An Optimal Allocation of Reactive Power Capable End-User Devices for Grid Support
The increasing penetration of photovoltaic (PV) systems in low-voltage residential feeders has elevated the need for grid support at the distribution level to prevent violations of local voltage constraints. In this article, a coordinated reactive power support (RPS) methodology is presented that ut...
Saved in:
Published in | IEEE systems journal Vol. 15; no. 3; pp. 3249 - 3260 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing penetration of photovoltaic (PV) systems in low-voltage residential feeders has elevated the need for grid support at the distribution level to prevent violations of local voltage constraints. In this article, a coordinated reactive power support (RPS) methodology is presented that utilizes the demand-side flexibilities of the end user to keep local voltage levels within allowed levels. A cloud-based architecture is implemented to optimally coordinate consumers' reactive power capable demand-side resources such as electric vehicles, solar PV systems, flexible home appliances, etc., considering their varying characteristics, ratings, and purposes. An optimization-based two-stage device scheduling and management model is presented for the cloud server that schedules consumers' devices in day ahead for cost minimization, and optimally allocates the required RPS in real time among the candidate devices based on priority. Two device prioritization strategies are proposed that consider the reliability of reactive power capable consumer devices and management complexity, thereby, allowing consumers to either enhance the candidate devices' lifetime or reduce the management complexity while participating in grid support. The proposed RPS methodology is validated using simulation studies, and an experimental setup is established to verify the viability of the proposed cloud-based coordination system for RPS. Case studies indicate that the proposed method can effectively prevent overvoltage situations by using coordinated RPS from consumers' devices while maximizing their reliability. Results also indicate that the proposed methodology is economically more viable than state-of-the-art voltage control strategies. |
---|---|
AbstractList | The increasing penetration of photovoltaic (PV) systems in low-voltage residential feeders has elevated the need for grid support at the distribution level to prevent violations of local voltage constraints. In this article, a coordinated reactive power support (RPS) methodology is presented that utilizes the demand-side flexibilities of the end user to keep local voltage levels within allowed levels. A cloud-based architecture is implemented to optimally coordinate consumers' reactive power capable demand-side resources such as electric vehicles, solar PV systems, flexible home appliances, etc., considering their varying characteristics, ratings, and purposes. An optimization-based two-stage device scheduling and management model is presented for the cloud server that schedules consumers' devices in day ahead for cost minimization, and optimally allocates the required RPS in real time among the candidate devices based on priority. Two device prioritization strategies are proposed that consider the reliability of reactive power capable consumer devices and management complexity, thereby, allowing consumers to either enhance the candidate devices' lifetime or reduce the management complexity while participating in grid support. The proposed RPS methodology is validated using simulation studies, and an experimental setup is established to verify the viability of the proposed cloud-based coordination system for RPS. Case studies indicate that the proposed method can effectively prevent overvoltage situations by using coordinated RPS from consumers' devices while maximizing their reliability. Results also indicate that the proposed methodology is economically more viable than state-of-the-art voltage control strategies. |
Author | Hossain, M. J. Sharma, Vivek Kashif, Muhammad Fernandez, Edstan Ali, Syed Muhammad Nawazish Nizami, M. S. H. |
Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0002-5923-7622 surname: Kashif fullname: Kashif, Muhammad email: muhammad.kashif@hdr.mq.edu.au organization: School of Engineering, Macquarie University, Sydney, NSW, Australia – sequence: 2 givenname: M. J. orcidid: 0000-0001-7602-3581 surname: Hossain fullname: Hossain, M. J. email: jahangir.hossain@uts.edu.au organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 3 givenname: Edstan orcidid: 0000-0002-7861-2803 surname: Fernandez fullname: Fernandez, Edstan email: edstan.fernandez@hdr.mq.edu.au organization: School of Engineering, Macquarie University, Sydney, NSW, Australia – sequence: 4 givenname: M. S. H. orcidid: 0000-0002-0667-1441 surname: Nizami fullname: Nizami, M. S. H. email: sohrab.nizami@hdr.mq.edu.au organization: School of Engineering, Macquarie University, Sydney, NSW, Australia – sequence: 5 givenname: Syed Muhammad Nawazish orcidid: 0000-0003-3600-5324 surname: Ali fullname: Ali, Syed Muhammad Nawazish email: syed-muhammad-nawazish.ali@hdr.mq.edu.au organization: School of Engineering, Macquarie University, Sydney, NSW, Australia – sequence: 6 givenname: Vivek orcidid: 0000-0002-1143-0298 surname: Sharma fullname: Sharma, Vivek email: vivek.sharma2@hdr.mq.edu.au organization: School of Engineering, Macquarie University, Sydney, NSW, Australia |
BookMark | eNo9kEtPwkAUhScGExH9A7qZxHVx3p1ZEkTUkKACC1eT6fQ2KamdOi0Y_70FjKv7yDn35H6XaFCHGhC6oWRMKTH3L6uP1XrMCCNjZgwnSp6hITU8TQzjYnDsWaKpFhfosm23hEgtUzNEb5MaL5uu_HQVnlRV8K4rQ41Dgd_B-a7cA34N3xDx1DUuqwDP6jzZtP3iAfalhxYXIeJ5LHO82jVNiN0VOi9c1cL1Xx2hzeNsPX1KFsv583SySDxjsks0I8proVUGzBGiXeGNUFnOgSuXOZUJWZhcGgemH4XxmmvK84w75nUqPB-hu9PdJoavHbSd3YZdrPtIy6SSjKeKkV7FTiofQ9tGKGwT-2fjj6XEHtDZIzp7QGf_0PWm25OpBIB_g6EkFYTzX3bsa90 |
CODEN | ISJEB2 |
CitedBy_id | crossref_primary_10_3390_en17010150 crossref_primary_10_1016_j_est_2024_112065 |
Cites_doi | 10.1049/iet-stg.2019.0066 10.1109/PESGM.2018.8585526 10.1109/TSG.2015.2410780 10.1109/AUPEC.2015.7324878 10.1016/j.rser.2017.10.017 10.1109/JSAC.2015.2481203 10.1016/j.apenergy.2018.09.171 10.1109/ACCESS.2019.2947238 10.1109/JPROC.2011.2116750 10.1049/iet-gtd.2017.0975 10.3390/en11061567 10.1016/j.epsr.2008.04.002 10.1109/ISIE.2018.8433843 10.1109/TSTE.2010.2098483 10.1016/j.energy.2019.116104 10.1109/TSTE.2013.2263848 10.1109/TPWRS.2012.2183151 10.1016/j.epsr.2009.07.009 10.1109/TSG.2010.2044816 10.1109/MPE.2009.934876 10.1109/TSTE.2014.2306572 10.1109/TSTE.2018.2819201 10.1109/TPWRS.2013.2256375 10.1109/TSTE.2016.2577559 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JSYST.2020.2993065 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1937-9234 |
EndPage | 3260 |
ExternalDocumentID | 10_1109_JSYST_2020_2993065 9107403 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ACIWK AENEX AETIX AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RIG RNS AAYXX CITATION |
ID | FETCH-LOGICAL-c225t-8206c8486be2a008afc946bd3e36aba6b45f9d59ae9aba49c83813db3a2c874c3 |
IEDL.DBID | RIE |
ISSN | 1932-8184 |
IngestDate | Thu Oct 10 17:01:11 EDT 2024 Fri Aug 23 01:32:06 EDT 2024 Mon Nov 04 12:06:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c225t-8206c8486be2a008afc946bd3e36aba6b45f9d59ae9aba49c83813db3a2c874c3 |
ORCID | 0000-0001-7602-3581 0000-0002-5923-7622 0000-0002-0667-1441 0000-0002-7861-2803 0000-0003-3600-5324 0000-0002-1143-0298 |
PQID | 2565237620 |
PQPubID | 85494 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_JSYST_2020_2993065 proquest_journals_2565237620 ieee_primary_9107403 |
PublicationCentury | 2000 |
PublicationDate | 2021-Sept. 2021-9-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-Sept. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE systems journal |
PublicationTitleAbbrev | JSYST |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 braun (ref25) 2007 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref26 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 (ref23) 0 |
References_xml | – ident: ref14 doi: 10.1049/iet-stg.2019.0066 – ident: ref12 doi: 10.1109/PESGM.2018.8585526 – ident: ref15 doi: 10.1109/TSG.2015.2410780 – ident: ref3 doi: 10.1109/AUPEC.2015.7324878 – ident: ref2 doi: 10.1016/j.rser.2017.10.017 – ident: ref18 doi: 10.1109/JSAC.2015.2481203 – ident: ref24 doi: 10.1016/j.apenergy.2018.09.171 – ident: ref19 doi: 10.1109/ACCESS.2019.2947238 – ident: ref6 doi: 10.1109/JPROC.2011.2116750 – start-page: 3 year: 2007 ident: ref25 article-title: Reactive power supplied by PV inverters-cost-benefit-analysis publication-title: Proc 22nd Eur Photovolt Sol Energy Conf Exhib contributor: fullname: braun – ident: ref7 doi: 10.1049/iet-gtd.2017.0975 – year: 0 ident: ref23 publication-title: System Advisor Model – ident: ref26 doi: 10.3390/en11061567 – ident: ref5 doi: 10.1016/j.epsr.2008.04.002 – ident: ref4 doi: 10.1109/ISIE.2018.8433843 – ident: ref10 doi: 10.1109/TSTE.2010.2098483 – ident: ref22 doi: 10.1016/j.energy.2019.116104 – ident: ref8 doi: 10.1109/TSTE.2013.2263848 – ident: ref1 doi: 10.1109/TPWRS.2012.2183151 – ident: ref21 doi: 10.1016/j.epsr.2009.07.009 – ident: ref16 doi: 10.1109/TSG.2010.2044816 – ident: ref17 doi: 10.1109/MPE.2009.934876 – ident: ref20 doi: 10.1109/TSTE.2014.2306572 – ident: ref13 doi: 10.1109/TSTE.2018.2819201 – ident: ref9 doi: 10.1109/TPWRS.2013.2256375 – ident: ref11 doi: 10.1109/TSTE.2016.2577559 |
SSID | ssj0058579 |
Score | 2.3088071 |
Snippet | The increasing penetration of photovoltaic (PV) systems in low-voltage residential feeders has elevated the need for grid support at the distribution level to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 3249 |
SubjectTerms | Capacitors Cloud communication Cloud computing Complexity Consumers demand-side management device to grid Devices Electric vehicles Feeders Home appliances Household appliances Inverters Methodology Optimization Photovoltaic cells Power consumption Reactive power reactive power support (RPS) Reliability Resource management Schedules Service life assessment Voltage control |
Title | An Optimal Allocation of Reactive Power Capable End-User Devices for Grid Support |
URI | https://ieeexplore.ieee.org/document/9107403 https://www.proquest.com/docview/2565237620 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShIA9skDQkzsNjVVqqSuXVVipTZDuOhCgpKunCr-fOSSpeA1siJZHlO9_3-XL-jpBz_ypIw0DD-hZXmK1KhSWUgo2rrwFuFXiNwoT-6DYYTNlw5s9q5HJ9FkZrbYrPtI2X5l9-slArTJW1OVYPorTnRsh5cVarirrAeo2uHvIRC0CIVQdkHN4ejp_GE9gKuo4NwRdbpX8DIdNV5VcoNvjS3yGjamRFWcmLvcqlrT5-iDb-d-i7ZLskmrRTeMYeqelsn2x9kR9skIdORu8gZLzic3NENbQSXaT0UQsTB-k9NlGjXUBUOde0lyXWFHyWXmsTYCgwXnqzfE4oNgcFIn9Apv3epDuwyhYLloKFnFuo3q4iFgVSuwLogEgVZ4FMPO0FQopAMj_liY8K3nDLuIoA4b1EesJVUciUd0jq2SLTR4SGnh-mTIWuSALGGWaU4COAhaELlFI6TXJRzXn8VihpxGYH4vDYWChGC8WlhZqkgZO4frKcvyZpVWaKy8X2HgNr87G4x3WO_37rhGy6WIpiSsNapJ4vV_oUuEQuz4wTfQLSPsQM |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1V5QAc2BFl9YEbpA2J4yRHxFagZW2lcopsx5EQkCJoL3w9M05SsR24JVISWZ7xvOfJ-A3AbnAgslAYXN_ygLJVmXSk1rhxDQzCrUav0ZTQ716Jdp9fDIJBDfYnZ2GMMbb4zDTp0v7LT4d6TKmyVkzVgyTtOYW8OhLFaa0q7iLvtcp6xEgchCFeHZFx49bF_cN9DzeDntvE8EvN0r_BkO2r8isYW4Q5nYduNbaisOSpOR6ppv74Idv438EvwFxJNdlh4RuLUDP5Esx-ESBchtvDnF1j0Hih554J18hObJixOyNtJGQ31EaNHSGmqmfDTvLU6aPXsmNjQwxDzsvO3h5TRu1BkcqvQP_0pHfUdsomC47GpTxySL9dRzwSyngSCYHMdMyFSn3jC6mkUDzI4jQgDW-85bGOEOP9VPnS01HItb8K9XyYmzVgoR-EGdehJ1PBY045JfwIomHoIalUbgP2qjlPXgstjcTuQdw4sRZKyEJJaaEGLNMkTp4s568Bm5WZknK5vSfI2wIq7_Hc9b_f2oHpdq_bSTrnV5cbMONRYYotFNuE-uhtbLaQWYzUtnWoT0B5x1c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal+Allocation+of+Reactive+Power+Capable+End-User+Devices+for+Grid+Support&rft.jtitle=IEEE+systems+journal&rft.au=Kashif%2C+Muhammad&rft.au=Hossain%2C+M.+J.&rft.au=Fernandez%2C+Edstan&rft.au=Nizami%2C+M.+S.+H.&rft.date=2021-09-01&rft.issn=1932-8184&rft.eissn=1937-9234&rft.volume=15&rft.issue=3&rft.spage=3249&rft.epage=3260&rft_id=info:doi/10.1109%2FJSYST.2020.2993065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSYST_2020_2993065 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon |