A facile spinning approach towards the continuous production of aligned nanocellulose films
In this work, we present an alternative approach to cellulose nanofibril film (CNF) production, taking inspiration from the wet spinning of fibers to wet spin films. During the spinning process, a CNF suspension is injected into a coagulation bath, where the partially aligned CNF network is locked....
Saved in:
Published in | Colloids and surfaces. A, Physicochemical and engineering aspects Vol. 701; p. 134673 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we present an alternative approach to cellulose nanofibril film (CNF) production, taking inspiration from the wet spinning of fibers to wet spin films. During the spinning process, a CNF suspension is injected into a coagulation bath, where the partially aligned CNF network is locked. The CNF alignment of the dry films is then detected by wide angle X-ray scattering (WAXS). The comparison between the ultimate strengths and strengths at breaks of the films produced with different process parameters, including the suspension injection rate, bath pH, and bath flow rate, indicated no significant change in mechanical properties, suggesting a reliable and constant outcome for large-scale film fabrication. Furthermore, the produced films demonstrated high total light transmittance of 93 % at the wavelength of 550 nm, making them suitable for optoelectronic applications. Polarized optical microscopy revealed that even a low degree of CNF alignment can lead to anisotropic optical properties. Moreover, an anisotropic response to humidity was observed, in which the films preferentially bend in the perpendicular direction of the CNF orientation, thus opening a way for humidity-driven actuators.
[Display omitted]
•A wet-spinning method to produce cellulose nanofibril (CNF) films is developed.•The produced films demonstrate high light transmittance and partial CNF alignment.•The CNF alignment provides an anisotropic humidity actuation.•The wet-spinning approach has potential to continuous/scalable film production. |
---|---|
AbstractList | In this work, we present an alternative approach to cellulose nanofibril film (CNF) production, taking inspiration from the wet spinning of fibers to wet spin films. During the spinning process, a CNF suspension is injected into a coagulation bath, where the partially aligned CNF network is locked. The CNF alignment of the dry films is then detected by wide angle X-ray scattering (WAXS). The comparison between the ultimate strengths and strengths at breaks of the films produced with different process parameters, including the suspension injection rate, bath pH, and bath flow rate, indicated no significant change in mechanical properties, suggesting a reliable and constant outcome for large-scale film fabrication. Furthermore, the produced films demonstrated high total light transmittance of 93 % at the wavelength of 550 nm, making them suitable for optoelectronic applications. Polarized optical microscopy revealed that even a low degree of CNF alignment can lead to anisotropic optical properties. Moreover, an anisotropic response to humidity was observed, in which the films preferentially bend in the perpendicular direction of the CNF orientation, thus opening a way for humidity-driven actuators.
[Display omitted]
•A wet-spinning method to produce cellulose nanofibril (CNF) films is developed.•The produced films demonstrate high light transmittance and partial CNF alignment.•The CNF alignment provides an anisotropic humidity actuation.•The wet-spinning approach has potential to continuous/scalable film production. In this work, we present an alternative approach to cellulose nanofibril film (CNF) production, taking inspiration from the wet spinning of fibers to wet spin films. During the spinning process, a CNF suspension is injected into a coagulation bath, where the partially aligned CNF network is locked. The CNF alignment of the dry films is then detected by wide angle X-ray scattering (WAXS). The comparison between the ultimate strengths and strengths at breaks of the films produced with different process parameters, including the suspension injection rate, bath pH, and bath flow rate, indicated no significant change in mechanical properties, suggesting a reliable and constant outcome for large-scale film fabrication. Furthermore, the produced films demonstrated high total light transmittance of 93 % at the wavelength of 550 nm, making them suitable for optoelectronic applications. Polarized optical microscopy revealed that even a low degree of CNF alignment can lead to anisotropic optical properties. Moreover, an anisotropic response to humidity was observed, in which the films preferentially bend in the perpendicular direction of the CNF orientation, thus opening a way for humidity-driven actuators. |
ArticleNumber | 134673 |
Author | Daghigh Shirazi, Hamidreza Vapaavuori, Jaana Abitbol, Tiffany Håkansson, Karl M.O. |
Author_xml | – sequence: 1 givenname: Hamidreza surname: Daghigh Shirazi fullname: Daghigh Shirazi, Hamidreza organization: Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering, Kemistintie 1, Espoo 02150, Finland – sequence: 2 givenname: Karl M.O. surname: Håkansson fullname: Håkansson, Karl M.O. organization: RISE Research Institutes of Sweden , Drottning Kristinas väg 61, Stockholm SE-114 28, Sweden – sequence: 3 givenname: Tiffany orcidid: 0000-0001-9782-3860 surname: Abitbol fullname: Abitbol, Tiffany organization: Institute of Materials, School of Engineering, EPFL, Lausanne 1015, Switzerland – sequence: 4 givenname: Jaana orcidid: 0000-0002-5923-0789 surname: Vapaavuori fullname: Vapaavuori, Jaana email: jaana.vapaavuori@aalto.fi organization: Department of Chemistry and Materials Science, Aalto University School of Chemical Engineering, Kemistintie 1, Espoo 02150, Finland |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-74721$$DView record from Swedish Publication Index |
BookMark | eNqFkDtPwzAUhT0UibbwF5B3lGA7DycbVXlKlViAhcG6ca5bV6kd2QkV_55WBVamO5zvHOl-MzJx3iEhV5ylnPHyZptq38UxGEgFE3nKs7yU2YRMWS1kImUhz8ksxi1jLC9kPSUfC2pA2w5p7K1z1q0p9H3woDd08HsIbaTDBqn2brBu9GOkh7Qd9WC9o95Q6OzaYUsdOK-x68bOR6TGdrt4Qc4MdBEvf-6cvD3cvy6fktXL4_NysUq0EMWQ1MihwUrItmCmKrHIWcMakZkapEYAmVUtz6uiYjWToDU0VWZEmdc8F1BUWTYn16fduMd-bFQf7A7Cl_Jg1Z19Xygf1ipYJXMp-IEuT7QOPsaA5o_nTB0lqq36laiOEtVJ4qF4eyri4ZdPi0FFbdFpbG1APajW2_8mvgErboSF |
Cites_doi | 10.1021/am2016766 10.1021/bm101510r 10.1021/acs.langmuir.7b01832 10.1007/s10570-020-03566-z 10.1021/la201947x 10.7569/JRM.2013.634115 10.1021/acs.iecr.6b04010 10.1002/adma.201404772 10.1038/s41598-017-17713-3 10.1002/adma.201606284 10.1038/natrevmats.2018.16 10.1007/s10570-019-02496-9 10.1006/jsbi.1999.4107 10.1063/1.4922038 10.1063/1.2908883 10.1038/ncomms5018 10.1002/adma.201100580 10.1007/s10570-013-0159-1 10.1021/acsnano.8b01084 10.1088/0964-1726/18/11/117001 10.1016/j.snb.2017.01.130 10.1520/STP45149S 10.1038/ncomms2666 10.1016/j.carbpol.2024.121877 10.1007/s10570-018-1836-x 10.1002/adma.202104473 10.1021/la702481v 10.1021/acsnano.0c07613 10.1038/37745 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION ADTPV AOWAS D8T ZZAVC |
DOI | 10.1016/j.colsurfa.2024.134673 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | oai_DiVA_org_ri_74721 10_1016_j_colsurfa_2024_134673 S0927775724015371 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABMAC ABNEU ABNUV ABXRA ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCE SDF SDG SDP SES SEW SPC SPD SSG SSK SSM SSQ SSZ T5K WH7 ~02 ~G- 29F AAQXK AAYXX ABFNM ABXDB ACNNM ADMUD AFJKZ AI. ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCB VH1 WUQ ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c225t-9e1abe827d50f86e540b0b23f9a7ceaa738d148580907accab83f2649142a5833 |
IEDL.DBID | .~1 |
ISSN | 0927-7757 1873-4359 |
IngestDate | Tue Oct 01 22:00:00 EDT 2024 Wed Oct 16 15:16:41 EDT 2024 Sat Sep 07 15:51:19 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Alignment CNF Humidity actuation Cellulose nanofibril Optical transparency |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c225t-9e1abe827d50f86e540b0b23f9a7ceaa738d148580907accab83f2649142a5833 |
ORCID | 0000-0002-5923-0789 0000-0001-9782-3860 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0927775724015371 |
ParticipantIDs | swepub_primary_oai_DiVA_org_ri_74721 crossref_primary_10_1016_j_colsurfa_2024_134673 elsevier_sciencedirect_doi_10_1016_j_colsurfa_2024_134673 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-20 |
PublicationDateYYYYMMDD | 2024-11-20 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Colloids and surfaces. A, Physicochemical and engineering aspects |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Håkansson, Fall, Lundell (bib13) 2014; 5 Zhang, Nypelö, Salas, Arboleda, Hoeger, Rojas (bib7) 2013; 1 Nordenström, Fall, Nyström, Wågberg (bib24) 2017; 33 Zhu, Wang, Zhu (bib4) 2017; 29 Wågberg, Decher, Norgren, Lindström, Ankerfors, Axnäs (bib31) 2008; 24 Kaschuk, Al Haj, Rojas, Miettunen, Abitbol, Vapaavuori (bib25) 2022; 34 Dawson, Vincent, Rocca (bib28) 1997; 390 Ayissi Eyebe, Bideau, Boubekeur, Loranger, Domingue (bib29) 2017; 245 Erb, Sander, Grisch, Studart (bib27) 2013; 4 Kafy, Kim, Zhai (bib6) 2017; 7 Sehaqui, Ezekiel Mushi, Morimune, Salajkova, Nishino, Berglund (bib12) 2012; 4 Kim, Kim, Zhai, Kim (bib20) 2019; 26 Fall, Lindström, Sundman, Ödberg, Wågberg (bib23) 2011; 27 Mittal, Ansari, Gowda.V (bib19) 2018; 12 Lundahl, Klar, Wang, Ago, Rojas (bib17) 2017; 56 Taccola, Greco, Sinibaldi, Mondini, Mazzolai, Mattoli (bib30) 2015; 27 Li, Clarkson, Wang (bib9) 2021; 15 Walther, Timonen, Díez, Laukkanen, Ikkala (bib14) 2011; 23 Baez, Considine, Rowlands (bib11) 2014; 21 Ethington R.L., Hilbrand H.C. Anisotropy in Wood. In: Fifth Pacific Area National Meeting of the Society. ASTM International; 1966:21-21-18. doi:10.1520/STP45149S. Weiner, Traub, Wagner (bib1) 1999; 126 Ling, Kaplan, Buehler (bib3) 2018; 3 Håkansson (bib16) 2021; 28 Yun, Jang, Yun, Kim (bib21) 2009; 18 Rosén, Hsiao, Söderberg (bib18) 2021; 33 De France, Zeng, Wu, Nyström (bib8) 2021; 33 Josefsson, Ahvenainen, Mushi, Gamstedt (bib10) 2015; 117 Zhai, Kim, Kim, Kang, Kim (bib5) 2018; 25 Yun, Kim, Li, Kim (bib22) 2008; 103 Kaschuk, Al Haj, Valdez Garcia (bib26) 2024; 332 Iwamoto, Isogai, Iwata (bib15) 2011; 12 Zhai (10.1016/j.colsurfa.2024.134673_bib5) 2018; 25 Sehaqui (10.1016/j.colsurfa.2024.134673_bib12) 2012; 4 De France (10.1016/j.colsurfa.2024.134673_bib8) 2021; 33 Mittal (10.1016/j.colsurfa.2024.134673_bib19) 2018; 12 Wågberg (10.1016/j.colsurfa.2024.134673_bib31) 2008; 24 10.1016/j.colsurfa.2024.134673_bib2 Dawson (10.1016/j.colsurfa.2024.134673_bib28) 1997; 390 Kim (10.1016/j.colsurfa.2024.134673_bib20) 2019; 26 Fall (10.1016/j.colsurfa.2024.134673_bib23) 2011; 27 Nordenström (10.1016/j.colsurfa.2024.134673_bib24) 2017; 33 Håkansson (10.1016/j.colsurfa.2024.134673_bib16) 2021; 28 Li (10.1016/j.colsurfa.2024.134673_bib9) 2021; 15 Walther (10.1016/j.colsurfa.2024.134673_bib14) 2011; 23 Lundahl (10.1016/j.colsurfa.2024.134673_bib17) 2017; 56 Rosén (10.1016/j.colsurfa.2024.134673_bib18) 2021; 33 Yun (10.1016/j.colsurfa.2024.134673_bib21) 2009; 18 Yun (10.1016/j.colsurfa.2024.134673_bib22) 2008; 103 Ayissi Eyebe (10.1016/j.colsurfa.2024.134673_bib29) 2017; 245 Zhang (10.1016/j.colsurfa.2024.134673_bib7) 2013; 1 Erb (10.1016/j.colsurfa.2024.134673_bib27) 2013; 4 Weiner (10.1016/j.colsurfa.2024.134673_bib1) 1999; 126 Baez (10.1016/j.colsurfa.2024.134673_bib11) 2014; 21 Håkansson (10.1016/j.colsurfa.2024.134673_bib13) 2014; 5 Iwamoto (10.1016/j.colsurfa.2024.134673_bib15) 2011; 12 Ling (10.1016/j.colsurfa.2024.134673_bib3) 2018; 3 Kafy (10.1016/j.colsurfa.2024.134673_bib6) 2017; 7 Taccola (10.1016/j.colsurfa.2024.134673_bib30) 2015; 27 Zhu (10.1016/j.colsurfa.2024.134673_bib4) 2017; 29 Kaschuk (10.1016/j.colsurfa.2024.134673_bib25) 2022; 34 Josefsson (10.1016/j.colsurfa.2024.134673_bib10) 2015; 117 Kaschuk (10.1016/j.colsurfa.2024.134673_bib26) 2024; 332 |
References_xml | – volume: 28 start-page: 881 year: 2021 end-page: 895 ident: bib16 article-title: Effect of carboxymethylated cellulose nanofibril concentration regime upon material forming on mechanical properties in films and filaments publication-title: Cellulose contributor: fullname: Håkansson – volume: 12 start-page: 6378 year: 2018 end-page: 6388 ident: bib19 article-title: Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers publication-title: ACS Nano contributor: fullname: Gowda.V – volume: 34 year: 2022 ident: bib25 article-title: Plant-based structures as an opportunity to engineer optical functions in next-generation light management publication-title: Adv. Mater. contributor: fullname: Vapaavuori – volume: 12 start-page: 831 year: 2011 end-page: 836 ident: bib15 article-title: Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers publication-title: Biomacromolecules contributor: fullname: Iwata – volume: 4 start-page: 1712 year: 2013 ident: bib27 article-title: Self-shaping composites with programmable bioinspired microstructures publication-title: Nat. Commun. contributor: fullname: Studart – volume: 117 year: 2015 ident: bib10 article-title: Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels publication-title: J. Appl. Phys. contributor: fullname: Gamstedt – volume: 5 start-page: 4018 year: 2014 ident: bib13 article-title: Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments publication-title: Nat. Commun. contributor: fullname: Lundell – volume: 390 year: 1997 ident: bib28 article-title: How pine cones open publication-title: Nature contributor: fullname: Rocca – volume: 126 start-page: 241 year: 1999 end-page: 255 ident: bib1 article-title: Lamellar bone: structure–function relations publication-title: J. Struct. Biol. contributor: fullname: Wagner – volume: 21 start-page: 347 year: 2014 end-page: 356 ident: bib11 article-title: Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films publication-title: Cellulose contributor: fullname: Rowlands – volume: 27 start-page: 11332 year: 2011 end-page: 11338 ident: bib23 article-title: Colloidal stability of aqueous nanofibrillated cellulose dispersions publication-title: Langmuir contributor: fullname: Wågberg – volume: 7 year: 2017 ident: bib6 article-title: Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics publication-title: Sci. Rep. contributor: fullname: Zhai – volume: 15 start-page: 3646 year: 2021 end-page: 3673 ident: bib9 article-title: Alignment of cellulose nanofibers: harnessing nanoscale properties to macroscale benefits publication-title: ACS Nano contributor: fullname: Wang – volume: 18 year: 2009 ident: bib21 article-title: Electrically aligned cellulose film for electro-active paper and its piezoelectricity publication-title: Smart Mater. Struct. contributor: fullname: Kim – volume: 33 start-page: 9772 year: 2017 end-page: 9780 ident: bib24 article-title: Formation of colloidal nanocellulose glasses and gels publication-title: Langmuir contributor: fullname: Wågberg – volume: 33 year: 2021 ident: bib8 article-title: Functional materials from nanocellulose: utilizing structure–property relationships in bottom-up fabrication publication-title: Adv. Mater. contributor: fullname: Nyström – volume: 56 start-page: 8 year: 2017 end-page: 19 ident: bib17 article-title: Spinning of cellulose nanofibrils into filaments: a review publication-title: Ind. Eng. Chem. Res contributor: fullname: Rojas – volume: 33 year: 2021 ident: bib18 article-title: Elucidating the opportunities and challenges for nanocellulose spinning publication-title: Adv. Mater. contributor: fullname: Söderberg – volume: 3 year: 2018 ident: bib3 article-title: Nanofibrils in nature and materials engineering publication-title: Nat. Rev. Mater. contributor: fullname: Buehler – volume: 103 year: 2008 ident: bib22 article-title: Alignment of cellulose chains of regenerated cellulose by corona poling and its piezoelectricity publication-title: J. Appl. Phys. contributor: fullname: Kim – volume: 23 start-page: 2924 year: 2011 end-page: 2928 ident: bib14 article-title: Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils publication-title: Adv. Mater. contributor: fullname: Ikkala – volume: 332 year: 2024 ident: bib26 article-title: Processing factors affecting roughness, optical and mechanical properties of nanocellulose films for optoelectronics publication-title: Carbohydr. Polym. contributor: fullname: Valdez Garcia – volume: 29 year: 2017 ident: bib4 article-title: Anisotropic, transparent films with aligned cellulose nanofibers publication-title: Adv. Mater. contributor: fullname: Zhu – volume: 1 start-page: 195 year: 2013 end-page: 211 ident: bib7 article-title: Cellulose nanofibrils publication-title: J. Renew. Mater. contributor: fullname: Rojas – volume: 27 start-page: 1668 year: 2015 end-page: 1675 ident: bib30 article-title: Toward a new generation of electrically controllable hygromorphic soft actuators publication-title: Adv. Mater. contributor: fullname: Mattoli – volume: 24 start-page: 784 year: 2008 end-page: 795 ident: bib31 article-title: The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes publication-title: Langmuir contributor: fullname: Axnäs – volume: 26 start-page: 5821 year: 2019 end-page: 5829 ident: bib20 article-title: Strong and tough long cellulose fibers made by aligning cellulose nanofibers under magnetic and electric fields publication-title: Cellulose contributor: fullname: Kim – volume: 25 start-page: 4261 year: 2018 end-page: 4268 ident: bib5 article-title: Elastic moduli of cellulose nanofibers isolated from various cellulose resources by using aqueous counter collision publication-title: Cellulose contributor: fullname: Kim – volume: 4 start-page: 1043 year: 2012 end-page: 1049 ident: bib12 article-title: Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Berglund – volume: 245 start-page: 484 year: 2017 end-page: 492 ident: bib29 article-title: Environmentally-friendly cellulose nanofibre sheets for humidity sensing in microwave frequencies publication-title: Sens Actuators B Chem. contributor: fullname: Domingue – volume: 33 issue: 28 year: 2021 ident: 10.1016/j.colsurfa.2024.134673_bib8 article-title: Functional materials from nanocellulose: utilizing structure–property relationships in bottom-up fabrication publication-title: Adv. Mater. contributor: fullname: De France – volume: 4 start-page: 1043 issue: 2 year: 2012 ident: 10.1016/j.colsurfa.2024.134673_bib12 article-title: Cellulose nanofiber orientation in nanopaper and nanocomposites by cold drawing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am2016766 contributor: fullname: Sehaqui – volume: 12 start-page: 831 issue: 3 year: 2011 ident: 10.1016/j.colsurfa.2024.134673_bib15 article-title: Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers publication-title: Biomacromolecules doi: 10.1021/bm101510r contributor: fullname: Iwamoto – volume: 33 start-page: 9772 issue: 38 year: 2017 ident: 10.1016/j.colsurfa.2024.134673_bib24 article-title: Formation of colloidal nanocellulose glasses and gels publication-title: Langmuir doi: 10.1021/acs.langmuir.7b01832 contributor: fullname: Nordenström – volume: 28 start-page: 881 issue: 2 year: 2021 ident: 10.1016/j.colsurfa.2024.134673_bib16 article-title: Effect of carboxymethylated cellulose nanofibril concentration regime upon material forming on mechanical properties in films and filaments publication-title: Cellulose doi: 10.1007/s10570-020-03566-z contributor: fullname: Håkansson – volume: 27 start-page: 11332 issue: 18 year: 2011 ident: 10.1016/j.colsurfa.2024.134673_bib23 article-title: Colloidal stability of aqueous nanofibrillated cellulose dispersions publication-title: Langmuir doi: 10.1021/la201947x contributor: fullname: Fall – volume: 1 start-page: 195 issue: 3 year: 2013 ident: 10.1016/j.colsurfa.2024.134673_bib7 article-title: Cellulose nanofibrils publication-title: J. Renew. Mater. doi: 10.7569/JRM.2013.634115 contributor: fullname: Zhang – volume: 56 start-page: 8 issue: 1 year: 2017 ident: 10.1016/j.colsurfa.2024.134673_bib17 article-title: Spinning of cellulose nanofibrils into filaments: a review publication-title: Ind. Eng. Chem. Res doi: 10.1021/acs.iecr.6b04010 contributor: fullname: Lundahl – volume: 27 start-page: 1668 issue: 10 year: 2015 ident: 10.1016/j.colsurfa.2024.134673_bib30 article-title: Toward a new generation of electrically controllable hygromorphic soft actuators publication-title: Adv. Mater. doi: 10.1002/adma.201404772 contributor: fullname: Taccola – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.colsurfa.2024.134673_bib6 article-title: Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics publication-title: Sci. Rep. doi: 10.1038/s41598-017-17713-3 contributor: fullname: Kafy – volume: 29 issue: 21 year: 2017 ident: 10.1016/j.colsurfa.2024.134673_bib4 article-title: Anisotropic, transparent films with aligned cellulose nanofibers publication-title: Adv. Mater. doi: 10.1002/adma.201606284 contributor: fullname: Zhu – volume: 3 issue: 4 year: 2018 ident: 10.1016/j.colsurfa.2024.134673_bib3 article-title: Nanofibrils in nature and materials engineering publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.16 contributor: fullname: Ling – volume: 26 start-page: 5821 issue: 10 year: 2019 ident: 10.1016/j.colsurfa.2024.134673_bib20 article-title: Strong and tough long cellulose fibers made by aligning cellulose nanofibers under magnetic and electric fields publication-title: Cellulose doi: 10.1007/s10570-019-02496-9 contributor: fullname: Kim – volume: 126 start-page: 241 issue: 3 year: 1999 ident: 10.1016/j.colsurfa.2024.134673_bib1 article-title: Lamellar bone: structure–function relations publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1999.4107 contributor: fullname: Weiner – volume: 117 issue: 21 year: 2015 ident: 10.1016/j.colsurfa.2024.134673_bib10 article-title: Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels publication-title: J. Appl. Phys. doi: 10.1063/1.4922038 contributor: fullname: Josefsson – volume: 103 issue: 8 year: 2008 ident: 10.1016/j.colsurfa.2024.134673_bib22 article-title: Alignment of cellulose chains of regenerated cellulose by corona poling and its piezoelectricity publication-title: J. Appl. Phys. doi: 10.1063/1.2908883 contributor: fullname: Yun – volume: 5 start-page: 4018 issue: 1 year: 2014 ident: 10.1016/j.colsurfa.2024.134673_bib13 article-title: Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments publication-title: Nat. Commun. doi: 10.1038/ncomms5018 contributor: fullname: Håkansson – volume: 23 start-page: 2924 issue: 26 year: 2011 ident: 10.1016/j.colsurfa.2024.134673_bib14 article-title: Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils publication-title: Adv. Mater. doi: 10.1002/adma.201100580 contributor: fullname: Walther – volume: 21 start-page: 347 issue: 1 year: 2014 ident: 10.1016/j.colsurfa.2024.134673_bib11 article-title: Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films publication-title: Cellulose doi: 10.1007/s10570-013-0159-1 contributor: fullname: Baez – volume: 12 start-page: 6378 issue: 7 year: 2018 ident: 10.1016/j.colsurfa.2024.134673_bib19 article-title: Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers publication-title: ACS Nano doi: 10.1021/acsnano.8b01084 contributor: fullname: Mittal – volume: 18 issue: 11 year: 2009 ident: 10.1016/j.colsurfa.2024.134673_bib21 article-title: Electrically aligned cellulose film for electro-active paper and its piezoelectricity publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/11/117001 contributor: fullname: Yun – volume: 245 start-page: 484 year: 2017 ident: 10.1016/j.colsurfa.2024.134673_bib29 article-title: Environmentally-friendly cellulose nanofibre sheets for humidity sensing in microwave frequencies publication-title: Sens Actuators B Chem. doi: 10.1016/j.snb.2017.01.130 contributor: fullname: Ayissi Eyebe – ident: 10.1016/j.colsurfa.2024.134673_bib2 doi: 10.1520/STP45149S – volume: 33 issue: 28 year: 2021 ident: 10.1016/j.colsurfa.2024.134673_bib18 article-title: Elucidating the opportunities and challenges for nanocellulose spinning publication-title: Adv. Mater. contributor: fullname: Rosén – volume: 4 start-page: 1712 issue: 1 year: 2013 ident: 10.1016/j.colsurfa.2024.134673_bib27 article-title: Self-shaping composites with programmable bioinspired microstructures publication-title: Nat. Commun. doi: 10.1038/ncomms2666 contributor: fullname: Erb – volume: 332 year: 2024 ident: 10.1016/j.colsurfa.2024.134673_bib26 article-title: Processing factors affecting roughness, optical and mechanical properties of nanocellulose films for optoelectronics publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2024.121877 contributor: fullname: Kaschuk – volume: 25 start-page: 4261 issue: 7 year: 2018 ident: 10.1016/j.colsurfa.2024.134673_bib5 article-title: Elastic moduli of cellulose nanofibers isolated from various cellulose resources by using aqueous counter collision publication-title: Cellulose doi: 10.1007/s10570-018-1836-x contributor: fullname: Zhai – volume: 34 issue: 6 year: 2022 ident: 10.1016/j.colsurfa.2024.134673_bib25 article-title: Plant-based structures as an opportunity to engineer optical functions in next-generation light management publication-title: Adv. Mater. doi: 10.1002/adma.202104473 contributor: fullname: Kaschuk – volume: 24 start-page: 784 issue: 3 year: 2008 ident: 10.1016/j.colsurfa.2024.134673_bib31 article-title: The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes publication-title: Langmuir doi: 10.1021/la702481v contributor: fullname: Wågberg – volume: 15 start-page: 3646 issue: 3 year: 2021 ident: 10.1016/j.colsurfa.2024.134673_bib9 article-title: Alignment of cellulose nanofibers: harnessing nanoscale properties to macroscale benefits publication-title: ACS Nano doi: 10.1021/acsnano.0c07613 contributor: fullname: Li – volume: 390 issue: 6661 year: 1997 ident: 10.1016/j.colsurfa.2024.134673_bib28 article-title: How pine cones open publication-title: Nature doi: 10.1038/37745 contributor: fullname: Dawson |
SSID | ssj0004579 |
Score | 2.496124 |
Snippet | In this work, we present an alternative approach to cellulose nanofibril film (CNF) production, taking inspiration from the wet spinning of fibers to wet spin... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 134673 |
SubjectTerms | Alignment Anisotropy atomic force microscopy birefringence carboxyl group Cellulose films cellulose nanofiber Cellulose nanofibril Cellulose nanofibril film Cellulose nanofibrils CNF comparative study Continuous production controlled study Film alignment Film production flow rate Humidity Humidity actuation hydrochloric acid methyl group Nanocellulose Nanocellulose films nanofabrication Nanofibers nanofilm Optical Properties Optical transparency optics polarization microscopy Processes Production radiation scattering reproducibility scanning electron microscopy Spinning (fibers) suspension Suspensions (fluids) tensile strength Thin Films ultraviolet visible spectrophotometry Wet Spinning wet spinning approach wide angle X ray scattering X ray scattering |
Title | A facile spinning approach towards the continuous production of aligned nanocellulose films |
URI | https://dx.doi.org/10.1016/j.colsurfa.2024.134673 https://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-74721 |
Volume | 701 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgADggKivOSha5rESWpnrApVAdEFiioxWHZqV6lKUiXpym_nnAcqA2JgTJSX7s533xfdfUaoN5AAMiQErxQLZfngdUtC5FiaBlILoYLIMcPJz9PBZOY_zoN5C42aWRjTVlnn_iqnl9m6PmPX1rQ3cWy_OCGhlAYUahIs23KO3IhtQUz3P90dxfBab49Qy1y9MyW8gmev822mjf4Q8fuuB1nD-7VA7SqJltVnfIyOatiIh9WXnaCWSjpof9Ts1tZBhzvCgqfofYi1iGDB43wTl5sS4UY8HBdlo2yOAflh06geJ1tg_3hTSb-Cm3CqMaDzJSRgnIgkNf_2t-s0V1jH64_8DM3G96-jiVVvo2BFsFgLK1SukIoRuggczQYKMJp0JPF0KGikhKAeWwApCpgDRFmARyXzNOCk0PWJMENZ56idpIm6QNiQE72QFCi152vthUwxyaDMAjFhUvpdZDe245tKLYM3bWQr3libG2vzytpdFDYm5j_8ziGl_3lvr_LJ97uMVvZd_DbkabbkWcyBKxH38h-vuEIH5sgMHxLnGrWLbKtuAIUU8rYMs1u0N3x4mky_ABaL30U |
link.rule.ids | 230,315,783,787,888,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4IHtCDUdSIzx64Lvum3SNBCSpwEQyJh6aFlizB3c0uXP3tTvdh8GA8eN13ZqYz37eZ-YpQuysAZAgIXsGX0vDA64aAyDEU8YXiXPoLSw8njyfd4cx7nvvzGupXszC6rbLM_UVOz7N1ecQsrWkmYWi-WoFDCPEJ1CRYtnqO_MDT-lkQ1J1Pe08yvBTcc4ihL98bE17DwzfZLlVagMjxOrYLacP9tULtS4nm5Wdwgo5L3Ih7xaedopqMmqjRr7Zra6KjPWXBM_Tew4ovYMXjLAnzXYlwpR6Ot3mnbIYB-mHdqR5GO6D_OCm0X8FPOFYY4PkKMjCOeBTrn_u7TZxJrMLNR3aOZoPHaX9olPsoGAtYrVsjkDYXkjpk6VuKdiWANGEJx1UBJwvJOXHpEliRTy1gyhxcKqirACgFtudwPZV1gepRHMlLhDU7UUtBgFO7nlJuQCUVFOosMBMqhNdCZmU7lhRyGazqI1uzytpMW5sV1m6hoDIx--F4Bjn9z3vbhU--36XFsh_Ctx6L0xVLQwZkybGv_vGKe9QYTscjNnqavFyjQ31GTyI61g2qb9OdvAVIshV3ech9AXtX4Oc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+facile+spinning+approach+towards+the+continuous+production+of+aligned+nanocellulose+films&rft.jtitle=Colloids+and+surfaces.+A%2C+Physicochemical+and+engineering+aspects&rft.au=Daghigh+Shirazi%2C+Hamidreza&rft.au=H%C3%A5kansson%2C+Karl+M.O.&rft.au=Abitbol%2C+Tiffany&rft.au=Vapaavuori%2C+Jaana&rft.date=2024-11-20&rft.pub=Elsevier+B.V&rft.issn=0927-7757&rft.volume=701&rft_id=info:doi/10.1016%2Fj.colsurfa.2024.134673&rft.externalDocID=S0927775724015371 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-7757&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-7757&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-7757&client=summon |