Beyond the Woodward-Hoffman Rules: What Controls Reactivity in Eliminative Aromatic Ring-Forming Reactions?

The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated π systems of high scientific interest and technological importance, including molecular wires, semiconducting polymers, and nanographenes. While simple electrocycl...

Full description

Saved in:
Bibliographic Details
Published inAustralian journal of chemistry Vol. 71; no. 4; p. 249
Main Authors Wonanke, A. D. Dinga, Crittenden, Deborah L.
Format Journal Article
LanguageEnglish
Published 2018
Online AccessGet full text

Cover

Loading…
Abstract The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated π systems of high scientific interest and technological importance, including molecular wires, semiconducting polymers, and nanographenes. While simple electrocyclization reactions obey the Woodward-Hoffman rules, no such simple, general, and powerful model is available for eliminative cyclization reactions due to their increased mechanistic complexity. In this work, detailed mechanistic investigations of prototypical reactions reveal that there is no single rate-determining step for thermal oxidative dehydrogenation reactions, but they are very sensitive to the presence and distribution of heteroatoms around the photocyclizing ring system. Key aspects of reactivity are correlated to the constituent ring oxidation potentials. For photocyclization reactions, planarization occurs readily and/or spontaneously following photo-excitation, and is promoted by heteroatoms within 5-membered ring adjacent to the photocyclizing site. Oxidative photocyclization requires intersystem crossing to proceed to products, while reactants configured to undergo purely eliminative photocyclization could proceed to products entirely in the excited state. Overall, oxidative photocyclization seems to strike the optimal balance between synthetic convenience (ease of preparation of reactants, mild conditions, tolerant to chemical diversity in reactants) and favourable kinetic and thermodynamic properties.
AbstractList The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated π systems of high scientific interest and technological importance, including molecular wires, semiconducting polymers, and nanographenes. While simple electrocyclization reactions obey the Woodward-Hoffman rules, no such simple, general, and powerful model is available for eliminative cyclization reactions due to their increased mechanistic complexity. In this work, detailed mechanistic investigations of prototypical reactions reveal that there is no single rate-determining step for thermal oxidative dehydrogenation reactions, but they are very sensitive to the presence and distribution of heteroatoms around the photocyclizing ring system. Key aspects of reactivity are correlated to the constituent ring oxidation potentials. For photocyclization reactions, planarization occurs readily and/or spontaneously following photo-excitation, and is promoted by heteroatoms within 5-membered ring adjacent to the photocyclizing site. Oxidative photocyclization requires intersystem crossing to proceed to products, while reactants configured to undergo purely eliminative photocyclization could proceed to products entirely in the excited state. Overall, oxidative photocyclization seems to strike the optimal balance between synthetic convenience (ease of preparation of reactants, mild conditions, tolerant to chemical diversity in reactants) and favourable kinetic and thermodynamic properties.
Author Crittenden, Deborah L.
Wonanke, A. D. Dinga
Author_xml – sequence: 1
  givenname: A. D. Dinga
  surname: Wonanke
  fullname: Wonanke, A. D. Dinga
– sequence: 2
  givenname: Deborah L.
  surname: Crittenden
  fullname: Crittenden, Deborah L.
BookMark eNplkF1LwzAUhnMxwW2KfyF3XkXz1bT1RmbZnDAQhrLLkqbJFm0TSaLSf2-Hu9Kr83Leh8PhmYGJ804DcEXwDcE5ua3WJM8En4ApxpijktPsHMxifMOYcEGLKXh_0IN3LUwHDXfet98ytGjtjemlg9vPTsc7uDvIBCvvUvBdhFstVbJfNg3QOrjsbG-dHBcaLoLvx6Tg1ro9WvkwNvsT7128vwBnRnZRX57mHLyuli_VGm2eH5-qxQYpSrOEpMpoYUrCpGnbIsc0p4QpzBpmSoNzzoTIiS55ww1mJBOaUiOasmnKIiOyEGwO0O9dFXyMQZta2SSPP6QgbVcTXB_t1Cc7I3_9h_8Itpdh-Ef-APdnaBk
CitedBy_id crossref_primary_10_1002_asia_201801761
crossref_primary_10_1002_cplu_202300677
Cites_doi 10.1071/PH960261
10.1016/j.chemphys.2005.02.002
10.1039/ft9928801961
10.1107/S0567739480001350
10.1063/1.448799
10.1002/recl.19831020401
10.1080/01442358609353394
10.1021/jp035501w
10.1021/ac60177a022
10.1107/S0108767302008759
10.1002/9783527603978.mst0423
10.1021/jz401009b
10.1021/ja01493a021
10.1021/ar200192t
10.1021/cr60254a003
10.1016/0009-2614(94)87105-1
10.1021/jp809712y
10.1021/jo0526744
10.1063/1.470644
10.1016/S0009-2614(99)01149-5
10.1039/b003222k
10.1021/jo061515x
10.1098/rspa.1982.0146
10.1080/00268976.2014.952696
10.1016/j.jms.2012.04.008
10.1063/1.464304
10.1063/1.447079
10.1039/c39760000734
10.1063/1.3491501
10.1021/jp052504v
10.3390/molecules15064334
10.1002/anie.196907811
10.1063/1.1677527
10.1002/jcc.23837
10.1107/S2052520615005387
10.1021/cr000013v
10.1021/ja00889a049
10.1021/ja00270a068
10.1021/jz900282c
10.1002/wcms.1261
10.1002/adma.200901286
10.1107/S0108767384001288
10.1021/ja01069a025
10.1063/1.444267
10.1039/dt9900001417
10.1002/jhet.5570330302
10.1016/S0040-4020(01)93139-4
10.1063/1.463417
10.1063/1.1323261
10.1002/qua.560310323
10.1002/qua.560460502
10.1021/jo00012a005
10.1107/S0108767302001381
10.1021/jp055336f
10.1016/0079-6786(96)00002-7
10.1021/ct700248k
10.1021/ja01080a054
10.1021/cr068010r
10.1016/0379-6779(94)02322-P
10.1080/00268978900102491
10.1016/S0040-4020(01)98783-6
10.1016/S0032-3861(00)00116-6
10.1021/ja00881a044
10.1021/jo01034a059
10.1002/recl.19680870608
10.1038/nmat1849
10.1007/s00214-007-0282-x
10.1021/ja01087a034
10.1107/S0567739482000515
10.1021/jp021060p
10.1080/00268979709482118
10.1021/jp9716997
10.1021/jo100611k
10.1021/ar50138a002
10.1016/0010-4655(85)90026-8
10.1002/(SICI)1097-4628(19981212)70:11<2169::AID-APP10>3.0.CO;2-I
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1071/CH17564
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 10_1071_CH17564
GroupedDBID -~X
0R~
23N
4.4
53G
5GY
6TJ
8WZ
A6W
AAYXX
ABDBF
ABEFU
ABPPZ
ACNCT
ACUHS
AEIBA
AENEX
AETEA
AI.
ALMA_UNASSIGNED_HOLDINGS
CAG
CITATION
COF
CS3
EBS
EJD
F5P
H~9
L7B
MV1
NGGKN
RCO
TN5
TWZ
UPT
VH1
WH7
ZCG
ZE2
~02
~KM
ID FETCH-LOGICAL-c225t-ac528f913afdd87027213c03b3f9f07436671e94b4f03156e22f6b9bb9851a863
ISSN 0004-9425
IngestDate Thu Apr 24 23:08:28 EDT 2025
Tue Jul 01 02:16:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c225t-ac528f913afdd87027213c03b3f9f07436671e94b4f03156e22f6b9bb9851a863
ParticipantIDs crossref_citationtrail_10_1071_CH17564
crossref_primary_10_1071_CH17564
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationTitle Australian journal of chemistry
PublicationYear 2018
References Chandler (CH17564R24) 1980; 36
Mallory (CH17564R38) 1964; 86
Hirata (CH17564R66) 1999; 314
Gould (CH17564R20) 1987; 31
Chandler (CH17564R6) 2000; 2
Hoffmann (CH17564R50) 1965; 87
Talbi (CH17564R2) 2012; 275
Jayatilaka (CH17564R18) 1997; 92
Perrier (CH17564R78) 2013; 4
Fuller (CH17564R3) 2010; 133
Chandler (CH17564R9) 1994; 225
Chandler (CH17564R23) 1982; 38
Woodward (CH17564R49) 1965; 87
Hay (CH17564R65) 1985; 82
Li (CH17564R5) 2001; 114
Gilmore (CH17564R53) 2016; 6
Cassam-Chenai (CH17564R19) 1993; 46
Liu (CH17564R41) 1991; 56
Barone (CH17564R67) 1998; 102
Chandler (CH17564R12) 1990
Sudhakar (CH17564R40) 1986; 108
Shao (CH17564R68) 2015; 113
Tirado-Rives (CH17564R74) 2008; 4
Bytheway (CH17564R17) 2002; 58
Baldwin (CH17564R52) 1976
Geim (CH17564R34) 2007; 6
Kovacic (CH17564R28) 1960; 47
Scholl (CH17564R27) 1922; 55
Ess (CH17564R75) 2005; 109
Bhattacharya (CH17564R32) 1996; 24
Wolff (CH17564R8) 1995; 103
Weinberg (CH17564R80) 1968; 68
Kang (CH17564R70) 2000; 41
Stanke (CH17564R71) 1995; 72
Wu (CH17564R35) 2007; 107
Jorgensen (CH17564R44) 2010; 15
Di Stefano (CH17564R46) 2005; 314
Guner (CH17564R76) 2003; 107
Mallory (CH17564R37) 1963; 85
Zhai (CH17564R47) 2010; 75
Tominaga (CH17564R43) 1996; 33
Chandler (CH17564R11) 1992; 88
Scholl (CH17564R26) 1912; 394
Kovacic (CH17564R29) 1960; 82
Lange (CH17564R69) 2010; 1
Kelly (CH17564R72) 2006; 110
Woodward (CH17564R51) 1969; 8
Barnes (CH17564R22) 1985; 36
Wood (CH17564R39) 1964; 29
Frisch (CH17564R64) 1984; 80
Lu (CH17564R33) 1998; 70
Bytheway (CH17564R4) 2002; 58
Chandler (CH17564R7) 1996; 49
Gould (CH17564R16) 2008; 119
Hammerich (CH17564R45) 1984; 20
Mallory (CH17564R42) 1984; 30
McLean (CH17564R10) 1992; 97
Geerlings (CH17564R54) 2012; 45
Laarhoven (CH17564R56) 1970; 26
da Silva (CH17564R73) 2009; 113
Barnes (CH17564R13) 1989; 68
CH17564R55
Mallory (CH17564R36) 1962; 84
CH17564R58
Hehre (CH17564R62) 1972; 56
Rieger (CH17564R31) 2010; 22
Becke (CH17564R61) 1993; 98
Stirling (CH17564R59) 1979; 12
Loveland (CH17564R81) 1961; 33
Grimsdale (CH17564R30) 2009; 109
Rempala (CH17564R77) 2006; 71
Karton (CH17564R79) 2015; 36
Barnes (CH17564R14) 1984; 40
Chandler (CH17564R15) 1982; 384
Laarhoven (CH17564R57) 1970; 26
Kivala (CH17564R25) 2012
King (CH17564R60) 2007; 72
Francl (CH17564R63) 1982; 77
Chandler (CH17564R1) 2015; 71
Chandler (CH17564R21) 1986; 5
Guillaumont (CH17564R48) 2002; 106
References_xml – volume: 49
  start-page: 261
  year: 1996
  ident: CH17564R7
  publication-title: Aust. J. Phys.
  doi: 10.1071/PH960261
– volume: 314
  start-page: 85
  year: 2005
  ident: CH17564R46
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.02.002
– volume: 88
  start-page: 1961
  year: 1992
  ident: CH17564R11
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/ft9928801961
– volume: 36
  start-page: 657
  year: 1980
  ident: CH17564R24
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0567739480001350
– volume: 82
  start-page: 270
  year: 1985
  ident: CH17564R65
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448799
– ident: CH17564R58
  doi: 10.1002/recl.19831020401
– volume: 5
  start-page: 293
  year: 1986
  ident: CH17564R21
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442358609353394
– volume: 107
  start-page: 11445
  year: 2003
  ident: CH17564R76
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp035501w
– volume: 33
  start-page: 1196
  year: 1961
  ident: CH17564R81
  publication-title: Anal. Chem.
  doi: 10.1021/ac60177a022
– volume: 58
  start-page: 451
  year: 2002
  ident: CH17564R17
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0108767302008759
– start-page: 373
  year: 2012
  ident: CH17564R25
  publication-title: Mat. Sci. Tech.
  doi: 10.1002/9783527603978.mst0423
– volume: 4
  start-page: 2190
  year: 2013
  ident: CH17564R78
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz401009b
– volume: 82
  start-page: 1917
  year: 1960
  ident: CH17564R29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01493a021
– volume: 45
  start-page: 683
  year: 2012
  ident: CH17564R54
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200192t
– volume: 68
  start-page: 449
  year: 1968
  ident: CH17564R80
  publication-title: Chem. Rev.
  doi: 10.1021/cr60254a003
– volume: 225
  start-page: 421
  year: 1994
  ident: CH17564R9
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)87105-1
– volume: 113
  start-page: 6404
  year: 2009
  ident: CH17564R73
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp809712y
– volume: 71
  start-page: 5067
  year: 2006
  ident: CH17564R77
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0526744
– volume: 103
  start-page: 4562
  year: 1995
  ident: CH17564R8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470644
– volume: 314
  start-page: 291
  year: 1999
  ident: CH17564R66
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01149-5
– volume: 2
  start-page: 3743
  year: 2000
  ident: CH17564R6
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b003222k
– volume: 72
  start-page: 2279
  year: 2007
  ident: CH17564R60
  publication-title: J. Org. Chem.
  doi: 10.1021/jo061515x
– volume: 384
  start-page: 31
  year: 1982
  ident: CH17564R15
  publication-title: Proc. R. Soc. Lond. A Math. Phys. Sci.
  doi: 10.1098/rspa.1982.0146
– volume: 113
  start-page: 184
  year: 2015
  ident: CH17564R68
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2014.952696
– volume: 275
  start-page: 21
  year: 2012
  ident: CH17564R2
  publication-title: J. Mol. Spec.
  doi: 10.1016/j.jms.2012.04.008
– volume: 98
  start-page: 1372
  year: 1993
  ident: CH17564R61
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464304
– volume: 80
  start-page: 3265
  year: 1984
  ident: CH17564R64
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447079
– start-page: 734
  year: 1976
  ident: CH17564R52
  publication-title: J. Chem. Soc. Chem. Comm.
  doi: 10.1039/c39760000734
– volume: 133
  start-page: 164311
  year: 2010
  ident: CH17564R3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3491501
– volume: 109
  start-page: 9542
  year: 2005
  ident: CH17564R75
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp052504v
– volume: 15
  start-page: 4334
  year: 2010
  ident: CH17564R44
  publication-title: Molecules
  doi: 10.3390/molecules15064334
– volume: 8
  start-page: 781
  year: 1969
  ident: CH17564R51
  publication-title: Angew. Chem.
  doi: 10.1002/anie.196907811
– volume: 56
  start-page: 2257
  year: 1972
  ident: CH17564R62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1677527
– volume: 30
  start-page: 1
  year: 1984
  ident: CH17564R42
  publication-title: Org. React.
– volume: 36
  start-page: 622
  year: 2015
  ident: CH17564R79
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23837
– volume: 71
  start-page: 275
  year: 2015
  ident: CH17564R1
  publication-title: Acta Crystallogr. Sect. B
  doi: 10.1107/S2052520615005387
– volume: 109
  start-page: 897
  year: 2009
  ident: CH17564R30
  publication-title: Chem. Rev.
  doi: 10.1021/cr000013v
– volume: 85
  start-page: 828
  year: 1963
  ident: CH17564R37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00889a049
– volume: 108
  start-page: 2790
  year: 1986
  ident: CH17564R40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00270a068
– volume: 1
  start-page: 556
  year: 2010
  ident: CH17564R69
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz900282c
– volume: 55
  start-page: 109
  year: 1922
  ident: CH17564R27
  publication-title: Eur. J. Inorg. Chem.
– volume: 6
  start-page: 487
  year: 2016
  ident: CH17564R53
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1261
– volume: 22
  start-page: 83
  year: 2010
  ident: CH17564R31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901286
– volume: 40
  start-page: 620
  year: 1984
  ident: CH17564R14
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0108767384001288
– volume: 86
  start-page: 3094
  year: 1964
  ident: CH17564R38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01069a025
– volume: 77
  start-page: 3654
  year: 1982
  ident: CH17564R63
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444267
– start-page: 1417
  year: 1990
  ident: CH17564R12
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9900001417
– volume: 33
  start-page: 523
  year: 1996
  ident: CH17564R43
  publication-title: J. Heterocycl. Chem.
  doi: 10.1002/jhet.5570330302
– volume: 26
  start-page: 4865
  year: 1970
  ident: CH17564R57
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)93139-4
– volume: 97
  start-page: 8459
  year: 1992
  ident: CH17564R10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463417
– volume: 114
  start-page: 2687
  year: 2001
  ident: CH17564R5
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323261
– volume: 31
  start-page: 535
  year: 1987
  ident: CH17564R20
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560310323
– volume: 46
  start-page: 593
  year: 1993
  ident: CH17564R19
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560460502
– volume: 56
  start-page: 3769
  year: 1991
  ident: CH17564R41
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00012a005
– volume: 20
  start-page: 55
  year: 1984
  ident: CH17564R45
  publication-title: Adv. Phys. Org. Chem.
– volume: 58
  start-page: 244
  year: 2002
  ident: CH17564R4
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0108767302001381
– volume: 110
  start-page: 2493
  year: 2006
  ident: CH17564R72
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp055336f
– volume: 24
  start-page: 141
  year: 1996
  ident: CH17564R32
  publication-title: Prog. Solid State Chem.
  doi: 10.1016/0079-6786(96)00002-7
– volume: 394
  start-page: 111
  year: 1912
  ident: CH17564R26
  publication-title: Eur. J. Org. Chem.
– volume: 4
  start-page: 297
  year: 2008
  ident: CH17564R74
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700248k
– volume: 87
  start-page: 395
  year: 1965
  ident: CH17564R49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01080a054
– volume: 47
  start-page: 45
  year: 1960
  ident: CH17564R28
  publication-title: J. Polym. Sci. A
– volume: 107
  start-page: 718
  year: 2007
  ident: CH17564R35
  publication-title: Chem. Rev.
  doi: 10.1021/cr068010r
– volume: 72
  start-page: 89
  year: 1995
  ident: CH17564R71
  publication-title: Synth. Met.
  doi: 10.1016/0379-6779(94)02322-P
– volume: 68
  start-page: 711
  year: 1989
  ident: CH17564R13
  publication-title: Mol. Phys.
  doi: 10.1080/00268978900102491
– volume: 26
  start-page: 1069
  year: 1970
  ident: CH17564R56
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)98783-6
– volume: 41
  start-page: 6931
  year: 2000
  ident: CH17564R70
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00116-6
– volume: 84
  start-page: 4361
  year: 1962
  ident: CH17564R36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00881a044
– volume: 29
  start-page: 3373
  year: 1964
  ident: CH17564R39
  publication-title: J. Org. Chem.
  doi: 10.1021/jo01034a059
– ident: CH17564R55
  doi: 10.1002/recl.19680870608
– volume: 6
  start-page: 183
  year: 2007
  ident: CH17564R34
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 119
  start-page: 275
  year: 2008
  ident: CH17564R16
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0282-x
– volume: 87
  start-page: 2046
  year: 1965
  ident: CH17564R50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01087a034
– volume: 38
  start-page: 225
  year: 1982
  ident: CH17564R23
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0567739482000515
– volume: 106
  start-page: 7222
  year: 2002
  ident: CH17564R48
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp021060p
– volume: 92
  start-page: 471
  year: 1997
  ident: CH17564R18
  publication-title: Mol. Phys.
  doi: 10.1080/00268979709482118
– volume: 102
  start-page: 1995
  year: 1998
  ident: CH17564R67
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9716997
– volume: 75
  start-page: 4748
  year: 2010
  ident: CH17564R47
  publication-title: J. Org. Chem.
  doi: 10.1021/jo100611k
– volume: 12
  start-page: 198
  year: 1979
  ident: CH17564R59
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar50138a002
– volume: 36
  start-page: 373
  year: 1985
  ident: CH17564R22
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(85)90026-8
– volume: 70
  start-page: 2169
  year: 1998
  ident: CH17564R33
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19981212)70:11<2169::AID-APP10>3.0.CO;2-I
SSID ssj0014628
Score 2.1841109
Snippet The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated π systems of high...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 249
Title Beyond the Woodward-Hoffman Rules: What Controls Reactivity in Eliminative Aromatic Ring-Forming Reactions?
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELVKOSwXBPuhLbDIhxUX5C5x7FBzQS3dqlpgD6iVuFWJE6MKlKAqvfDrmYmd4A1I7K5UWVVkV0leOpkZvzdDyHcVyzSScsDCWIRMQFQL_zlhWMqF4aiC1QHqna9_R9O5-HUrbzudS4-1tC6Tvn56U1fyP6jCMcAVVbL_gGzzo3AAvgO-MALCMP4Vxk5-UlakmKJqv8ymhTFVXn7t6G5YnBuFfchIR1EIKhmqhhHLHEldSIWp6EPDVWHLt97A24xNCiTJ3Ln5cAEtBqCXI_GKT-i6fVxj68HRzy3_Z9g_HsMHW3A3Gx-rZVnl4H3Td3zV91MRvt1E15ApYTXMtWG1vVXcAyR8K2mrlL6y3uDuYFXgKbg0trT5n_WxW--thk1Y7aOfBgu3cINscogZeJdsDkfj0aTZVEIZro2G7LlaDTUu_eGWes6J52XMdsi2Cw_o0GK9SzpZ_pF8uKhv6ydybzGngDltY04rzM8oIk5rxOkL4nSZUw9xWiNOfcRpg_j5ZzKf_JxdTJlrmME0mOWSxVrygVFBGJs0BUPMIbwP9UmYhEYZ9BWj6DTIlEiEweYeUca5iRKVJAr87ngQhV9INy_y7CuhsYFIPVNpFKQGzHwWSy71iZZS8jRQMu6Ro_pOLbSrJo9NTR4WLTR6hDYTH20BlfaUvfen7JMtfOBs7uuAdMvVOvsG3mCZHDqUnwGXoWHD
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+Woodward-Hoffman+Rules%3A+What+Controls+Reactivity+in+Eliminative+Aromatic+Ring-Forming+Reactions%3F&rft.jtitle=Australian+journal+of+chemistry&rft.au=Wonanke%2C+A.+D.+Dinga&rft.au=Crittenden%2C+Deborah+L.&rft.date=2018&rft.issn=0004-9425&rft.volume=71&rft.issue=4&rft.spage=249&rft_id=info:doi/10.1071%2FCH17564&rft.externalDBID=n%2Fa&rft.externalDocID=10_1071_CH17564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-9425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-9425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-9425&client=summon