Beyond the Woodward-Hoffman Rules: What Controls Reactivity in Eliminative Aromatic Ring-Forming Reactions?
The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated π systems of high scientific interest and technological importance, including molecular wires, semiconducting polymers, and nanographenes. While simple electrocycl...
Saved in:
Published in | Australian journal of chemistry Vol. 71; no. 4; p. 249 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated π systems of high scientific interest and technological importance, including molecular wires, semiconducting polymers, and nanographenes. While simple electrocyclization reactions obey the Woodward-Hoffman rules, no such simple, general, and powerful model is available for eliminative cyclization reactions due to their increased mechanistic complexity. In this work, detailed mechanistic investigations of prototypical reactions reveal that there is no single rate-determining step for thermal oxidative dehydrogenation reactions, but they are very sensitive to the presence and distribution of heteroatoms around the photocyclizing ring system. Key aspects of reactivity are correlated to the constituent ring oxidation potentials. For photocyclization reactions, planarization occurs readily and/or spontaneously following photo-excitation, and is promoted by heteroatoms within 5-membered ring adjacent to the photocyclizing site. Oxidative photocyclization requires intersystem crossing to proceed to products, while reactants configured to undergo purely eliminative photocyclization could proceed to products entirely in the excited state. Overall, oxidative photocyclization seems to strike the optimal balance between synthetic convenience (ease of preparation of reactants, mild conditions, tolerant to chemical diversity in reactants) and favourable kinetic and thermodynamic properties. |
---|---|
AbstractList | The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated π systems of high scientific interest and technological importance, including molecular wires, semiconducting polymers, and nanographenes. While simple electrocyclization reactions obey the Woodward-Hoffman rules, no such simple, general, and powerful model is available for eliminative cyclization reactions due to their increased mechanistic complexity. In this work, detailed mechanistic investigations of prototypical reactions reveal that there is no single rate-determining step for thermal oxidative dehydrogenation reactions, but they are very sensitive to the presence and distribution of heteroatoms around the photocyclizing ring system. Key aspects of reactivity are correlated to the constituent ring oxidation potentials. For photocyclization reactions, planarization occurs readily and/or spontaneously following photo-excitation, and is promoted by heteroatoms within 5-membered ring adjacent to the photocyclizing site. Oxidative photocyclization requires intersystem crossing to proceed to products, while reactants configured to undergo purely eliminative photocyclization could proceed to products entirely in the excited state. Overall, oxidative photocyclization seems to strike the optimal balance between synthetic convenience (ease of preparation of reactants, mild conditions, tolerant to chemical diversity in reactants) and favourable kinetic and thermodynamic properties. |
Author | Crittenden, Deborah L. Wonanke, A. D. Dinga |
Author_xml | – sequence: 1 givenname: A. D. Dinga surname: Wonanke fullname: Wonanke, A. D. Dinga – sequence: 2 givenname: Deborah L. surname: Crittenden fullname: Crittenden, Deborah L. |
BookMark | eNplkF1LwzAUhnMxwW2KfyF3XkXz1bT1RmbZnDAQhrLLkqbJFm0TSaLSf2-Hu9Kr83Leh8PhmYGJ804DcEXwDcE5ua3WJM8En4ApxpijktPsHMxifMOYcEGLKXh_0IN3LUwHDXfet98ytGjtjemlg9vPTsc7uDvIBCvvUvBdhFstVbJfNg3QOrjsbG-dHBcaLoLvx6Tg1ro9WvkwNvsT7128vwBnRnZRX57mHLyuli_VGm2eH5-qxQYpSrOEpMpoYUrCpGnbIsc0p4QpzBpmSoNzzoTIiS55ww1mJBOaUiOasmnKIiOyEGwO0O9dFXyMQZta2SSPP6QgbVcTXB_t1Cc7I3_9h_8Itpdh-Ef-APdnaBk |
CitedBy_id | crossref_primary_10_1002_asia_201801761 crossref_primary_10_1002_cplu_202300677 |
Cites_doi | 10.1071/PH960261 10.1016/j.chemphys.2005.02.002 10.1039/ft9928801961 10.1107/S0567739480001350 10.1063/1.448799 10.1002/recl.19831020401 10.1080/01442358609353394 10.1021/jp035501w 10.1021/ac60177a022 10.1107/S0108767302008759 10.1002/9783527603978.mst0423 10.1021/jz401009b 10.1021/ja01493a021 10.1021/ar200192t 10.1021/cr60254a003 10.1016/0009-2614(94)87105-1 10.1021/jp809712y 10.1021/jo0526744 10.1063/1.470644 10.1016/S0009-2614(99)01149-5 10.1039/b003222k 10.1021/jo061515x 10.1098/rspa.1982.0146 10.1080/00268976.2014.952696 10.1016/j.jms.2012.04.008 10.1063/1.464304 10.1063/1.447079 10.1039/c39760000734 10.1063/1.3491501 10.1021/jp052504v 10.3390/molecules15064334 10.1002/anie.196907811 10.1063/1.1677527 10.1002/jcc.23837 10.1107/S2052520615005387 10.1021/cr000013v 10.1021/ja00889a049 10.1021/ja00270a068 10.1021/jz900282c 10.1002/wcms.1261 10.1002/adma.200901286 10.1107/S0108767384001288 10.1021/ja01069a025 10.1063/1.444267 10.1039/dt9900001417 10.1002/jhet.5570330302 10.1016/S0040-4020(01)93139-4 10.1063/1.463417 10.1063/1.1323261 10.1002/qua.560310323 10.1002/qua.560460502 10.1021/jo00012a005 10.1107/S0108767302001381 10.1021/jp055336f 10.1016/0079-6786(96)00002-7 10.1021/ct700248k 10.1021/ja01080a054 10.1021/cr068010r 10.1016/0379-6779(94)02322-P 10.1080/00268978900102491 10.1016/S0040-4020(01)98783-6 10.1016/S0032-3861(00)00116-6 10.1021/ja00881a044 10.1021/jo01034a059 10.1002/recl.19680870608 10.1038/nmat1849 10.1007/s00214-007-0282-x 10.1021/ja01087a034 10.1107/S0567739482000515 10.1021/jp021060p 10.1080/00268979709482118 10.1021/jp9716997 10.1021/jo100611k 10.1021/ar50138a002 10.1016/0010-4655(85)90026-8 10.1002/(SICI)1097-4628(19981212)70:11<2169::AID-APP10>3.0.CO;2-I |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1071/CH17564 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
ExternalDocumentID | 10_1071_CH17564 |
GroupedDBID | -~X 0R~ 23N 4.4 53G 5GY 6TJ 8WZ A6W AAYXX ABDBF ABEFU ABPPZ ACNCT ACUHS AEIBA AENEX AETEA AI. ALMA_UNASSIGNED_HOLDINGS CAG CITATION COF CS3 EBS EJD F5P H~9 L7B MV1 NGGKN RCO TN5 TWZ UPT VH1 WH7 ZCG ZE2 ~02 ~KM |
ID | FETCH-LOGICAL-c225t-ac528f913afdd87027213c03b3f9f07436671e94b4f03156e22f6b9bb9851a863 |
ISSN | 0004-9425 |
IngestDate | Thu Apr 24 23:08:28 EDT 2025 Tue Jul 01 02:16:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c225t-ac528f913afdd87027213c03b3f9f07436671e94b4f03156e22f6b9bb9851a863 |
ParticipantIDs | crossref_citationtrail_10_1071_CH17564 crossref_primary_10_1071_CH17564 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Australian journal of chemistry |
PublicationYear | 2018 |
References | Chandler (CH17564R24) 1980; 36 Mallory (CH17564R38) 1964; 86 Hirata (CH17564R66) 1999; 314 Gould (CH17564R20) 1987; 31 Chandler (CH17564R6) 2000; 2 Hoffmann (CH17564R50) 1965; 87 Talbi (CH17564R2) 2012; 275 Jayatilaka (CH17564R18) 1997; 92 Perrier (CH17564R78) 2013; 4 Fuller (CH17564R3) 2010; 133 Chandler (CH17564R9) 1994; 225 Chandler (CH17564R23) 1982; 38 Woodward (CH17564R49) 1965; 87 Hay (CH17564R65) 1985; 82 Li (CH17564R5) 2001; 114 Gilmore (CH17564R53) 2016; 6 Cassam-Chenai (CH17564R19) 1993; 46 Liu (CH17564R41) 1991; 56 Barone (CH17564R67) 1998; 102 Chandler (CH17564R12) 1990 Sudhakar (CH17564R40) 1986; 108 Shao (CH17564R68) 2015; 113 Tirado-Rives (CH17564R74) 2008; 4 Bytheway (CH17564R17) 2002; 58 Baldwin (CH17564R52) 1976 Geim (CH17564R34) 2007; 6 Kovacic (CH17564R28) 1960; 47 Scholl (CH17564R27) 1922; 55 Ess (CH17564R75) 2005; 109 Bhattacharya (CH17564R32) 1996; 24 Wolff (CH17564R8) 1995; 103 Weinberg (CH17564R80) 1968; 68 Kang (CH17564R70) 2000; 41 Stanke (CH17564R71) 1995; 72 Wu (CH17564R35) 2007; 107 Jorgensen (CH17564R44) 2010; 15 Di Stefano (CH17564R46) 2005; 314 Guner (CH17564R76) 2003; 107 Mallory (CH17564R37) 1963; 85 Zhai (CH17564R47) 2010; 75 Tominaga (CH17564R43) 1996; 33 Chandler (CH17564R11) 1992; 88 Scholl (CH17564R26) 1912; 394 Kovacic (CH17564R29) 1960; 82 Lange (CH17564R69) 2010; 1 Kelly (CH17564R72) 2006; 110 Woodward (CH17564R51) 1969; 8 Barnes (CH17564R22) 1985; 36 Wood (CH17564R39) 1964; 29 Frisch (CH17564R64) 1984; 80 Lu (CH17564R33) 1998; 70 Bytheway (CH17564R4) 2002; 58 Chandler (CH17564R7) 1996; 49 Gould (CH17564R16) 2008; 119 Hammerich (CH17564R45) 1984; 20 Mallory (CH17564R42) 1984; 30 McLean (CH17564R10) 1992; 97 Geerlings (CH17564R54) 2012; 45 Laarhoven (CH17564R56) 1970; 26 da Silva (CH17564R73) 2009; 113 Barnes (CH17564R13) 1989; 68 CH17564R55 Mallory (CH17564R36) 1962; 84 CH17564R58 Hehre (CH17564R62) 1972; 56 Rieger (CH17564R31) 2010; 22 Becke (CH17564R61) 1993; 98 Stirling (CH17564R59) 1979; 12 Loveland (CH17564R81) 1961; 33 Grimsdale (CH17564R30) 2009; 109 Rempala (CH17564R77) 2006; 71 Karton (CH17564R79) 2015; 36 Barnes (CH17564R14) 1984; 40 Chandler (CH17564R15) 1982; 384 Laarhoven (CH17564R57) 1970; 26 Kivala (CH17564R25) 2012 King (CH17564R60) 2007; 72 Francl (CH17564R63) 1982; 77 Chandler (CH17564R1) 2015; 71 Chandler (CH17564R21) 1986; 5 Guillaumont (CH17564R48) 2002; 106 |
References_xml | – volume: 49 start-page: 261 year: 1996 ident: CH17564R7 publication-title: Aust. J. Phys. doi: 10.1071/PH960261 – volume: 314 start-page: 85 year: 2005 ident: CH17564R46 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.02.002 – volume: 88 start-page: 1961 year: 1992 ident: CH17564R11 publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/ft9928801961 – volume: 36 start-page: 657 year: 1980 ident: CH17564R24 publication-title: Acta Crystallogr. Sect. A doi: 10.1107/S0567739480001350 – volume: 82 start-page: 270 year: 1985 ident: CH17564R65 publication-title: J. Chem. Phys. doi: 10.1063/1.448799 – ident: CH17564R58 doi: 10.1002/recl.19831020401 – volume: 5 start-page: 293 year: 1986 ident: CH17564R21 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/01442358609353394 – volume: 107 start-page: 11445 year: 2003 ident: CH17564R76 publication-title: J. Phys. Chem. A doi: 10.1021/jp035501w – volume: 33 start-page: 1196 year: 1961 ident: CH17564R81 publication-title: Anal. Chem. doi: 10.1021/ac60177a022 – volume: 58 start-page: 451 year: 2002 ident: CH17564R17 publication-title: Acta Crystallogr. Sect. A doi: 10.1107/S0108767302008759 – start-page: 373 year: 2012 ident: CH17564R25 publication-title: Mat. Sci. Tech. doi: 10.1002/9783527603978.mst0423 – volume: 4 start-page: 2190 year: 2013 ident: CH17564R78 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401009b – volume: 82 start-page: 1917 year: 1960 ident: CH17564R29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01493a021 – volume: 45 start-page: 683 year: 2012 ident: CH17564R54 publication-title: Acc. Chem. Res. doi: 10.1021/ar200192t – volume: 68 start-page: 449 year: 1968 ident: CH17564R80 publication-title: Chem. Rev. doi: 10.1021/cr60254a003 – volume: 225 start-page: 421 year: 1994 ident: CH17564R9 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)87105-1 – volume: 113 start-page: 6404 year: 2009 ident: CH17564R73 publication-title: J. Phys. Chem. A doi: 10.1021/jp809712y – volume: 71 start-page: 5067 year: 2006 ident: CH17564R77 publication-title: J. Org. Chem. doi: 10.1021/jo0526744 – volume: 103 start-page: 4562 year: 1995 ident: CH17564R8 publication-title: J. Chem. Phys. doi: 10.1063/1.470644 – volume: 314 start-page: 291 year: 1999 ident: CH17564R66 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01149-5 – volume: 2 start-page: 3743 year: 2000 ident: CH17564R6 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b003222k – volume: 72 start-page: 2279 year: 2007 ident: CH17564R60 publication-title: J. Org. Chem. doi: 10.1021/jo061515x – volume: 384 start-page: 31 year: 1982 ident: CH17564R15 publication-title: Proc. R. Soc. Lond. A Math. Phys. Sci. doi: 10.1098/rspa.1982.0146 – volume: 113 start-page: 184 year: 2015 ident: CH17564R68 publication-title: Mol. Phys. doi: 10.1080/00268976.2014.952696 – volume: 275 start-page: 21 year: 2012 ident: CH17564R2 publication-title: J. Mol. Spec. doi: 10.1016/j.jms.2012.04.008 – volume: 98 start-page: 1372 year: 1993 ident: CH17564R61 publication-title: J. Chem. Phys. doi: 10.1063/1.464304 – volume: 80 start-page: 3265 year: 1984 ident: CH17564R64 publication-title: J. Chem. Phys. doi: 10.1063/1.447079 – start-page: 734 year: 1976 ident: CH17564R52 publication-title: J. Chem. Soc. Chem. Comm. doi: 10.1039/c39760000734 – volume: 133 start-page: 164311 year: 2010 ident: CH17564R3 publication-title: J. Chem. Phys. doi: 10.1063/1.3491501 – volume: 109 start-page: 9542 year: 2005 ident: CH17564R75 publication-title: J. Phys. Chem. A doi: 10.1021/jp052504v – volume: 15 start-page: 4334 year: 2010 ident: CH17564R44 publication-title: Molecules doi: 10.3390/molecules15064334 – volume: 8 start-page: 781 year: 1969 ident: CH17564R51 publication-title: Angew. Chem. doi: 10.1002/anie.196907811 – volume: 56 start-page: 2257 year: 1972 ident: CH17564R62 publication-title: J. Chem. Phys. doi: 10.1063/1.1677527 – volume: 30 start-page: 1 year: 1984 ident: CH17564R42 publication-title: Org. React. – volume: 36 start-page: 622 year: 2015 ident: CH17564R79 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23837 – volume: 71 start-page: 275 year: 2015 ident: CH17564R1 publication-title: Acta Crystallogr. Sect. B doi: 10.1107/S2052520615005387 – volume: 109 start-page: 897 year: 2009 ident: CH17564R30 publication-title: Chem. Rev. doi: 10.1021/cr000013v – volume: 85 start-page: 828 year: 1963 ident: CH17564R37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00889a049 – volume: 108 start-page: 2790 year: 1986 ident: CH17564R40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00270a068 – volume: 1 start-page: 556 year: 2010 ident: CH17564R69 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz900282c – volume: 55 start-page: 109 year: 1922 ident: CH17564R27 publication-title: Eur. J. Inorg. Chem. – volume: 6 start-page: 487 year: 2016 ident: CH17564R53 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1261 – volume: 22 start-page: 83 year: 2010 ident: CH17564R31 publication-title: Adv. Mater. doi: 10.1002/adma.200901286 – volume: 40 start-page: 620 year: 1984 ident: CH17564R14 publication-title: Acta Crystallogr. Sect. A doi: 10.1107/S0108767384001288 – volume: 86 start-page: 3094 year: 1964 ident: CH17564R38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01069a025 – volume: 77 start-page: 3654 year: 1982 ident: CH17564R63 publication-title: J. Chem. Phys. doi: 10.1063/1.444267 – start-page: 1417 year: 1990 ident: CH17564R12 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9900001417 – volume: 33 start-page: 523 year: 1996 ident: CH17564R43 publication-title: J. Heterocycl. Chem. doi: 10.1002/jhet.5570330302 – volume: 26 start-page: 4865 year: 1970 ident: CH17564R57 publication-title: Tetrahedron doi: 10.1016/S0040-4020(01)93139-4 – volume: 97 start-page: 8459 year: 1992 ident: CH17564R10 publication-title: J. Chem. Phys. doi: 10.1063/1.463417 – volume: 114 start-page: 2687 year: 2001 ident: CH17564R5 publication-title: J. Chem. Phys. doi: 10.1063/1.1323261 – volume: 31 start-page: 535 year: 1987 ident: CH17564R20 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560310323 – volume: 46 start-page: 593 year: 1993 ident: CH17564R19 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560460502 – volume: 56 start-page: 3769 year: 1991 ident: CH17564R41 publication-title: J. Org. Chem. doi: 10.1021/jo00012a005 – volume: 20 start-page: 55 year: 1984 ident: CH17564R45 publication-title: Adv. Phys. Org. Chem. – volume: 58 start-page: 244 year: 2002 ident: CH17564R4 publication-title: Acta Crystallogr. Sect. A doi: 10.1107/S0108767302001381 – volume: 110 start-page: 2493 year: 2006 ident: CH17564R72 publication-title: J. Phys. Chem. A doi: 10.1021/jp055336f – volume: 24 start-page: 141 year: 1996 ident: CH17564R32 publication-title: Prog. Solid State Chem. doi: 10.1016/0079-6786(96)00002-7 – volume: 394 start-page: 111 year: 1912 ident: CH17564R26 publication-title: Eur. J. Org. Chem. – volume: 4 start-page: 297 year: 2008 ident: CH17564R74 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700248k – volume: 87 start-page: 395 year: 1965 ident: CH17564R49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01080a054 – volume: 47 start-page: 45 year: 1960 ident: CH17564R28 publication-title: J. Polym. Sci. A – volume: 107 start-page: 718 year: 2007 ident: CH17564R35 publication-title: Chem. Rev. doi: 10.1021/cr068010r – volume: 72 start-page: 89 year: 1995 ident: CH17564R71 publication-title: Synth. Met. doi: 10.1016/0379-6779(94)02322-P – volume: 68 start-page: 711 year: 1989 ident: CH17564R13 publication-title: Mol. Phys. doi: 10.1080/00268978900102491 – volume: 26 start-page: 1069 year: 1970 ident: CH17564R56 publication-title: Tetrahedron doi: 10.1016/S0040-4020(01)98783-6 – volume: 41 start-page: 6931 year: 2000 ident: CH17564R70 publication-title: Polymer doi: 10.1016/S0032-3861(00)00116-6 – volume: 84 start-page: 4361 year: 1962 ident: CH17564R36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00881a044 – volume: 29 start-page: 3373 year: 1964 ident: CH17564R39 publication-title: J. Org. Chem. doi: 10.1021/jo01034a059 – ident: CH17564R55 doi: 10.1002/recl.19680870608 – volume: 6 start-page: 183 year: 2007 ident: CH17564R34 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 119 start-page: 275 year: 2008 ident: CH17564R16 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0282-x – volume: 87 start-page: 2046 year: 1965 ident: CH17564R50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01087a034 – volume: 38 start-page: 225 year: 1982 ident: CH17564R23 publication-title: Acta Crystallogr. Sect. A doi: 10.1107/S0567739482000515 – volume: 106 start-page: 7222 year: 2002 ident: CH17564R48 publication-title: J. Phys. Chem. A doi: 10.1021/jp021060p – volume: 92 start-page: 471 year: 1997 ident: CH17564R18 publication-title: Mol. Phys. doi: 10.1080/00268979709482118 – volume: 102 start-page: 1995 year: 1998 ident: CH17564R67 publication-title: J. Phys. Chem. A doi: 10.1021/jp9716997 – volume: 75 start-page: 4748 year: 2010 ident: CH17564R47 publication-title: J. Org. Chem. doi: 10.1021/jo100611k – volume: 12 start-page: 198 year: 1979 ident: CH17564R59 publication-title: Acc. Chem. Res. doi: 10.1021/ar50138a002 – volume: 36 start-page: 373 year: 1985 ident: CH17564R22 publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(85)90026-8 – volume: 70 start-page: 2169 year: 1998 ident: CH17564R33 publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19981212)70:11<2169::AID-APP10>3.0.CO;2-I |
SSID | ssj0014628 |
Score | 2.1841109 |
Snippet | The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated π systems of high... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 249 |
Title | Beyond the Woodward-Hoffman Rules: What Controls Reactivity in Eliminative Aromatic Ring-Forming Reactions? |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELVKOSwXBPuhLbDIhxUX5C5x7FBzQS3dqlpgD6iVuFWJE6MKlKAqvfDrmYmd4A1I7K5UWVVkV0leOpkZvzdDyHcVyzSScsDCWIRMQFQL_zlhWMqF4aiC1QHqna9_R9O5-HUrbzudS4-1tC6Tvn56U1fyP6jCMcAVVbL_gGzzo3AAvgO-MALCMP4Vxk5-UlakmKJqv8ymhTFVXn7t6G5YnBuFfchIR1EIKhmqhhHLHEldSIWp6EPDVWHLt97A24xNCiTJ3Ln5cAEtBqCXI_GKT-i6fVxj68HRzy3_Z9g_HsMHW3A3Gx-rZVnl4H3Td3zV91MRvt1E15ApYTXMtWG1vVXcAyR8K2mrlL6y3uDuYFXgKbg0trT5n_WxW--thk1Y7aOfBgu3cINscogZeJdsDkfj0aTZVEIZro2G7LlaDTUu_eGWes6J52XMdsi2Cw_o0GK9SzpZ_pF8uKhv6ydybzGngDltY04rzM8oIk5rxOkL4nSZUw9xWiNOfcRpg_j5ZzKf_JxdTJlrmME0mOWSxVrygVFBGJs0BUPMIbwP9UmYhEYZ9BWj6DTIlEiEweYeUca5iRKVJAr87ngQhV9INy_y7CuhsYFIPVNpFKQGzHwWSy71iZZS8jRQMu6Ro_pOLbSrJo9NTR4WLTR6hDYTH20BlfaUvfen7JMtfOBs7uuAdMvVOvsG3mCZHDqUnwGXoWHD |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+Woodward-Hoffman+Rules%3A+What+Controls+Reactivity+in+Eliminative+Aromatic+Ring-Forming+Reactions%3F&rft.jtitle=Australian+journal+of+chemistry&rft.au=Wonanke%2C+A.+D.+Dinga&rft.au=Crittenden%2C+Deborah+L.&rft.date=2018&rft.issn=0004-9425&rft.volume=71&rft.issue=4&rft.spage=249&rft_id=info:doi/10.1071%2FCH17564&rft.externalDBID=n%2Fa&rft.externalDocID=10_1071_CH17564 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-9425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-9425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-9425&client=summon |