FNED A Deep Network for Fake News Early Detection on Social Media

The fast spreading of fake news stories on social media can cause inestimable social harm. Developing effective methods to detect them early is of paramount importance. A major challenge of fake news early detection is fully utilizing the limited data observed at the early stage of news propagation...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on information systems Vol. 38; no. 3; pp. 1 - 33
Main Authors Liu, Yang, Wu, Yi-Fang Brook
Format Journal Article
LanguageEnglish
Published 01.06.2020
Online AccessGet full text

Cover

Loading…
Abstract The fast spreading of fake news stories on social media can cause inestimable social harm. Developing effective methods to detect them early is of paramount importance. A major challenge of fake news early detection is fully utilizing the limited data observed at the early stage of news propagation and then learning useful patterns from it for identifying fake news. In this article, we propose a novel deep neural network to detect fake news early. It has three novel components: (1) a status-sensitive crowd response feature extractor that extracts both text features and user features from combinations of users’ text response and their corresponding user profiles, (2) a position-aware attention mechanism that highlights important user responses at specific ranking positions, and (3) a multi-region mean-pooling mechanism to perform feature aggregation based on multiple window sizes. Experimental results on two real-world datasets demonstrate that our proposed model can detect fake news with greater than 90% accuracy within 5 minutes after it starts to spread and before it is retweeted 50 times, which is significantly faster than state-of-the-art baselines. Most importantly, our approach requires only 10% labeled fake news samples to achieve this effectiveness under PU-Learning settings.
AbstractList The fast spreading of fake news stories on social media can cause inestimable social harm. Developing effective methods to detect them early is of paramount importance. A major challenge of fake news early detection is fully utilizing the limited data observed at the early stage of news propagation and then learning useful patterns from it for identifying fake news. In this article, we propose a novel deep neural network to detect fake news early. It has three novel components: (1) a status-sensitive crowd response feature extractor that extracts both text features and user features from combinations of users’ text response and their corresponding user profiles, (2) a position-aware attention mechanism that highlights important user responses at specific ranking positions, and (3) a multi-region mean-pooling mechanism to perform feature aggregation based on multiple window sizes. Experimental results on two real-world datasets demonstrate that our proposed model can detect fake news with greater than 90% accuracy within 5 minutes after it starts to spread and before it is retweeted 50 times, which is significantly faster than state-of-the-art baselines. Most importantly, our approach requires only 10% labeled fake news samples to achieve this effectiveness under PU-Learning settings.
Author Wu, Yi-Fang Brook
Liu, Yang
Author_xml – sequence: 1
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: New Jersey Institute of Technology, Newark, NJ
– sequence: 2
  givenname: Yi-Fang Brook
  surname: Wu
  fullname: Wu, Yi-Fang Brook
  organization: New Jersey Institute of Technology, Newark, NJ
BookMark eNpljktLw0AUhYcSoS_xZ3Q1eu-8crOU2lqh6Mauwzwh0iYyk43_3ohd6eqcAx-Hb8mqfugjY3cI94hKP0hJRmg5YwvUmrggQ9XUQRlOSDRny1I-AKZtYMGq_evuac1ukj2XeHvNFTvtd-_bAz--Pb9sH4_cC6FHrhxEZ4PzGkRIgEFYRSl4A1JJ76gWMjbO21o0jbYWgzKpRkzSyOBqBLlim99fn4dSckztZ-4uNn-1CO2PfHuVn0j-h_TdaMdu6Mdsu_M__huab0QD
CitedBy_id crossref_primary_10_1080_24751839_2020_1847379
crossref_primary_10_1109_ACCESS_2021_3062029
crossref_primary_10_1109_TMM_2023_3263552
crossref_primary_10_1007_s00607_025_01413_2
crossref_primary_10_1371_journal_pone_0292446
crossref_primary_10_32604_cmc_2023_038303
crossref_primary_10_1016_j_eswa_2022_118063
crossref_primary_10_1016_j_dss_2021_113633
crossref_primary_10_1016_j_fmre_2024_01_017
crossref_primary_10_1016_j_dss_2022_113911
crossref_primary_10_1007_s12652_023_04562_4
crossref_primary_10_1080_10447318_2022_2051887
crossref_primary_10_1142_S012918312250084X
crossref_primary_10_1109_TBDATA_2024_3378098
crossref_primary_10_1109_TCSS_2024_3355300
crossref_primary_10_1007_s13278_024_01344_4
crossref_primary_10_1109_TDSC_2022_3165324
crossref_primary_10_3390_su142215287
crossref_primary_10_1007_s11063_021_10642_3
crossref_primary_10_1016_j_engappai_2024_108271
crossref_primary_10_1109_TKDE_2024_3496701
crossref_primary_10_1016_j_knosys_2023_110527
crossref_primary_10_1007_s43546_020_00027_4
crossref_primary_10_1016_j_ipm_2023_103366
crossref_primary_10_1016_j_ipm_2023_103520
crossref_primary_10_1007_s11257_024_09413_1
crossref_primary_10_1177_17456916221141344
crossref_primary_10_1145_3555562
crossref_primary_10_1016_j_knosys_2022_109659
crossref_primary_10_1109_TCSS_2022_3169132
crossref_primary_10_1007_s41870_024_01839_5
crossref_primary_10_1109_ACCESS_2022_3216892
crossref_primary_10_1186_s40537_023_00866_6
crossref_primary_10_1007_s00521_022_07057_z
crossref_primary_10_1007_s41060_021_00302_z
crossref_primary_10_1016_j_ipm_2021_102710
crossref_primary_10_32628_CSEIT23903126
crossref_primary_10_1007_s10994_024_06527_w
crossref_primary_10_36930_40320612
crossref_primary_10_1007_s13278_020_00696_x
crossref_primary_10_1109_ACCESS_2025_3530688
crossref_primary_10_1016_j_ipm_2021_102712
crossref_primary_10_3390_fi17010028
crossref_primary_10_1007_s00521_022_08065_9
crossref_primary_10_1007_s13278_024_01376_w
crossref_primary_10_1016_j_csl_2022_101461
crossref_primary_10_3390_electronics12132942
crossref_primary_10_1016_j_ipm_2023_103279
crossref_primary_10_1145_3702639
crossref_primary_10_3390_app13148209
crossref_primary_10_1016_j_ipm_2024_103672
crossref_primary_10_1007_s13278_022_00994_6
crossref_primary_10_1016_j_future_2020_11_022
crossref_primary_10_1016_j_measen_2024_101148
crossref_primary_10_37394_23207_2023_20_126
crossref_primary_10_1016_j_eswa_2021_115002
crossref_primary_10_1016_j_jnca_2021_103112
crossref_primary_10_1017_nlp_2024_54
crossref_primary_10_1007_s11704_024_40674_6
crossref_primary_10_1016_j_matpr_2021_03_367
crossref_primary_10_1007_s10489_022_04283_9
crossref_primary_10_1038_s41598_024_82111_5
crossref_primary_10_1016_j_comcom_2022_01_003
crossref_primary_10_1016_j_ins_2024_120300
crossref_primary_10_1109_ACCESS_2023_3260763
crossref_primary_10_1145_3607253
crossref_primary_10_1109_TCSS_2023_3282572
crossref_primary_10_17721_2519_481X_2023_80_11
crossref_primary_10_15622_ia_22_4_4
crossref_primary_10_1007_s10207_022_00625_3
crossref_primary_10_32628_CSEIT2390425
crossref_primary_10_1109_TCSS_2022_3177359
crossref_primary_10_1109_TCSS_2023_3331446
crossref_primary_10_3390_a17100459
crossref_primary_10_1145_3677016
crossref_primary_10_1016_j_asoc_2024_111416
crossref_primary_10_1016_j_neucom_2022_07_057
crossref_primary_10_1016_j_asoc_2025_112965
crossref_primary_10_1007_s13369_024_09354_2
crossref_primary_10_1016_j_engappai_2023_106087
crossref_primary_10_7717_peerj_cs_2693
crossref_primary_10_1109_ACCESS_2024_3392297
crossref_primary_10_3390_s23041748
Cites_doi 10.1109/MIPR.2018.00092
10.1007/978-3-030-04503-6_4
10.1137/1.9781611974973.12
10.1145/3269206.3271709
10.1371/journal.pone.0168344
10.1145/2806416.2806607
10.1109/ACCESS.2019.2901756
10.1145/3041021.3053379
10.1145/1531914.1531924
10.1002/aris.1440370103
10.1109/ICDM.2013.61
10.1007/978-3-319-67217-5_8
10.1609/aaai.v33i01.33015644
10.1145/3132847.3132877
10.1007/11564096_24
10.1007/978-3-319-57454-7_32
10.18653/v1/P18-1184
10.1145/775047.775083
10.1038/nature14539
10.5555/2857070.2857153
10.1145/2030376.2030382
10.1109/ICACCI.2016.7732347
10.1145/3219819.3219903
10.1145/1963405.1963500
10.1007/978-3-642-37401-2_14
10.1145/2350190.2350203
10.1145/3123266.3123454
10.1126/science.aap9559
10.5555/2627435.2670313
10.1145/3308558.3313741
10.1007/978-3-319-13734-6_16
10.1109/ICDM.2014.91
10.1145/3295823
10.1109/JCSSE.2015.7219767
10.1145/2885494
10.1007/978-3-319-16268-3_13
10.18653/v1/W16-0802
10.1145/3137597.3137600
10.18653/v1/W17-1308
10.1109/tmm.2016.2617078
10.1016/j.cose.2016.12.004
10.5555/2857070.2857152
10.1109/SP.2012.34
10.1007/s13278-016-0373-6
10.1145/2983323.2983697
10.1109/BigData.2015.7364071
10.1145/2736277.2741637
10.18653/v1/P17-1066
10.1145/2806416.2806651
10.1109/ICDSP.2015.7251979
10.1137/1.9781611972825.14
10.1002/cpe.4281
10.1109/TCSS.2016.2612980
10.1007/s13278-016-0366-5
10.1109/WISA.2015.19
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1145/3386253
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1558-2868
EndPage 33
ExternalDocumentID 10_1145_3386253
GroupedDBID --Z
-DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
77K
85S
8US
AAKMM
AALFJ
AAYFX
AAYXX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AENEX
AENSD
AETEA
AFWIH
AFWXC
AIAGR
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
D0L
EBS
EDO
FEDTE
GUFHI
HGAVV
H~9
I07
IAO
ICD
IOF
LHSKQ
MK~
ML~
MS~
P1C
P2P
PQQKQ
RNS
ROL
RXW
TAE
TUS
U5U
UHB
UPT
WH7
X6Y
XH6
XSW
YR2
ZCA
ID FETCH-LOGICAL-c225t-4b0ebadbc502df01d2a48fdc60343cb8723e9bca72995aa1d46f711f363db7103
ISSN 1046-8188
IngestDate Thu Apr 24 23:02:32 EDT 2025
Thu Jul 03 08:30:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c225t-4b0ebadbc502df01d2a48fdc60343cb8723e9bca72995aa1d46f711f363db7103
PageCount 33
ParticipantIDs crossref_primary_10_1145_3386253
crossref_citationtrail_10_1145_3386253
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle ACM transactions on information systems
PublicationYear 2020
References Qazvinian Vahed (e_1_2_1_47_1) 2011
Blitz Marc Jonathan (e_1_2_1_3_1) 2018; 71
e_1_2_1_60_1
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_66_1
e_1_2_1_68_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_62_1
Tolosi Laura (e_1_2_1_59_1) 2016
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_64_1
Li Xiaoli (e_1_2_1_27_1) 2003; 3
e_1_2_1_28_1
Galitsky Boris (e_1_2_1_10_1) 2015
e_1_2_1_26_1
Lee Wee Sun (e_1_2_1_25_1) 2003; 3
Liu Bing (e_1_2_1_29_1)
e_1_2_1_71_1
Hsieh Cho-Jui (e_1_2_1_14_1)
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_77_1
e_1_2_1_8_1
Liu Bing (e_1_2_1_30_1) 2002; 2
e_1_2_1_56_1
e_1_2_1_6_1
Spencer Sam (e_1_2_1_55_1)
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_73_1
e_1_2_1_4_1
Ma Jing (e_1_2_1_38_1) 2016
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_75_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_37_1
e_1_2_1_58_1
Zhang Qiao (e_1_2_1_74_1)
Hu Xia (e_1_2_1_15_1) 2013; 13
e_1_2_1_42_1
e_1_2_1_40_1
e_1_2_1_67_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
Liu Yang (e_1_2_1_34_1) 2018
Jin F. (e_1_2_1_18_1)
e_1_2_1_48_1
e_1_2_1_69_1
Wu Ke (e_1_2_1_65_1)
Rubin Victoria L. (e_1_2_1_49_1)
Zeiler Matthew D. (e_1_2_1_72_1) 2012
e_1_2_1_70_1
e_1_2_1_7_1
e_1_2_1_76_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_78_1
e_1_2_1_13_1
e_1_2_1_51_1
e_1_2_1_1_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – ident: e_1_2_1_54_1
  doi: 10.1109/MIPR.2018.00092
– ident: e_1_2_1_5_1
  doi: 10.1007/978-3-030-04503-6_4
– ident: e_1_2_1_66_1
  doi: 10.1137/1.9781611974973.12
– ident: e_1_2_1_11_1
  doi: 10.1145/3269206.3271709
– volume: 13
  volume-title: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13)
  year: 2013
  ident: e_1_2_1_15_1
– ident: e_1_2_1_22_1
  doi: 10.1371/journal.pone.0168344
– ident: e_1_2_1_39_1
  doi: 10.1145/2806416.2806607
– ident: e_1_2_1_58_1
  doi: 10.1109/ACCESS.2019.2901756
– volume: 3
  volume-title: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03)
  year: 2003
  ident: e_1_2_1_27_1
– volume-title: Natural Language Processing and Chinese Computing
  ident: e_1_2_1_74_1
– volume-title: Proceedings of the 31st IEEE International Conference on Data Engineering.
  ident: e_1_2_1_65_1
– volume-title: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI’16)
  year: 2016
  ident: e_1_2_1_38_1
– ident: e_1_2_1_46_1
  doi: 10.1145/3041021.3053379
– volume-title: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM’03)
  ident: e_1_2_1_29_1
– ident: e_1_2_1_43_1
  doi: 10.1145/1531914.1531924
– ident: e_1_2_1_6_1
  doi: 10.1002/aris.1440370103
– ident: e_1_2_1_23_1
  doi: 10.1109/ICDM.2013.61
– ident: e_1_2_1_77_1
  doi: 10.1007/978-3-319-67217-5_8
– ident: e_1_2_1_68_1
  doi: 10.1609/aaai.v33i01.33015644
– ident: e_1_2_1_51_1
  doi: 10.1145/3132847.3132877
– ident: e_1_2_1_28_1
  doi: 10.1007/11564096_24
– ident: e_1_2_1_33_1
  doi: 10.1007/978-3-319-57454-7_32
– ident: e_1_2_1_41_1
  doi: 10.18653/v1/P18-1184
– ident: e_1_2_1_71_1
  doi: 10.1145/775047.775083
– volume-title: ADADELTA: An adaptive learning rate method. arXiv:1212.5701.
  year: 2012
  ident: e_1_2_1_72_1
– ident: e_1_2_1_24_1
  doi: 10.1038/nature14539
– ident: e_1_2_1_45_1
– volume: 3
  volume-title: Proceedings of the 20th International Conference on Machine Learning (ICML’03)
  year: 2003
  ident: e_1_2_1_25_1
– volume-title: Proceedings of the 10th International AAAI Conference on Web and Social Media.
  year: 2016
  ident: e_1_2_1_59_1
– ident: e_1_2_1_50_1
  doi: 10.5555/2857070.2857153
– ident: e_1_2_1_62_1
  doi: 10.1145/2030376.2030382
– ident: e_1_2_1_2_1
– volume-title: Proceedings of the 32nd AAAI Conference on Artificial Intelligence.
  year: 2018
  ident: e_1_2_1_34_1
– ident: e_1_2_1_17_1
  doi: 10.1109/ICACCI.2016.7732347
– ident: e_1_2_1_64_1
  doi: 10.1145/3219819.3219903
– ident: e_1_2_1_4_1
  doi: 10.1145/1963405.1963500
– volume-title: Proceedings of the 2015 AAAI Spring Symposium Series.
  year: 2015
  ident: e_1_2_1_10_1
– ident: e_1_2_1_57_1
  doi: 10.1007/978-3-642-37401-2_14
– ident: e_1_2_1_67_1
  doi: 10.1145/2350190.2350203
– ident: e_1_2_1_19_1
  doi: 10.1145/3123266.3123454
– ident: e_1_2_1_61_1
  doi: 10.1126/science.aap9559
– volume: 2
  volume-title: Proceedings of the 19th International Conference on Machine Learning (ICML’02)
  year: 2002
  ident: e_1_2_1_30_1
– ident: e_1_2_1_56_1
  doi: 10.5555/2627435.2670313
– ident: e_1_2_1_42_1
  doi: 10.1145/3308558.3313741
– ident: e_1_2_1_12_1
  doi: 10.1007/978-3-319-13734-6_16
– volume-title: Proceedings of the 7th Workshop on Social Network Mining and Analysis. ACM
  ident: e_1_2_1_18_1
– ident: e_1_2_1_20_1
  doi: 10.1109/ICDM.2014.91
– ident: e_1_2_1_37_1
  doi: 10.1145/3295823
– ident: e_1_2_1_69_1
  doi: 10.1109/JCSSE.2015.7219767
– ident: e_1_2_1_73_1
  doi: 10.1145/2885494
– ident: e_1_2_1_36_1
  doi: 10.1007/978-3-319-16268-3_13
– ident: e_1_2_1_48_1
  doi: 10.18653/v1/W16-0802
– volume-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing. 1589--1599
  year: 2011
  ident: e_1_2_1_47_1
– ident: e_1_2_1_53_1
  doi: 10.1145/3137597.3137600
– volume-title: Proceedings of the 32nd International Conference on Machine Learning (ICML’15)
  ident: e_1_2_1_14_1
– ident: e_1_2_1_9_1
  doi: 10.18653/v1/W17-1308
– ident: e_1_2_1_21_1
  doi: 10.1109/tmm.2016.2617078
– ident: e_1_2_1_31_1
  doi: 10.1016/j.cose.2016.12.004
– ident: e_1_2_1_7_1
  doi: 10.5555/2857070.2857152
– ident: e_1_2_1_78_1
  doi: 10.1007/978-3-319-67217-5_8
– ident: e_1_2_1_1_1
  doi: 10.1109/SP.2012.34
– ident: e_1_2_1_16_1
  doi: 10.1007/s13278-016-0373-6
– volume-title: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’16)
  ident: e_1_2_1_55_1
– ident: e_1_2_1_52_1
  doi: 10.1145/2983323.2983697
– volume-title: The SAGE Handbook of Social Media Research Methods
  ident: e_1_2_1_49_1
– ident: e_1_2_1_63_1
  doi: 10.1109/BigData.2015.7364071
– ident: e_1_2_1_75_1
  doi: 10.1145/2736277.2741637
– ident: e_1_2_1_40_1
  doi: 10.18653/v1/P17-1066
– ident: e_1_2_1_32_1
  doi: 10.1145/2806416.2806651
– ident: e_1_2_1_76_1
  doi: 10.1109/ICDSP.2015.7251979
– volume: 71
  start-page: 59
  year: 2018
  ident: e_1_2_1_3_1
  article-title: Lies, line drawing, and deep fake news
  publication-title: Oklahoma Law Review
– ident: e_1_2_1_13_1
  doi: 10.1137/1.9781611972825.14
– ident: e_1_2_1_44_1
– ident: e_1_2_1_26_1
  doi: 10.1002/cpe.4281
– ident: e_1_2_1_35_1
  doi: 10.1109/TCSS.2016.2612980
– ident: e_1_2_1_8_1
  doi: 10.1007/s13278-016-0366-5
– ident: e_1_2_1_70_1
  doi: 10.1109/WISA.2015.19
– ident: e_1_2_1_60_1
SSID ssj0004660
Score 2.6000142
SecondaryResourceType review_article
Snippet The fast spreading of fake news stories on social media can cause inestimable social harm. Developing effective methods to detect them early is of paramount...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 1
Subtitle A Deep Network for Fake News Early Detection on Social Media
Title FNED
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA66gfgiXnHe2IP4Fm2apEsfx3QMcXtxg72N3AoDmTK7F3-9J026lil4eSklJKXJ137n5HK-g9C10uDmWiZxSonGTBKBJfxS2FouYrfrmxWiPsNRMpiwxymfVjk9i-iSXN3qj2_jSv6DKpQBri5K9g_Irh8KBXAP-MIVEIbrrzDujwLtlDKyvaHL-VAmAC92AoIyagHze02e3B3Cma8KBpbBejlu9iVz3IdCAL50wcO6QBxV55cClcHMF4M59uxmA71xGEHhE9mU_EdFDWdaIzNSs4pereIr3zInTQHTXJhG0cqklNvoG5Zmff7PR0PzWWi4jZoxePlAU83u_fDpuRbYmgQ5Cd8VH_Xsmt6FpjV3ouYXjPfRXnDo212PzgHasotDtFPGExyhhgPpGE36D-PeAIfUE1gDweWYqcgqaZTmUWyyiJhYMpEZnUSUUa0EvKxNlZYwNUm5lMSwJOsQktHE6VWTiJ6gxuJ1YU9R2wrDE6rTVII7pNyyXcwzYgTpdDLDNGmhm7IHMx102V16kJfZxii1UHtd8c1LkWxWOfu5yjnarb6WC9TIlyt7CX5Vrq7C6H8Cr_0c7A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FNED&rft.jtitle=ACM+transactions+on+information+systems&rft.au=Liu%2C+Yang&rft.au=Wu%2C+Yi-Fang+Brook&rft.date=2020-06-01&rft.issn=1046-8188&rft.eissn=1558-2868&rft.volume=38&rft.issue=3&rft.spage=1&rft.epage=33&rft_id=info:doi/10.1145%2F3386253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3386253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-8188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-8188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-8188&client=summon