Intelligence in Tourist Destinations Management: Improved Attention-based Gated Recurrent Unit Model for Accurate Tourist Flow Forecasting

Accurate tourist flow forecasting is an important issue in tourist destinations management. Given the influence of various factors on varying degrees, tourist flow with strong nonlinear characteristics is difficult to forecast accurately. In this study, a deep learning method, namely, Gated Recurren...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 12; no. 4; p. 1390
Main Authors Lu, Wenxing, Jin, Jieyu, Wang, Binyou, Li, Keqing, Liang, Changyong, Dong, Junfeng, Zhao, Shuping
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.02.2020
Subjects
Online AccessGet full text
ISSN2071-1050
2071-1050
DOI10.3390/su12041390

Cover

Abstract Accurate tourist flow forecasting is an important issue in tourist destinations management. Given the influence of various factors on varying degrees, tourist flow with strong nonlinear characteristics is difficult to forecast accurately. In this study, a deep learning method, namely, Gated Recurrent Unit (GRU) is used for the first time for tourist flow forecasting. GRU captures long-term dependencies efficiently. However, GRU’s ability to pay attention to the characteristics of sub-windows within different related factors is insufficient. Therefore, this study proposes an improved attention mechanism with a horizontal weighting method based on related factors importance. This improved attention mechanism is introduced to the encoding–decoding framework and combined with GRU. A competitive random search is also used to generate the optimal parameter combination at the attention layer. In addition, we validate the application of web search index and climate comfort in prediction. This study utilizes the tourist flow of the famous Huangshan Scenic Area in China as the research subject. Experimental results show that compared with other basic models, the proposed Improved Attention-based Gated Recurrent Unit (IA-GRU) model that includes web search index and climate comfort has better prediction abilities that can provide a more reliable basis for tourist destinations management.
AbstractList Accurate tourist flow forecasting is an important issue in tourist destinations management. Given the influence of various factors on varying degrees, tourist flow with strong nonlinear characteristics is difficult to forecast accurately. In this study, a deep learning method, namely, Gated Recurrent Unit (GRU) is used for the first time for tourist flow forecasting. GRU captures long-term dependencies efficiently. However, GRU’s ability to pay attention to the characteristics of sub-windows within different related factors is insufficient. Therefore, this study proposes an improved attention mechanism with a horizontal weighting method based on related factors importance. This improved attention mechanism is introduced to the encoding–decoding framework and combined with GRU. A competitive random search is also used to generate the optimal parameter combination at the attention layer. In addition, we validate the application of web search index and climate comfort in prediction. This study utilizes the tourist flow of the famous Huangshan Scenic Area in China as the research subject. Experimental results show that compared with other basic models, the proposed Improved Attention-based Gated Recurrent Unit (IA-GRU) model that includes web search index and climate comfort has better prediction abilities that can provide a more reliable basis for tourist destinations management.
Author Lu, Wenxing
Jin, Jieyu
Liang, Changyong
Dong, Junfeng
Zhao, Shuping
Li, Keqing
Wang, Binyou
Author_xml – sequence: 1
  givenname: Wenxing
  surname: Lu
  fullname: Lu, Wenxing
– sequence: 2
  givenname: Jieyu
  surname: Jin
  fullname: Jin, Jieyu
– sequence: 3
  givenname: Binyou
  surname: Wang
  fullname: Wang, Binyou
– sequence: 4
  givenname: Keqing
  orcidid: 0000-0001-5398-4486
  surname: Li
  fullname: Li, Keqing
– sequence: 5
  givenname: Changyong
  surname: Liang
  fullname: Liang, Changyong
– sequence: 6
  givenname: Junfeng
  surname: Dong
  fullname: Dong, Junfeng
– sequence: 7
  givenname: Shuping
  surname: Zhao
  fullname: Zhao, Shuping
BookMark eNptUE1LAzEQDVLBWnvxFwS8Cav52m3irVRbCxZB2vOSJtmSsk1qkir-BX-1qRUVcQ6Zybw3eZl3CjrOOwPAOUZXlAp0HXeYIIZzeQS6BA1wgVGJOr_qE9CPcY1yUIoFrrrgfeqSaVu7Mk4ZaB2c-12wMcFbE5N1MlnvIpxJJ1dmY1y6gdPNNvgXo-EwpdzIeLGUMd8nMuXzyahdCBmAC2cTnHltWtj4AIcqA5nyrTBu_Ssc-2CU3EutzsBxI9to-l-5Bxbju_novnh4nExHw4dCEVKmglaCV1grJbRmxqCKaTpAS0aWWHCpmwHiCJNKl0wSWnKCSyYQ4jz3mJSK0x64OLyb93je5TXrdf6Ry5I1YYxyUdFSZBY6sFTwMQbT1MqmTztSkLatMar3ptc_pueRyz8j22A3Mrz9R_4A15eEug
CitedBy_id crossref_primary_10_2478_amns_2023_2_01696
crossref_primary_10_22517_23447214_24741
crossref_primary_10_2478_amns_2024_1790
crossref_primary_10_1177_13548166241248866
crossref_primary_10_1515_geo_2022_0577
crossref_primary_10_1109_TITS_2020_3017183
crossref_primary_10_1371_journal_pone_0286156
crossref_primary_10_1002_jtr_2812
crossref_primary_10_1016_j_cam_2020_112991
crossref_primary_10_2478_amns_2023_2_00885
Cites_doi 10.1177/0047287516687409
10.1109/ICASSP.2017.7953075
10.1016/j.buildenv.2003.09.001
10.1016/j.tourman.2004.04.007
10.1002/jtr.376
10.1016/S0261-5177(99)00067-9
10.1177/0047287505276594
10.3727/108354216X14559233984773
10.1016/j.asoc.2014.10.022
10.1016/S0261-5177(98)00094-6
10.1162/neco.1997.9.8.1735
10.3115/v1/W14-4012
10.1016/j.tourman.2004.05.003
10.24963/ijcai.2017/366
10.1016/S0261-5177(00)00068-6
10.1016/j.ijepes.2019.02.022
10.1016/j.tourman.2008.10.016
10.1016/j.knosys.2019.05.028
10.1016/j.tourman.2014.07.019
10.1111/j.1475-4932.2012.00809.x
10.3390/en10081168
10.3390/s19040861
10.1109/ICBDA.2017.8078773
10.5367/000000004323142407
10.1016/j.engappai.2006.06.005
10.1109/TMM.2015.2477044
10.1080/18128600802591210
10.3390/su11040987
10.24963/ijcai.2018/476
10.1016/j.tourman.2005.12.018
10.1016/j.procs.2018.03.076
10.1016/j.asoc.2010.06.003
10.21437/Interspeech.2017-1566
10.3115/v1/D14-1179
10.1109/ACCESS.2019.2923006
10.1016/j.tourman.2014.07.014
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOI 10.3390/su12041390
DatabaseName CrossRef
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID 10_3390_su12041390
GeographicLocations Hong Kong China
China
GeographicLocations_xml – name: Hong Kong China
– name: China
GroupedDBID 29Q
2WC
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
FRS
GX1
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c225t-369861dcc9dd4ee064d370b42b198adf7080126d54a23582154900881264aac83
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Mon Jun 30 11:11:53 EDT 2025
Tue Jul 01 01:07:05 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c225t-369861dcc9dd4ee064d370b42b198adf7080126d54a23582154900881264aac83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5398-4486
OpenAccessLink https://www.proquest.com/docview/2443896359?pq-origsite=%requestingapplication%
PQID 2443896359
PQPubID 2032327
ParticipantIDs proquest_journals_2443896359
crossref_citationtrail_10_3390_su12041390
crossref_primary_10_3390_su12041390
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-13
PublicationDateYYYYMMDD 2020-02-13
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-13
  day: 13
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yi (ref_31) 2011; 23
Zhou (ref_27) 2019; 7
Law (ref_13) 1999; 20
Li (ref_30) 2019; 181
(ref_8) 2005; 26
Chen (ref_10) 2007; 28
Yang (ref_37) 2015; 46
Burger (ref_3) 2001; 22
Witt (ref_6) 2004; 10
ref_19
ref_18
ref_17
ref_39
ref_16
Choi (ref_32) 2012; 88
Daniel (ref_5) 2002; 4
Stathopoulos (ref_38) 2004; 39
Skeete (ref_33) 2015; 46
Benardos (ref_12) 2007; 20
Wang (ref_28) 2019; 109
Chen (ref_9) 2009; 5
ref_25
ref_24
ref_22
ref_20
Cho (ref_23) 2015; 17
Chu (ref_7) 2009; 30
Li (ref_35) 2018; 57
ref_1
Croes (ref_4) 2005; 26
ref_29
Hong (ref_11) 2011; 11
ref_26
Gunter (ref_34) 2016; 21
Li (ref_2) 2005; 44
Li (ref_21) 2018; 129
Chen (ref_36) 2015; 26
Law (ref_14) 2000; 21
Hochreiter (ref_15) 1997; 9
References_xml – volume: 57
  start-page: 178
  year: 2018
  ident: ref_35
  article-title: Relative climate index and its effect on seasonal tourism demand
  publication-title: J. Travel Res.
  doi: 10.1177/0047287516687409
– ident: ref_26
  doi: 10.1109/ICASSP.2017.7953075
– volume: 39
  start-page: 297
  year: 2004
  ident: ref_38
  article-title: Outdoor human comfort in an urban climate
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2003.09.001
– volume: 23
  start-page: 72
  year: 2011
  ident: ref_31
  article-title: A review of researches on the correlation between internet search and economic behavior
  publication-title: Manag. Rev.
– volume: 26
  start-page: 879
  year: 2005
  ident: ref_4
  article-title: An econometric study of tourist arrivals in Aruba and its implications
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2004.04.007
– volume: 4
  start-page: 193
  year: 2002
  ident: ref_5
  article-title: Modelling inbound international tourism demand to Portugal
  publication-title: Int. J. Tour. Res.
  doi: 10.1002/jtr.376
– volume: 21
  start-page: 331
  year: 2000
  ident: ref_14
  article-title: Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting
  publication-title: Tour. Manag.
  doi: 10.1016/S0261-5177(99)00067-9
– volume: 44
  start-page: 82
  year: 2005
  ident: ref_2
  article-title: Recent developments in econometric modeling and forecasting
  publication-title: J. Travel Res.
  doi: 10.1177/0047287505276594
– volume: 21
  start-page: 203
  year: 2016
  ident: ref_34
  article-title: Forecasting tourism demand with google trends for a major European city destination
  publication-title: Tour. Anal.
  doi: 10.3727/108354216X14559233984773
– volume: 26
  start-page: 435
  year: 2015
  ident: ref_36
  article-title: Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.10.022
– volume: 20
  start-page: 89
  year: 1999
  ident: ref_13
  article-title: A neural network model to forecast Japanese demand for travel to Hong Kong
  publication-title: Tour. Manag.
  doi: 10.1016/S0261-5177(98)00094-6
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_15
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_16
  doi: 10.3115/v1/W14-4012
– volume: 26
  start-page: 867
  year: 2005
  ident: ref_8
  article-title: Modelling international monthly arrivals using seasonal univariate long-memory processes
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2004.05.003
– ident: ref_1
– ident: ref_24
  doi: 10.24963/ijcai.2017/366
– volume: 22
  start-page: 403
  year: 2001
  ident: ref_3
  article-title: A practitioners guide to time-series methods for tourism demand forecasting—A case study of Durban, South Africa
  publication-title: Tour. Manag.
  doi: 10.1016/S0261-5177(00)00068-6
– volume: 109
  start-page: 470
  year: 2019
  ident: ref_28
  article-title: Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.02.022
– volume: 30
  start-page: 740
  year: 2009
  ident: ref_7
  article-title: Forecasting tourism demand with ARMA-based methods
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2008.10.016
– volume: 181
  start-page: 104785
  year: 2019
  ident: ref_30
  article-title: EA-LSTM: Evolutionary attention-based LSTM for time series prediction
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.05.028
– volume: 46
  start-page: 386
  year: 2015
  ident: ref_37
  article-title: Forecasting Chinese tourist volume with search engine data
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2014.07.019
– volume: 88
  start-page: 2
  year: 2012
  ident: ref_32
  article-title: Predicting the present with Google trends
  publication-title: Econ. Record
  doi: 10.1111/j.1475-4932.2012.00809.x
– ident: ref_19
  doi: 10.3390/en10081168
– ident: ref_29
  doi: 10.3390/s19040861
– ident: ref_39
  doi: 10.1109/ICBDA.2017.8078773
– volume: 10
  start-page: 167
  year: 2004
  ident: ref_6
  article-title: Forecasting tourism-generated employment: The case of denmark
  publication-title: Tour. Econ.
  doi: 10.5367/000000004323142407
– volume: 20
  start-page: 365
  year: 2007
  ident: ref_12
  article-title: Optimizing feedforward artificial neural network architecture
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.06.005
– volume: 17
  start-page: 1875
  year: 2015
  ident: ref_23
  article-title: Describing multimedia content using attention-based encoder-decoder networks
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2015.2477044
– volume: 5
  start-page: 125
  year: 2009
  ident: ref_9
  article-title: Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan
  publication-title: Transportmetrica
  doi: 10.1080/18128600802591210
– ident: ref_20
  doi: 10.3390/su11040987
– ident: ref_25
  doi: 10.24963/ijcai.2018/476
– volume: 28
  start-page: 215
  year: 2007
  ident: ref_10
  article-title: Support vector regression with genetic algorithms in forecasting tourism demand
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2005.12.018
– volume: 129
  start-page: 277
  year: 2018
  ident: ref_21
  article-title: Prediction for tourism flow based on LSTM neural network
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2018.03.076
– volume: 11
  start-page: 1881
  year: 2011
  ident: ref_11
  article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.06.003
– ident: ref_22
– ident: ref_18
  doi: 10.21437/Interspeech.2017-1566
– ident: ref_17
  doi: 10.3115/v1/D14-1179
– volume: 7
  start-page: 78063
  year: 2019
  ident: ref_27
  article-title: Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923006
– volume: 46
  start-page: 454
  year: 2015
  ident: ref_33
  article-title: Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach
  publication-title: Tour. Manag.
  doi: 10.1016/j.tourman.2014.07.014
SSID ssj0000331916
Score 2.2350512
Snippet Accurate tourist flow forecasting is an important issue in tourist destinations management. Given the influence of various factors on varying degrees, tourist...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1390
SubjectTerms Econometrics
Forecasting techniques
Mathematical functions
Methods
Neural networks
Sustainability
Time series
Tourism
Trends
Title Intelligence in Tourist Destinations Management: Improved Attention-based Gated Recurrent Unit Model for Accurate Tourist Flow Forecasting
URI https://www.proquest.com/docview/2443896359
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RS8MwEA5ue9AX0elwOkdAX3wItk3Wpb7IlM0pOGQ42Ftpk04Go5u24n_wV3u3pOsE8bkHgdzlvu-uyXeEXEohZlJqzRxnJpkAxzIpZMxmKPgEfD5x10pMzyN_OBFP087UNtwye62yyInrRK2XCnvk1wBDgK0Aj8Ht6p3h1Cj8u2pHaFRIDVKwhDiv3fVHL-NNl8XhEGKub3RJOdT34F_XcyBzYxLeRqLfiXiNLoMDsm9pIe0ZPx6SnSStk93i1XBWJ41--SINDO2RzI7I9-OWqCadp9ToAuYUK8q56fVltLzlckNNHyHRtJfn5rIjQyzTFDtpmo6xA4-aTRT5KMVhaQsK1Jb2FHwAk80Kg8Xyi-JsTxXhUm_HZDLov94PmR2wwBQc45xxP5C-q5UKtBZJAuxE864TCy92AxnpWddB_PJ1R0TmRS0Uk8AZgBP4IoqU5A1STZdpckIo92KNWx0IHolO5AZaorhe1wM-gooyTXJVbHaorPo4DsFYhFCFoGPC0jFNcrGxXRnNjT-tWoXPQnvusrCMktP_P5-RPQ8rZxztwlukmn98JudAL_K4bWOoTSoPU_cHe-_RSA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NS8NAEB1qe9CLaFWsnwvqwcNikt2mG0GkakvrRxFR8BaTbCqF0lYTEf-CP8bf6Ew3aSuIN89ZsrDzMm9msvMGYF9J2VVKa25ZXcUlGpYrqULeJcEnjOdje6zEdNNxWw_y8rH6WICvvBeGrlXmPnHsqPUwohr5EdIQcivSo3c6euE0NYr-ruYjNAwsruKPd0zZkpP2Bdr3wHGajfvzFs-mCvAIsZty4XrKtXUUeVrLOEZK1qJmhdIJMf8OdLdmkdN2dVUGpo0UMygkSiRCVwZBpAS-dw5Kkjpai1A6a3Ru7yZVHUsgpG3X6KAK4VmIJ9uxkCnI6c8y30_HP2az5hIsZmEoqxvcLEMhHpRhPu9STsqw1ph2wOHCzAUkK_DZnhHxZL0BMzqEKaMMtmdqiwmb3qo5ZqZuEWtWT1NzuZITd2pGlTvN7qjiTxpRjOJfRsPZ-gxDaVaP8AEumezQ7A_fGc0SjQLa6nkVHv7l6NegOBgO4nVgwgk1HbUnRSCrge1pRWJ-NQfjH1KwqcBhfth-lKmd09CNvo9ZDxnGnxqmAnuTtSOj8fHrqq3cZn72nSf-FJUbfz_ehfnW_c21f93uXG3CgkNZO42VEVtQTF_f4m0MbdJwJ8MTg6f_hvA3on8KyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bSsNAEB1qC-qLeMV6XVAffFhMstt0I4hUbbFeioiCbzHJJlIobTUR8Rf8JL_OmW7SKohvPmfJws7JnpnJzBmAXSVlopTW3LISxSUaliupQp6Q4BP687E9UmK67rjn9_LiofZQgs-iF4bKKos7cXRR60FEOfIDpCHkVqRH7yDJyyJuzlrHw2dOE6ToT2sxTsNA5DJ-f8PwLT1qn6Gt9xyn1bw7Pef5hAEeIY4zLlxPubaOIk9rGcdIz1rUrVA6IcbigU7qFl3grq7JwLSUYjSFpImk6MogiJTA905BpY6sKMtQOWl2bm7HGR5LILxt12iiCuFZiC3bsZA1iAC-s-BPEhgxW2se5nKXlDUMhhagFPcXYaboWE4XYaU56YbDhfl1kC7BR_uboCfr9pnRJMwYRbNdk2dM2aTC5pCZHEasWSPLTKElJx7VjLJ4mt1S9p_0ohj5wowGtfUYutWsEeEDXDLeodUbvDGaKxoFtNXTMtz_y9GvQLk_6MerwIQTajpqT4pA1gLb04qE_eoO-kKkZlOF_eKw_ShXPqcBHD0fIyAyjD8xTBV2xmuHRu_j11Ubhc38_JtP_QlC1_5-vA3TCF3_qt25XIdZhwJ4mjAjNqCcvbzGm-jlZOFWDicGj_-N4C_AwQ71
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligence+in+Tourist+Destinations+Management%3A+Improved+Attention-based+Gated+Recurrent+Unit+Model+for+Accurate+Tourist+Flow+Forecasting&rft.jtitle=Sustainability&rft.au=Lu%2C+Wenxing&rft.au=Jin%2C+Jieyu&rft.au=Wang%2C+Binyou&rft.au=Li%2C+Keqing&rft.date=2020-02-13&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=12&rft.issue=4&rft.spage=1390&rft_id=info:doi/10.3390%2Fsu12041390&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su12041390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon