021_3088682 crossref_primary_10_1109_TGCN_2021_3073916 crossref_primary_10_3390_drones8110668 crossref_primary_10_1109_ACCESS_2020_2994494 crossref_primary_10_1109_TWC_2020_3030773 crossref_primary_10_3390_s19224884 crossref_primary_10_1049_iet_com_2019_1207 crossref_primary_10_1109_ACCESS_2023_3349208 crossref_primary_10_3390_electronics13214237 crossref_primary_10_1109_TWC_2020_3035425 crossref_primary_10_1016_j_pmcj_2023_101820 crossref_primary_10_2139_ssrn_4187010 crossref_primary_10_1109_JIOT_2022_3150616 crossref_primary_10_3390_s20113034 |
Cites_doi | 10.1109/MCOM.2015.7081084 10.1109/TCOMM.2016.2611512 10.1109/COMST.2015.2495297 10.1109/GLOCOMW.2017.8269097 10.1109/LWC.2017.2752161 10.1109/JSAC.2018.2864426 10.1109/ICC.2018.8422584 10.1109/LCOMM.2018.2800737 10.1109/LWC.2014.2342736 10.1109/JSAC.2018.2864421 10.1109/LWC.2017.2776922 10.1109/MCOM.2016.7470933 10.1109/TVT.2018.2811942 10.1109/TCOMM.2014.2359878 10.1109/ICC.2018.8422581 10.1109/TWC.2016.2531652 10.1109/TCOMM.2018.2880468 10.1109/TWC.2018.2838134 10.1109/LCOMM.2016.2553103 10.1109/TWC.2017.2789293 10.1109/LCOMM.2016.2578312 10.1109/TWC.2017.2785305 10.1561/2200000050 10.1109/TCOMM.2006.877962 10.1109/LCOMM.2016.2633248 10.1017/CBO9780511804441 10.1109/COMST.2014.2368999 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCOMM.2019.2911294 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0857 |
EndPage | 5688 |
ExternalDocumentID | 10_1109_TCOMM_2019_2911294 8691564 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61871137 funderid: 10.13039/501100001809 – fundername: German Research Foundation (DFG) research grantid: SCHM 2643/17 – fundername: Southeast University grantid: 2019D08 funderid: 10.13039/501100008081 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ZCA ZCG AAYOK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c225t-e7e209f693cae37f1fbc4e88ccfbb742e46a1d0e5e674ea241e194002fc73cfd3 |
IEDL.DBID | RIE |
ISSN | 0090-6778 |
IngestDate | Mon Jun 30 10:15:38 EDT 2025 Tue Jul 01 02:51:30 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Wed Aug 27 02:41:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c225t-e7e209f693cae37f1fbc4e88ccfbb742e46a1d0e5e674ea241e194002fc73cfd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4854-8839 0000-0002-9929-2925 0000-0002-1047-9436 |
PQID | 2275591238 |
PQPubID | 85472 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TCOMM_2019_2911294 proquest_journals_2275591238 crossref_citationtrail_10_1109_TCOMM_2019_2911294 ieee_primary_8691564 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on communications |
PublicationTitleAbbrev | TCOMM |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 boyd (ref26) 2017 ref12 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 clerckx (ref29) 2018 arnold (ref25) 1993 hunger (ref28) 2005 ref24 ref23 ref20 ref22 ref21 xie (ref15) 0 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref23 doi: 10.1109/MCOM.2015.7081084 – ident: ref10 doi: 10.1109/TCOMM.2016.2611512 – ident: ref3 doi: 10.1109/COMST.2015.2495297 – ident: ref16 doi: 10.1109/GLOCOMW.2017.8269097 – ident: ref5 doi: 10.1109/LWC.2017.2752161 – year: 2018 ident: ref29 publication-title: Fundamentals of wireless information and power transfer From RF energy harvester models to signal and system designs – ident: ref19 doi: 10.1109/JSAC.2018.2864426 – ident: ref20 doi: 10.1109/ICC.2018.8422584 – ident: ref9 doi: 10.1109/LCOMM.2018.2800737 – ident: ref4 doi: 10.1109/LWC.2014.2342736 – ident: ref14 doi: 10.1109/JSAC.2018.2864421 – year: 2005 ident: ref28 publication-title: Floating Point Operations in Matrix-Vector Calculus – ident: ref12 doi: 10.1109/LWC.2017.2776922 – ident: ref1 