Intelligence in Tourist Destinations Management: Improved Attention-based Gated Recurrent Unit Model for Accurate Tourist Flow Forecasting
Accurate tourist flow forecasting is an important issue in tourist destinations management. Given the influence of various factors on varying degrees, tourist flow with strong nonlinear characteristics is difficult to forecast accurately. In this study, a deep learning method, namely, Gated Recurren...
Saved in:
Published in | Sustainability Vol. 12; no. 4; p. 1390 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
13.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2071-1050 2071-1050 |
DOI | 10.3390/su12041390 |
Cover
Abstract | Accurate tourist flow forecasting is an important issue in tourist destinations management. Given the influence of various factors on varying degrees, tourist flow with strong nonlinear characteristics is difficult to forecast accurately. In this study, a deep learning method, namely, Gated Recurrent Unit (GRU) is used for the first time for tourist flow forecasting. GRU captures long-term dependencies efficiently. However, GRU’s ability to pay attention to the characteristics of sub-windows within different related factors is insufficient. Therefore, this study proposes an improved attention mechanism with a horizontal weighting method based on related factors importance. This improved attention mechanism is introduced to the encoding–decoding framework and combined with GRU. A competitive random search is also used to generate the optimal parameter combination at the attention layer. In addition, we validate the application of web search index and climate comfort in prediction. This study utilizes the tourist flow of the famous Huangshan Scenic Area in China as the research subject. Experimental results show that compared with other basic models, the proposed Improved Attention-based Gated Recurrent Unit (IA-GRU) model that includes web search index and climate comfort has better prediction abilities that can provide a more reliable basis for tourist destinations management. |
---|---|
AbstractList | Accurate tourist flow forecasting is an important issue in tourist destinations management. Given the influence of various factors on varying degrees, tourist flow with strong nonlinear characteristics is difficult to forecast accurately. In this study, a deep learning method, namely, Gated Recurrent Unit (GRU) is used for the first time for tourist flow forecasting. GRU captures long-term dependencies efficiently. However, GRU’s ability to pay attention to the characteristics of sub-windows within different related factors is insufficient. Therefore, this study proposes an improved attention mechanism with a horizontal weighting method based on related factors importance. This improved attention mechanism is introduced to the encoding–decoding framework and combined with GRU. A competitive random search is also used to generate the optimal parameter combination at the attention layer. In addition, we validate the application of web search index and climate comfort in prediction. This study utilizes the tourist flow of the famous Huangshan Scenic Area in China as the research subject. Experimental results show that compared with other basic models, the proposed Improved Attention-based Gated Recurrent Unit (IA-GRU) model that includes web search index and climate comfort has better prediction abilities that can provide a more reliable basis for tourist destinations management. |
Author | Lu, Wenxing Jin, Jieyu Liang, Changyong Dong, Junfeng Zhao, Shuping Li, Keqing Wang, Binyou |
Author_xml | – sequence: 1 givenname: Wenxing surname: Lu fullname: Lu, Wenxing – sequence: 2 givenname: Jieyu surname: Jin fullname: Jin, Jieyu – sequence: 3 givenname: Binyou surname: Wang fullname: Wang, Binyou – sequence: 4 givenname: Keqing orcidid: 0000-0001-5398-4486 surname: Li fullname: Li, Keqing – sequence: 5 givenname: Changyong surname: Liang fullname: Liang, Changyong – sequence: 6 givenname: Junfeng surname: Dong fullname: Dong, Junfeng – sequence: 7 givenname: Shuping surname: Zhao fullname: Zhao, Shuping |
BookMark | eNptUE1LAzEQDVLBWnvxFwS8Cav52m3irVRbCxZB2vOSJtmSsk1qkir-BX-1qRUVcQ6Zybw3eZl3CjrOOwPAOUZXlAp0HXeYIIZzeQS6BA1wgVGJOr_qE9CPcY1yUIoFrrrgfeqSaVu7Mk4ZaB2c-12wMcFbE5N1MlnvIpxJJ1dmY1y6gdPNNvgXo-EwpdzIeLGUMd8nMuXzyahdCBmAC2cTnHltWtj4AIcqA5nyrTBu_Ssc-2CU3EutzsBxI9to-l-5Bxbju_novnh4nExHw4dCEVKmglaCV1grJbRmxqCKaTpAS0aWWHCpmwHiCJNKl0wSWnKCSyYQ4jz3mJSK0x64OLyb93je5TXrdf6Ry5I1YYxyUdFSZBY6sFTwMQbT1MqmTztSkLatMar3ptc_pueRyz8j22A3Mrz9R_4A15eEug |
CitedBy_id | crossref_primary_10_2478_amns_2023_2_01696 crossref_primary_10_22517_23447214_24741 crossref_primary_10_2478_amns_2024_1790 crossref_primary_10_1177_13548166241248866 crossref_primary_10_1515_geo_2022_0577 crossref_primary_10_1109_TITS_2020_3017183 crossref_primary_10_1371_journal_pone_0286156 crossref_primary_10_1002_jtr_2812 crossref_primary_10_1016_j_cam_2020_112991 crossref_primary_10_2478_amns_2023_2_00885 |
Cites_doi | 10.1177/0047287516687409 10.1109/ICASSP.2017.7953075 10.1016/j.buildenv.2003.09.001 10.1016/j.tourman.2004.04.007 10.1002/jtr.376 10.1016/S0261-5177(99)00067-9 10.1177/0047287505276594 10.3727/108354216X14559233984773 10.1016/j.asoc.2014.10.022 10.1016/S0261-5177(98)00094-6 10.1162/neco.1997.9.8.1735 10.3115/v1/W14-4012 10.1016/j.tourman.2004.05.003 10.24963/ijcai.2017/366 10.1016/S0261-5177(00)00068-6 10.1016/j.ijepes.2019.02.022 10.1016/j.tourman.2008.10.016 10.1016/j.knosys.2019.05.028 10.1016/j.tourman.2014.07.019 10.1111/j.1475-4932.2012.00809.x 10.3390/en10081168 10.3390/s19040861 10.1109/ICBDA.2017.8078773 10.5367/000000004323142407 10.1016/j.engappai.2006.06.005 10.1109/TMM.2015.2477044 10.1080/18128600802591210 10.3390/su11040987 10.24963/ijcai.2018/476 10.1016/j.tourman.2005.12.018 10.1016/j.procs.2018.03.076 10.1016/j.asoc.2010.06.003 10.21437/Interspeech.2017-1566 10.3115/v1/D14-1179 10.1109/ACCESS.2019.2923006 10.1016/j.tourman.2014.07.014 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI |
DOI | 10.3390/su12041390 |
DatabaseName | CrossRef University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 2071-1050 |
ExternalDocumentID | 10_3390_su12041390 |
GeographicLocations | Hong Kong China China |
GeographicLocations_xml | – name: Hong Kong China – name: China |
GroupedDBID | 29Q 2WC 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY FRS GX1 KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c225t-369861dcc9dd4ee064d370b42b198adf7080126d54a23582154900881264aac83 |
IEDL.DBID | BENPR |
ISSN | 2071-1050 |
IngestDate | Mon Jun 30 11:11:53 EDT 2025 Tue Jul 01 01:07:05 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c225t-369861dcc9dd4ee064d370b42b198adf7080126d54a23582154900881264aac83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5398-4486 |
OpenAccessLink | https://www.proquest.com/docview/2443896359?pq-origsite=%requestingapplication% |
PQID | 2443896359 |
PQPubID | 2032327 |
ParticipantIDs | proquest_journals_2443896359 crossref_citationtrail_10_3390_su12041390 crossref_primary_10_3390_su12041390 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-13 |
PublicationDateYYYYMMDD | 2020-02-13 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sustainability |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yi (ref_31) 2011; 23 Zhou (ref_27) 2019; 7 Law (ref_13) 1999; 20 Li (ref_30) 2019; 181 (ref_8) 2005; 26 Chen (ref_10) 2007; 28 Yang (ref_37) 2015; 46 Burger (ref_3) 2001; 22 Witt (ref_6) 2004; 10 ref_19 ref_18 ref_17 ref_39 ref_16 Choi (ref_32) 2012; 88 Daniel (ref_5) 2002; 4 Stathopoulos (ref_38) 2004; 39 Skeete (ref_33) 2015; 46 Benardos (ref_12) 2007; 20 Wang (ref_28) 2019; 109 Chen (ref_9) 2009; 5 ref_25 ref_24 ref_22 ref_20 Cho (ref_23) 2015; 17 Chu (ref_7) 2009; 30 Li (ref_35) 2018; 57 ref_1 Croes (ref_4) 2005; 26 ref_29 Hong (ref_11) 2011; 11 ref_26 Gunter (ref_34) 2016; 21 Li (ref_2) 2005; 44 Li (ref_21) 2018; 129 Chen (ref_36) 2015; 26 Law (ref_14) 2000; 21 Hochreiter (ref_15) 1997; 9 |
References_xml | – volume: 57 start-page: 178 year: 2018 ident: ref_35 article-title: Relative climate index and its effect on seasonal tourism demand publication-title: J. Travel Res. doi: 10.1177/0047287516687409 – ident: ref_26 doi: 10.1109/ICASSP.2017.7953075 – volume: 39 start-page: 297 year: 2004 ident: ref_38 article-title: Outdoor human comfort in an urban climate publication-title: Build. Environ. doi: 10.1016/j.buildenv.2003.09.001 – volume: 23 start-page: 72 year: 2011 ident: ref_31 article-title: A review of researches on the correlation between internet search and economic behavior publication-title: Manag. Rev. – volume: 26 start-page: 879 year: 2005 ident: ref_4 article-title: An econometric study of tourist arrivals in Aruba and its implications publication-title: Tour. Manag. doi: 10.1016/j.tourman.2004.04.007 – volume: 4 start-page: 193 year: 2002 ident: ref_5 article-title: Modelling inbound international tourism demand to Portugal publication-title: Int. J. Tour. Res. doi: 10.1002/jtr.376 – volume: 21 start-page: 331 year: 2000 ident: ref_14 article-title: Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting publication-title: Tour. Manag. doi: 10.1016/S0261-5177(99)00067-9 – volume: 44 start-page: 82 year: 2005 ident: ref_2 article-title: Recent developments in econometric modeling and forecasting publication-title: J. Travel Res. doi: 10.1177/0047287505276594 – volume: 21 start-page: 203 year: 2016 ident: ref_34 article-title: Forecasting tourism demand with google trends for a major European city destination publication-title: Tour. Anal. doi: 10.3727/108354216X14559233984773 – volume: 26 start-page: 435 year: 2015 ident: ref_36 article-title: Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.10.022 – volume: 20 start-page: 89 year: 1999 ident: ref_13 article-title: A neural network model to forecast Japanese demand for travel to Hong Kong publication-title: Tour. Manag. doi: 10.1016/S0261-5177(98)00094-6 – volume: 9 start-page: 1735 year: 1997 ident: ref_15 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_16 doi: 10.3115/v1/W14-4012 – volume: 26 start-page: 867 year: 2005 ident: ref_8 article-title: Modelling international monthly arrivals using seasonal univariate long-memory processes publication-title: Tour. Manag. doi: 10.1016/j.tourman.2004.05.003 – ident: ref_1 – ident: ref_24 doi: 10.24963/ijcai.2017/366 – volume: 22 start-page: 403 year: 2001 ident: ref_3 article-title: A practitioners guide to time-series methods for tourism demand forecasting—A case study of Durban, South Africa publication-title: Tour. Manag. doi: 10.1016/S0261-5177(00)00068-6 – volume: 109 start-page: 470 year: 2019 ident: ref_28 article-title: Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.02.022 – volume: 30 start-page: 740 year: 2009 ident: ref_7 article-title: Forecasting tourism demand with ARMA-based methods publication-title: Tour. Manag. doi: 10.1016/j.tourman.2008.10.016 – volume: 181 start-page: 104785 year: 2019 ident: ref_30 article-title: EA-LSTM: Evolutionary attention-based LSTM for time series prediction publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.05.028 – volume: 46 start-page: 386 year: 2015 ident: ref_37 article-title: Forecasting Chinese tourist volume with search engine data publication-title: Tour. Manag. doi: 10.1016/j.tourman.2014.07.019 – volume: 88 start-page: 2 year: 2012 ident: ref_32 article-title: Predicting the present with Google trends publication-title: Econ. Record doi: 10.1111/j.1475-4932.2012.00809.x – ident: ref_19 doi: 10.3390/en10081168 – ident: ref_29 doi: 10.3390/s19040861 – ident: ref_39 doi: 10.1109/ICBDA.2017.8078773 – volume: 10 start-page: 167 year: 2004 ident: ref_6 article-title: Forecasting tourism-generated employment: The case of denmark publication-title: Tour. Econ. doi: 10.5367/000000004323142407 – volume: 20 start-page: 365 year: 2007 ident: ref_12 article-title: Optimizing feedforward artificial neural network architecture publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.06.005 – volume: 17 start-page: 1875 year: 2015 ident: ref_23 article-title: Describing multimedia content using attention-based encoder-decoder networks publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2015.2477044 – volume: 5 start-page: 125 year: 2009 ident: ref_9 article-title: Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan publication-title: Transportmetrica doi: 10.1080/18128600802591210 – ident: ref_20 doi: 10.3390/su11040987 – ident: ref_25 doi: 10.24963/ijcai.2018/476 – volume: 28 start-page: 215 year: 2007 ident: ref_10 article-title: Support vector regression with genetic algorithms in forecasting tourism demand publication-title: Tour. Manag. doi: 10.1016/j.tourman.2005.12.018 – volume: 129 start-page: 277 year: 2018 ident: ref_21 article-title: Prediction for tourism flow based on LSTM neural network publication-title: Proced. Comput. Sci. doi: 10.1016/j.procs.2018.03.076 – volume: 11 start-page: 1881 year: 2011 ident: ref_11 article-title: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.06.003 – ident: ref_22 – ident: ref_18 doi: 10.21437/Interspeech.2017-1566 – ident: ref_17 doi: 10.3115/v1/D14-1179 – volume: 7 start-page: 78063 year: 2019 ident: ref_27 article-title: Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923006 – volume: 46 start-page: 454 year: 2015 ident: ref_33 article-title: Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach publication-title: Tour. Manag. doi: 10.1016/j.tourman.2014.07.014 |
SSID | ssj0000331916 |
Score | 2.2350512 |
Snippet | Accurate tourist flow forecasting is an important issue in tourist destinations management. Given the influence of various factors on varying degrees, tourist... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1390 |
SubjectTerms | Econometrics Forecasting techniques Mathematical functions Methods Neural networks Sustainability Time series Tourism Trends |
Title | Intelligence in Tourist Destinations Management: Improved Attention-based Gated Recurrent Unit Model for Accurate Tourist Flow Forecasting |
URI | https://www.proquest.com/docview/2443896359 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RS8MwEA5ue9AX0elwOkdAX3wItk3Wpb7IlM0pOGQ42Ftpk04Go5u24n_wV3u3pOsE8bkHgdzlvu-uyXeEXEohZlJqzRxnJpkAxzIpZMxmKPgEfD5x10pMzyN_OBFP087UNtwye62yyInrRK2XCnvk1wBDgK0Aj8Ht6p3h1Cj8u2pHaFRIDVKwhDiv3fVHL-NNl8XhEGKub3RJOdT34F_XcyBzYxLeRqLfiXiNLoMDsm9pIe0ZPx6SnSStk93i1XBWJ41--SINDO2RzI7I9-OWqCadp9ToAuYUK8q56fVltLzlckNNHyHRtJfn5rIjQyzTFDtpmo6xA4-aTRT5KMVhaQsK1Jb2FHwAk80Kg8Xyi-JsTxXhUm_HZDLov94PmR2wwBQc45xxP5C-q5UKtBZJAuxE864TCy92AxnpWddB_PJ1R0TmRS0Uk8AZgBP4IoqU5A1STZdpckIo92KNWx0IHolO5AZaorhe1wM-gooyTXJVbHaorPo4DsFYhFCFoGPC0jFNcrGxXRnNjT-tWoXPQnvusrCMktP_P5-RPQ8rZxztwlukmn98JudAL_K4bWOoTSoPU_cHe-_RSA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NS8NAEB1qe9CLaFWsnwvqwcNikt2mG0GkakvrRxFR8BaTbCqF0lYTEf-CP8bf6Ew3aSuIN89ZsrDzMm9msvMGYF9J2VVKa25ZXcUlGpYrqULeJcEnjOdje6zEdNNxWw_y8rH6WICvvBeGrlXmPnHsqPUwohr5EdIQcivSo3c6euE0NYr-ruYjNAwsruKPd0zZkpP2Bdr3wHGajfvzFs-mCvAIsZty4XrKtXUUeVrLOEZK1qJmhdIJMf8OdLdmkdN2dVUGpo0UMygkSiRCVwZBpAS-dw5Kkjpai1A6a3Ru7yZVHUsgpG3X6KAK4VmIJ9uxkCnI6c8y30_HP2az5hIsZmEoqxvcLEMhHpRhPu9STsqw1ph2wOHCzAUkK_DZnhHxZL0BMzqEKaMMtmdqiwmb3qo5ZqZuEWtWT1NzuZITd2pGlTvN7qjiTxpRjOJfRsPZ-gxDaVaP8AEumezQ7A_fGc0SjQLa6nkVHv7l6NegOBgO4nVgwgk1HbUnRSCrge1pRWJ-NQfjH1KwqcBhfth-lKmd09CNvo9ZDxnGnxqmAnuTtSOj8fHrqq3cZn72nSf-FJUbfz_ehfnW_c21f93uXG3CgkNZO42VEVtQTF_f4m0MbdJwJ8MTg6f_hvA3on8KyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bSsNAEB1qC-qLeMV6XVAffFhMstt0I4hUbbFeioiCbzHJJlIobTUR8Rf8JL_OmW7SKohvPmfJws7JnpnJzBmAXSVlopTW3LISxSUaliupQp6Q4BP687E9UmK67rjn9_LiofZQgs-iF4bKKos7cXRR60FEOfIDpCHkVqRH7yDJyyJuzlrHw2dOE6ToT2sxTsNA5DJ-f8PwLT1qn6Gt9xyn1bw7Pef5hAEeIY4zLlxPubaOIk9rGcdIz1rUrVA6IcbigU7qFl3grq7JwLSUYjSFpImk6MogiJTA905BpY6sKMtQOWl2bm7HGR5LILxt12iiCuFZiC3bsZA1iAC-s-BPEhgxW2se5nKXlDUMhhagFPcXYaboWE4XYaU56YbDhfl1kC7BR_uboCfr9pnRJMwYRbNdk2dM2aTC5pCZHEasWSPLTKElJx7VjLJ4mt1S9p_0ohj5wowGtfUYutWsEeEDXDLeodUbvDGaKxoFtNXTMtz_y9GvQLk_6MerwIQTajpqT4pA1gLb04qE_eoO-kKkZlOF_eKw_ShXPqcBHD0fIyAyjD8xTBV2xmuHRu_j11Ubhc38_JtP_QlC1_5-vA3TCF3_qt25XIdZhwJ4mjAjNqCcvbzGm-jlZOFWDicGj_-N4C_AwQ71 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligence+in+Tourist+Destinations+Management%3A+Improved+Attention-based+Gated+Recurrent+Unit+Model+for+Accurate+Tourist+Flow+Forecasting&rft.jtitle=Sustainability&rft.au=Lu%2C+Wenxing&rft.au=Jin%2C+Jieyu&rft.au=Wang%2C+Binyou&rft.au=Li%2C+Keqing&rft.date=2020-02-13&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=12&rft.issue=4&rft.spage=1390&rft_id=info:doi/10.3390%2Fsu12041390&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_su12041390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |