Preparation, anticorrosion and antifouling behavior of halloysite-loaded nanocomposite with CAP and BTA

Purpose The purpose of this paper is to prepare a multifunctional nanocomposite that is slow-release and resistant to seawater corrosion and biofouling corrosion and to explore the synergistic effect between the two corrosion inhibitors. Design/methodology/approach The morphology, structure and rele...

Full description

Saved in:
Bibliographic Details
Published inAnti-corrosion methods and materials Vol. 71; no. 4; pp. 380 - 390
Main Authors Diao, Yaqi, Wang, Jihui, Song, Renhong, Fei, Xue, Xue, Zhichang, Hu, Wenbin
Format Journal Article
LanguageEnglish
Published Bradford Emerald Group Publishing Limited 17.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose The purpose of this paper is to prepare a multifunctional nanocomposite that is slow-release and resistant to seawater corrosion and biofouling corrosion and to explore the synergistic effect between the two corrosion inhibitors. Design/methodology/approach The morphology, structure and release properties of CAP@HNTs, BTA@HNTs and CAP/BTA@HNTs were investigated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, specific surface area analysis and UV spectrophotometry. The corrosion resistance and antimicrobial properties were investigated by electrochemical measurements and bioinhibition rate tests, and the synergistic effect between the two corrosion inhibitors was explored by X-ray photoelectron spectroscopy. Findings The CAP/BTA@HNTs are responsive to acidic environments and have significantly improved antibacterial and corrosion resistance compared with CAP@HNTs and BTA@HNTs. CAP and BTA have a positive synergistic effect on anticorrosion and antifouling. Originality/value Two types of inhibitors, anticorrosion and antifouling, were loaded into the same nanocontainer to prepare a slow-releasable and multifunctional nanocomposite with higher resistance to seawater corrosion and biocorrosion and to explore the synergistic effect of CAP and BTA on corrosion resistance.
AbstractList Purpose The purpose of this paper is to prepare a multifunctional nanocomposite that is slow-release and resistant to seawater corrosion and biofouling corrosion and to explore the synergistic effect between the two corrosion inhibitors. Design/methodology/approach The morphology, structure and release properties of CAP@HNTs, BTA@HNTs and CAP/BTA@HNTs were investigated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, specific surface area analysis and UV spectrophotometry. The corrosion resistance and antimicrobial properties were investigated by electrochemical measurements and bioinhibition rate tests, and the synergistic effect between the two corrosion inhibitors was explored by X-ray photoelectron spectroscopy. Findings The CAP/BTA@HNTs are responsive to acidic environments and have significantly improved antibacterial and corrosion resistance compared with CAP@HNTs and BTA@HNTs. CAP and BTA have a positive synergistic effect on anticorrosion and antifouling. Originality/value Two types of inhibitors, anticorrosion and antifouling, were loaded into the same nanocontainer to prepare a slow-releasable and multifunctional nanocomposite with higher resistance to seawater corrosion and biocorrosion and to explore the synergistic effect of CAP and BTA on corrosion resistance.
PurposeThe purpose of this paper is to prepare a multifunctional nanocomposite that is slow-release and resistant to seawater corrosion and biofouling corrosion and to explore the synergistic effect between the two corrosion inhibitors.Design/methodology/approachThe morphology, structure and release properties of CAP@HNTs, BTA@HNTs and CAP/BTA@HNTs were investigated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, specific surface area analysis and UV spectrophotometry. The corrosion resistance and antimicrobial properties were investigated by electrochemical measurements and bioinhibition rate tests, and the synergistic effect between the two corrosion inhibitors was explored by X-ray photoelectron spectroscopy.FindingsThe CAP/BTA@HNTs are responsive to acidic environments and have significantly improved antibacterial and corrosion resistance compared with CAP@HNTs and BTA@HNTs. CAP and BTA have a positive synergistic effect on anticorrosion and antifouling.Originality/valueTwo types of inhibitors, anticorrosion and antifouling, were loaded into the same nanocontainer to prepare a slow-releasable and multifunctional nanocomposite with higher resistance to seawater corrosion and biocorrosion and to explore the synergistic effect of CAP and BTA on corrosion resistance.
Author Wang, Jihui
Song, Renhong
Fei, Xue
Hu, Wenbin
Xue, Zhichang
Diao, Yaqi
Author_xml – sequence: 1
  givenname: Yaqi
  surname: Diao
  fullname: Diao, Yaqi
– sequence: 2
  givenname: Jihui
  surname: Wang
  fullname: Wang, Jihui
– sequence: 3
  givenname: Renhong
  surname: Song
  fullname: Song, Renhong
– sequence: 4
  givenname: Xue
  surname: Fei
  fullname: Fei, Xue
– sequence: 5
  givenname: Zhichang
  surname: Xue
  fullname: Xue, Zhichang
– sequence: 6
  givenname: Wenbin
  surname: Hu
  fullname: Hu, Wenbin
BookMark eNpNkM1OwzAQhC1UJNrCA3CLxBWDvY5r5xgi_qRW9FDOluvYbarUDk4K6tuTtBw47c5oNKv9Jmjkg7cI3VLyQCmRj3mxWGBCMRBIMWScXaAxIYRhzrNs9G-_QpO23fUSIBVjtFlG2-iouyr4-0T7rjIhxtD2slflyXHhUFd-k6ztVn9XISbBJVtd1-HYVp3FddClLROvfTBh34TBTH6qbpsU-fJU8rTKr9Gl03Vrb_7mFH2-PK-KNzz_eH0v8jk2ALzDZToruRFCgrWOMSK40YRwPeNgZGakBpM6acXMcuBOpoZqKo02xAFfS87YFN2de5sYvg627dQuHKLvTypGuBAZgIQ-Rc8p07_aRutUE6u9jkdFiRp4qoGnIlQNPNXAk_0CqFhrGA
Cites_doi 10.1108/ACMM-11-2022-2725
10.1108/ACMM-03-2022-2629
10.1016/j.apsusc.2019.02.149
10.1016/j.colsurfa.2021.126824
10.1108/ACMM-08-2021-2532
10.1016/j.bioelechem.2013.07.002
10.1016/j.ijbiomac.2020.08.060
10.1016/j.colsurfa.2018.05.072
10.1016/j.clay.2021.106266
10.1016/j.porgcoat.2017.05.018
10.1108/ACMM-03-2020-2274
10.1016/j.corsci.2022.110663
10.1016/j.cej.2018.08.181
10.1016/j.cej.2021.128993
10.1016/j.porgcoat.2019.105434
10.1108/ACMM-12-2021-2580
10.1002/adma.201502341
10.1016/j.porgcoat.2019.105233
10.1016/j.pmatsci.2021.100889
10.1016/j.matdes.2017.04.024
10.1088/2053-1591/ab352a
10.1016/j.msec.2019.110361
10.1016/j.cplett.2019.01.033
10.1016/j.cjche.2019.03.024
10.1016/j.colsurfa.2018.05.062
10.1016/j.bioactmat.2019.04.003
ContentType Journal Article
Copyright Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7SE
7SR
8BQ
8FD
F1W
F28
FR3
H96
JG9
L.G
DOI 10.1108/ACMM-01-2024-2953
DatabaseName CrossRef
Corrosion Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Materials Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Materials Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineered Materials Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Corrosion Abstracts
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 0003-5599
1758-4221
EndPage 390
ExternalDocumentID 10_1108_ACMM_01_2024_2953
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID -~X
0R~
23M
4.4
490
5GY
5VS
6J9
70U
7WY
9E0
AAMCF
AATHL
AAUDR
AAYXX
ABIJV
ABKQV
ABSDC
ABYQI
ACGFS
ACGOD
ACIWK
ACZLT
ADOMW
AEBZA
AENEX
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
AODMV
ASMFL
AUCOK
BENPR
BHPHI
CITATION
CS3
EBS
ECCUG
FNNZZ
GEI
GEL
GQ.
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HZ~
IPNFZ
J1Y
JI-
JL0
K6~
KBGRL
M0F
M42
O9-
P2P
RIG
RWL
SBBZN
TAE
UNMZH
7SE
7SR
8BQ
8FD
F1W
F28
FR3
H96
JG9
L.G
ID FETCH-LOGICAL-c225t-d46d5c7782eef33075ca005a652c89c8a2c4f8e76e525f84c1a18cac0f25b8533
IEDL.DBID GEI
ISSN 0003-5599
IngestDate Thu Nov 07 08:36:29 EST 2024
Thu Sep 12 18:42:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c225t-d46d5c7782eef33075ca005a652c89c8a2c4f8e76e525f84c1a18cac0f25b8533
PQID 3057792282
PQPubID 25903
PageCount 11
ParticipantIDs proquest_journals_3057792282
crossref_primary_10_1108_ACMM_01_2024_2953
PublicationCentury 2000
PublicationDate 2024-05-17
PublicationDateYYYYMMDD 2024-05-17
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-17
  day: 17
PublicationDecade 2020
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Anti-corrosion methods and materials
PublicationYear 2024
Publisher Emerald Group Publishing Limited
Publisher_xml – name: Emerald Group Publishing Limited
References (key2024051606190045400_ref009) 2021; 415
(key2024051606190045400_ref021) 2019; 479
(key2024051606190045400_ref029) 2023; 70
(key2024051606190045400_ref017) 2020; 139
(key2024051606190045400_ref001) 2019; 136
(key2024051606190045400_ref005) 2019; 356
(key2024051606190045400_ref022) 2019; 718
(key2024051606190045400_ref011) 2016; 28
(key2024051606190045400_ref027) 2019; 27
(key2024051606190045400_ref003) 2021; 239
(key2024051606190045400_ref018) 2017; 126
(key2024051606190045400_ref014) 2014; 97
(key2024051606190045400_ref013) 2021; 213
(key2024051606190045400_ref015) 2022; 69
(key2024051606190045400_ref023) 2022; 69
(key2024051606190045400_ref010) 2022; 69
(key2024051606190045400_ref019) 2018; 553
(key2024051606190045400_ref025) 2017; 111
(key2024051606190045400_ref006) 2021; 624
(key2024051606190045400_ref007) 2022; 124
(key2024051606190045400_ref020) 2018; 553
(key2024051606190045400_ref008) 2019; 4
(key2024051606190045400_ref004) 2020; 108
(key2024051606190045400_ref002) 2020; 162
(key2024051606190045400_ref024) 2022; 68
(key2024051606190045400_ref012) 2022; 208
(key2024051606190045400_ref016) 2022; 69
(key2024051606190045400_ref026) 2016; 28
(key2024051606190045400_ref028) 2019; 6
References_xml – volume: 28
  start-page: 269
  issue: 3
  year: 2016
  ident: key2024051606190045400_ref026
  article-title: Latest research progress of marine anticorrosion coatings
  publication-title: Corrosion Science
– volume: 70
  start-page: 78
  issue: 2
  year: 2023
  ident: key2024051606190045400_ref029
  article-title: A novel method for identifying corrosion types and transitions based on Adaboost and electrochemical noise
  publication-title: Anti-Corrosion Methods and Materials
  doi: 10.1108/ACMM-11-2022-2725
– volume: 69
  start-page: 514
  issue: 5
  year: 2022
  ident: key2024051606190045400_ref015
  article-title: Ce-loaded silica nanoparticles in the epoxy nanocomposite coating for anticorrosion protection of carbon steel
  publication-title: Anti-Corrosion Methods and Materials
  doi: 10.1108/ACMM-03-2022-2629
– volume: 479
  start-page: 835
  year: 2019
  ident: key2024051606190045400_ref021
  article-title: Preparation and inhibition behavior of ZnMoO4/reduced graphene oxide composite for Q235 steel in NaCl solution
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2019.02.149
– volume: 239
  start-page: 108870
  year: 2021
  ident: key2024051606190045400_ref003
  article-title: Molecular and biochemical effects of the antifouling DCOIT in the mussel Perna perna
  publication-title: Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology
– volume: 624
  start-page: 126824
  year: 2021
  ident: key2024051606190045400_ref006
  article-title: Inhibition of carbon steel corrosion in HCl solution using N-oleyl-1, 3-propanediamine based formulation
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  doi: 10.1016/j.colsurfa.2021.126824
– volume: 69
  start-page: 371
  issue: 4
  year: 2022
  ident: key2024051606190045400_ref016
  article-title: Modification and corrosion resistance of halloysite carrier with metal nanoinhibitor in marine corrosion environment
  publication-title: Anti-Corrosion Methods and Materials
  doi: 10.1108/ACMM-08-2021-2532
– volume: 97
  start-page: 89
  year: 2014
  ident: key2024051606190045400_ref014
  article-title: Microbiological and abiotic processes in modelling longer-term marine corrosion of steel
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2013.07.002
– volume: 162
  start-page: 1849
  year: 2020
  ident: key2024051606190045400_ref002
  article-title: Natural halloysite nanotubes/chitosan based bio-nanocomposite for delivering norfloxacin, an anti-microbial agent in sustained release manner
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2020.08.060
– volume: 553
  start-page: 295
  year: 2018
  ident: key2024051606190045400_ref020
  article-title: A novel acid-responsive HNTs-based corrosion inhibitor for protection of carbon steel
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  doi: 10.1016/j.colsurfa.2018.05.072
– volume: 213
  start-page: 106266
  year: 2021
  ident: key2024051606190045400_ref013
  article-title: Encapsulation of butylimidazole in smectite and slow release for enhanced copper corrosion inhibition
  publication-title: Applied Clay Science
  doi: 10.1016/j.clay.2021.106266
– volume: 111
  start-page: 175
  year: 2017
  ident: key2024051606190045400_ref025
  article-title: Halloysite nanotubes as nanocontainer for smart coating application: a review
  publication-title: Progress in Organic Coatings
  doi: 10.1016/j.porgcoat.2017.05.018
– volume: 69
  start-page: 183
  issue: 2
  year: 2022
  ident: key2024051606190045400_ref023
  article-title: N-containing heterocyclic benzotriazole derivatives as new corrosion inhibitor for mild steel contained in emulsion
  publication-title: Anti-Corrosion Methods and Materials
  doi: 10.1108/ACMM-03-2020-2274
– volume: 208
  start-page: 110663
  year: 2022
  ident: key2024051606190045400_ref012
  article-title: Enhanced active corrosion protection coatings for aluminum alloys with two corrosion inhibitors co-incorporated in nanocontainers
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2022.110663
– volume: 356
  start-page: 130
  year: 2019
  ident: key2024051606190045400_ref005
  article-title: pH responsive antifouling and antibacterial multilayer films with self-healing performance
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2018.08.181
– volume: 415
  start-page: 128993
  year: 2021
  ident: key2024051606190045400_ref009
  article-title: Self-healing coatings based on PropS-SH and pH-responsive HNTs-BTA nanoparticles for inhibition of pyrite oxidation to control acid mine drainage
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2021.128993
– volume: 139
  start-page: 105434
  year: 2020
  ident: key2024051606190045400_ref017
  article-title: Preparation and corrosion behavior of Cu-8-HQ@ HNTs/epoxy coating
  publication-title: Progress in Organic Coatings
  doi: 10.1016/j.porgcoat.2019.105434
– volume: 69
  start-page: 245
  issue: 3
  year: 2022
  ident: key2024051606190045400_ref010
  article-title: A novel dual-responsive halloysite nano-container for anti-corrosion coatings
  publication-title: Anti-Corrosion Methods and Materials
  doi: 10.1108/ACMM-12-2021-2580
– volume: 28
  start-page: 1227
  issue: 6
  year: 2016
  ident: key2024051606190045400_ref011
  article-title: Halloysite clay nanotubes for loading and sustained release of functional compounds
  publication-title: Advanced Materials
  doi: 10.1002/adma.201502341
– volume: 136
  start-page: 105233
  year: 2019
  ident: key2024051606190045400_ref001
  article-title: Facile fabrication of BTA@ZnO microcapsules and their corrosion protective application in waterborne polyacrylate coatings
  publication-title: Progress in Organic Coatings
  doi: 10.1016/j.porgcoat.2019.105233
– volume: 68
  start-page: 302
  issue: 4
  year: 2022
  ident: key2024051606190045400_ref024
  article-title: Effect of copper addition in carbon steel on biocorrosion by sulfate-reducing bacteria in solution
  publication-title: Anti-Corrosion Methods and Materials
– volume: 124
  start-page: 100889
  year: 2022
  ident: key2024051606190045400_ref007
  article-title: Bioinspired marine antifouling coatings: status, prospects, and future
  publication-title: Progress in Materials Science
  doi: 10.1016/j.pmatsci.2021.100889
– volume: 126
  start-page: 322
  year: 2017
  ident: key2024051606190045400_ref018
  article-title: Inhibition behavior of Cu-benzoltriazole-calcium alginate gel beads by piercing and solidification
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2017.04.024
– volume: 6
  start-page: 105332
  issue: 10
  year: 2019
  ident: key2024051606190045400_ref028
  article-title: Preparation and characterization of polymer microcapsules containing ammonium persulfate with controlled burst release
  publication-title: Materials Research Express
  doi: 10.1088/2053-1591/ab352a
– volume: 108
  start-page: 110361
  year: 2020
  ident: key2024051606190045400_ref004
  article-title: Antifouling and antibacterial behaviors of capsaicin-based pH responsive smart coatings in marine environments
  publication-title: Materials Science and Engineering: C
  doi: 10.1016/j.msec.2019.110361
– volume: 718
  start-page: 69
  year: 2019
  ident: key2024051606190045400_ref022
  article-title: Preparation, release and anticorrosion behavior of a multi-corrosion inhibitors-halloysite nanocomposite
  publication-title: Chemical Physics Letters
  doi: 10.1016/j.cplett.2019.01.033
– volume: 27
  start-page: 3043
  issue: 12
  year: 2019
  ident: key2024051606190045400_ref027
  article-title: Preparation and characterization of a novel antibacterial acrylate polymer composite modified with capsaicin
  publication-title: Chinese Journal of Chemical Engineering
  doi: 10.1016/j.cjche.2019.03.024
– volume: 553
  start-page: 305
  year: 2018
  ident: key2024051606190045400_ref019
  article-title: Synthesis and inhibition behavior of acid stimuli-responsive Ca-Na2MoO4-HNTs nanocomposite
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  doi: 10.1016/j.colsurfa.2018.05.062
– volume: 4
  start-page: 189
  year: 2019
  ident: key2024051606190045400_ref008
  article-title: Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2019.04.003
SSID ssj0002247
Score 2.3695874
Snippet Purpose The purpose of this paper is to prepare a multifunctional nanocomposite that is slow-release and resistant to seawater corrosion and biofouling...
PurposeThe purpose of this paper is to prepare a multifunctional nanocomposite that is slow-release and resistant to seawater corrosion and biofouling...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 380
SubjectTerms Antibiotics
Antifouling
Antifouling substances
Antiinfectives and antibacterials
Bacterial corrosion
Biofouling
Carbon steel
Cathodic protection
Chemical analysis
Corrosion
Corrosion effects
Corrosion inhibitors
Corrosion potential
Corrosion prevention
Corrosion rate
Corrosion resistance
Efficiency
Electrochemistry
Electrodes
Electron microscopy
Ethanol
Fourier transforms
Infrared analysis
Infrared spectroscopy
Inhibitors
Load
Marine corrosion
Metals
Nanocomposites
Photoelectrons
Sea water corrosion
Seawater
Spectrophotometry
Spectrum analysis
Synergistic effect
Water analysis
X ray photoelectron spectroscopy
Title Preparation, anticorrosion and antifouling behavior of halloysite-loaded nanocomposite with CAP and BTA
URI https://www.proquest.com/docview/3057792282
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZKJxh4IwoFeWBCuM3LtTOGClQhFTq0UrfIcZyCKEnVpgP8eu7yQBSxIDE6wyn2nb-7s8_fEXKlhMux_w0DA9LMM0ayKNaCQXqbKMiJwAXj4-ThY28w8R6mfNogT_VbmKKssjyOKXD6JV1hktrFwm1A4S_CAexeE_SHQ8yGIX_3mONzt4tH1t3n_G2-BaYurPrtbwXM4K1E3UAPibaqS85fRW26qU2ULlzP_R5Z1D9dVpy8dtZ51NEfP_gc_3FW-2S3ClNpUNrVAWmY9JDsfCMvPCKz0dKUxOFZekNBQWBTS5gMDGEUF18S7LeezmhNBkCzhGL3luwdL63ZPFOxiWmq0gxL27F-zFA8Gab9YFQIuR0Hx2RyfzfuD1jVtoFpAIecxV4v5lpA6GFM4gKGcK1gr6sed7T0tVSO9hJpRM9whyfS07aypVbaShweQfTgnpBmmqXmlNBIJsIH3-oKCENAgvKNjrkQLkQdrm2iFrmutRQuSnaOsMhqLBniOoaWHeI6hriOLdKu9RhWG3UVAtwJ4TuQeJ79RdY52S70gzSuok2a-XJtLiA6yaPLwuY-AVUS3sc
link.rule.ids 315,783,787,970,27936,27937
linkProvider Emerald
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation%2C+anticorrosion+and+antifouling+behavior+of+halloysite-loaded+nanocomposite+with+CAP+and+BTA&rft.jtitle=Anti-corrosion+methods+and+materials&rft.au=Diao%2C+Yaqi&rft.au=Wang%2C+Jihui&rft.au=Song%2C+Renhong&rft.au=Fei%2C+Xue&rft.date=2024-05-17&rft.issn=0003-5599&rft.eissn=0003-5599&rft.volume=71&rft.issue=4&rft.spage=380&rft.epage=390&rft_id=info:doi/10.1108%2FACMM-01-2024-2953&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_ACMM_01_2024_2953
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-5599&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-5599&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-5599&client=summon