doi: 10.1109/MCOM.2016.7470933 – ident: ref13 doi: 10.1109/TVT.2018.2811942 – ident: ref22 doi: 10.1109/TCOMM.2014.2359878 – year: 2017 ident: ref26 publication-title: EE364b Convex Optimization II Course Notes – ident: ref32 doi: 10.1109/ICC.2018.8422581 – ident: ref8 doi: 10.1109/TWC.2016.2531652 – year: 0 ident: ref15 article-title: Throughput maximization for UAV-enabled wireless powered communication networks publication-title: IEEE Internet of Things Journal – start-page: 242 year: 1993 ident: ref25 publication-title: Four Unit Mathematics – ident: ref21 doi: 10.1109/TCOMM.2018.2880468 – ident: ref17 doi: 10.1109/TWC.2018.2838134 – ident: ref11 doi: 10.1109/LCOMM.2016.2553103 – ident: ref7 doi: 10.1109/TWC.2017.2789293 – ident: ref2 doi: 10.1109/LCOMM.2016.2578312 – ident: ref18 doi: 10.1109/TWC.2017.2785305 – ident: ref27 doi: 10.1561/2200000050 – ident: ref30 doi: 10.1109/TCOMM.2006.877962 – ident: ref6 doi: 10.1109/LCOMM.2016.2633248 – ident: ref31 doi: 10.1017/CBO9780511804441 – ident: ref24 doi: 10.1109/COMST.2014.2368999 |
SSID | ssj0004033 |
Score | 2.5683558 |
Snippet | In this paper, we study an unmanned aerial vehicle (UAV)-enabled wireless power transfer network, where a UAV flies at a constant altitude in the sky to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5674 |
SubjectTerms | Algorithms Complexity Complexity theory Constraints energy fairness Equivalence Hovering Network topology Nodes Optimization successive hover-and-fly Topology Trajectories Trajectory trajectory design Unmanned aerial vehicle Unmanned aerial vehicles Wireless communication Wireless networks wireless power transfer Wireless power transmission Wireless sensor networks |
Title | Optimal 1D Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer |
URI | https://ieeexplore.ieee.org/document/8691564 https://www.proquest.com/docview/2275591238 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjywQdI8nIfHqg9VSGkZWtQtSpzzAKVFJR3g12M7SXkKsWWwLctn-7tzvu8O4Ep6AYKm1DUwUJKcQKARMh-N1OY2zwQLPV0lIhr7oxm9nXvzGtxstTCIqMlnaKpP_S8_W_GNeirrhD5TuU3qUJeBW6HV-tBAWm6ZcVLR2YOwEshYrDPtTaJIsbiY6TDlX9AvIKSrqvy4ijW-DPchqmZW0EoezU2emvztW9LG_079APZKR5N0i51xCDVcHsHup_SDTRhP5H3xJBvZfSIx60E_4L-SviZ1EOnNkln33hhodVVGtFRXvWkQxZhdyBuS3KkSa0TDncD1McyGg2lvZJT1FQwuT3EuzYOOxYTPXJ6gGwhbpJxiGHIu0lSGzEj9xM4s9NAPKCYS69FWddQdwQOXi8w9gcZytcRTINyiPEtlfyFcBXdMcE86MxgiTTJm8xbY1YLHvEw-rmpgLGIdhFgs1kaKlZHi0kgtuN72eS5Sb_zZuqlWfduyXPAWtCu7xuXpfIkdJ5CBlMTs8Oz3Xuewo8YuiH5taOTrDV5I5yNPL_Wuewc2vdXh |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LU8IwEN5BPKgHX-iIoubgTQtNmz5yZEAGHwUP4HDr0HRzUAQH4aC_3iQt-BzHWw-bSSab5Nuk37cLcKaiAMkS5loYaElOINEKuY9WQgUVqeShZ6pERB2_3WfXA29QgIulFgYRDfkMq_rT_MtPJ2Kun8pqoc91bpMVWFW479FMrfWhgrTdPOekJrQH4UIiY_Nar9GNIs3j4lWH6wiDfYEhU1flx2FsEKa1BdFibBmx5LE6nyVV8fYtbeN_B78Nm3moSerZ2tiBAo53YeNTAsISdLrqxHhSRrRJFGo9mCf8V9I0tA6i4lnSr99bl0ZflRIj1tWvGkRzZkfqjCR3usgaMYAncboH_dZlr9G28goLllD7eKYchI7Npc9dMUQ3kFQmgmEYCiGTRF2akflDmtrooR8wHCq0R6orqTtSBK6QqbsPxfFkjAdAhM1Emqj2Uroa8LgUngpnMEQ2TDkVZaCLCY9Fnn5cV8EYxeYaYvPYOCnWTopzJ5XhfNnmOUu-8ad1Sc_60jKf8DJUFn6N8_35EjtOoK5SCrXDw99bncJauxfdxrdXnZsjWNf9ZLS_ChRn0zkeq1BklpyYFfgOiJDZKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+1D+Trajectory+Design+for+UAV-Enabled+Multiuser+Wireless+Power+Transfer&rft.jtitle=IEEE+transactions+on+communications&rft.au=Hu%2C+Yulin&rft.au=Yuan%2C+Xiaopeng&rft.au=Xu%2C+Jie&rft.au=Schmeink%2C+Anke&rft.date=2019-08-01&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=67&rft.issue=8&rft.spage=5674&rft.epage=5688&rft_id=info:doi/10.1109%2FTCOMM.2019.2911294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCOMM_2019_2911294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |