Air Quality Estimation and Forecasting via Data Fusion With Uncertainty Quantification: Theoretical Framework and Preliminary Results

Integrating air quality information from models, satellites, and in situ monitors allows for both better estimation of air quality and better quantification of uncertainties in this estimation. Uncertainty quantification is important to appropriately convey confidence in these estimates and forecast...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 4
Main Authors Malings, Carl, Knowland, K. Emma, Pavlovic, Nathan, Coughlin, Justin G., King, Daniel, Keller, Christoph, Cohn, Stephen, Martin, Randall V.
Format Journal Article
LanguageEnglish
Published Wiley 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Integrating air quality information from models, satellites, and in situ monitors allows for both better estimation of air quality and better quantification of uncertainties in this estimation. Uncertainty quantification is important to appropriately convey confidence in these estimates and forecasts to users who will base decisions on these. Uncertainty quantification also allows tracing the value of information provided by different data sources. This can identify gaps in the monitoring network where additional data could further reduce uncertainties. This paper presents a framework for data fusion with uncertainty quantification, applicable to multiple air‐quality‐relevant pollutants. Testing of this framework in the context of nitrogen dioxide forecasting at sub‐city scales shows promising results, with confidence intervals typically encompassing the expected number of actual measurements during cross‐validation. The framework is now being implemented into an online tool to support local air quality management decision‐making. Future work will also include the incorporation of low‐cost air sensor data and the quantification of uncertainty at hyper‐local scales. Plain Language Summary Poor air quality has adverse impacts on human and environmental health. Estimating and forecasting air quality accurately can improve early warnings and mitigation for poor air quality. Furthermore, understanding the uncertainties and degree of confidence in these forecasts and estimates can help air quality managers know when and where they can be relied upon, and where more data might still be needed. This paper outlines a method to combine air quality information from models, satellites, and ground‐based monitors, and to assess the confidence in the combined output. Combining all these data sources can give us a better overall understanding of air quality, and making comparisons between them allows us to better understand uncertainties. We find that the method can produce reasonable assessments of the confidence it has in its estimates, with the expected numbers of actual measurements usually falling within the confidence intervals produced by the method. An exception is when this method is applied very close to a major pollution source (e.g., a highway, in our study). In such cases, since the method does not know that there is such a source nearby, it tends to be overconfident in its prediction. Key Points The proposed data fusion method also produces uncertainty assessments and confidence intervals for estimates and forecasts Confidence intervals were found to be mostly reasonable in a test case study for nitrogen dioxide across 4 months and two cities The method provided overconfident estimates for sites within 100 m of highways
AbstractList Integrating air quality information from models, satellites, and in situ monitors allows for both better estimation of air quality and better quantification of uncertainties in this estimation. Uncertainty quantification is important to appropriately convey confidence in these estimates and forecasts to users who will base decisions on these. Uncertainty quantification also allows tracing the value of information provided by different data sources. This can identify gaps in the monitoring network where additional data could further reduce uncertainties. This paper presents a framework for data fusion with uncertainty quantification, applicable to multiple air‐quality‐relevant pollutants. Testing of this framework in the context of nitrogen dioxide forecasting at sub‐city scales shows promising results, with confidence intervals typically encompassing the expected number of actual measurements during cross‐validation. The framework is now being implemented into an online tool to support local air quality management decision‐making. Future work will also include the incorporation of low‐cost air sensor data and the quantification of uncertainty at hyper‐local scales. Plain Language Summary Poor air quality has adverse impacts on human and environmental health. Estimating and forecasting air quality accurately can improve early warnings and mitigation for poor air quality. Furthermore, understanding the uncertainties and degree of confidence in these forecasts and estimates can help air quality managers know when and where they can be relied upon, and where more data might still be needed. This paper outlines a method to combine air quality information from models, satellites, and ground‐based monitors, and to assess the confidence in the combined output. Combining all these data sources can give us a better overall understanding of air quality, and making comparisons between them allows us to better understand uncertainties. We find that the method can produce reasonable assessments of the confidence it has in its estimates, with the expected numbers of actual measurements usually falling within the confidence intervals produced by the method. An exception is when this method is applied very close to a major pollution source (e.g., a highway, in our study). In such cases, since the method does not know that there is such a source nearby, it tends to be overconfident in its prediction. Key Points The proposed data fusion method also produces uncertainty assessments and confidence intervals for estimates and forecasts Confidence intervals were found to be mostly reasonable in a test case study for nitrogen dioxide across 4 months and two cities The method provided overconfident estimates for sites within 100 m of highways
Abstract Integrating air quality information from models, satellites, and in situ monitors allows for both better estimation of air quality and better quantification of uncertainties in this estimation. Uncertainty quantification is important to appropriately convey confidence in these estimates and forecasts to users who will base decisions on these. Uncertainty quantification also allows tracing the value of information provided by different data sources. This can identify gaps in the monitoring network where additional data could further reduce uncertainties. This paper presents a framework for data fusion with uncertainty quantification, applicable to multiple air‐quality‐relevant pollutants. Testing of this framework in the context of nitrogen dioxide forecasting at sub‐city scales shows promising results, with confidence intervals typically encompassing the expected number of actual measurements during cross‐validation. The framework is now being implemented into an online tool to support local air quality management decision‐making. Future work will also include the incorporation of low‐cost air sensor data and the quantification of uncertainty at hyper‐local scales.
Integrating air quality information from models, satellites, and in situ monitors allows for both better estimation of air quality and better quantification of uncertainties in this estimation. Uncertainty quantification is important to appropriately convey confidence in these estimates and forecasts to users who will base decisions on these. Uncertainty quantification also allows tracing the value of information provided by different data sources. This can identify gaps in the monitoring network where additional data could further reduce uncertainties. This paper presents a framework for data fusion with uncertainty quantification, applicable to multiple air‐quality‐relevant pollutants. Testing of this framework in the context of nitrogen dioxide forecasting at sub‐city scales shows promising results, with confidence intervals typically encompassing the expected number of actual measurements during cross‐validation. The framework is now being implemented into an online tool to support local air quality management decision‐making. Future work will also include the incorporation of low‐cost air sensor data and the quantification of uncertainty at hyper‐local scales. Poor air quality has adverse impacts on human and environmental health. Estimating and forecasting air quality accurately can improve early warnings and mitigation for poor air quality. Furthermore, understanding the uncertainties and degree of confidence in these forecasts and estimates can help air quality managers know when and where they can be relied upon, and where more data might still be needed. This paper outlines a method to combine air quality information from models, satellites, and ground‐based monitors, and to assess the confidence in the combined output. Combining all these data sources can give us a better overall understanding of air quality, and making comparisons between them allows us to better understand uncertainties. We find that the method can produce reasonable assessments of the confidence it has in its estimates, with the expected numbers of actual measurements usually falling within the confidence intervals produced by the method. An exception is when this method is applied very close to a major pollution source (e.g., a highway, in our study). In such cases, since the method does not know that there is such a source nearby, it tends to be overconfident in its prediction. The proposed data fusion method also produces uncertainty assessments and confidence intervals for estimates and forecasts Confidence intervals were found to be mostly reasonable in a test case study for nitrogen dioxide across 4 months and two cities The method provided overconfident estimates for sites within 100 m of highways
Author Keller, Christoph
Coughlin, Justin G.
Cohn, Stephen
Pavlovic, Nathan
King, Daniel
Knowland, K. Emma
Martin, Randall V.
Malings, Carl
Author_xml – sequence: 1
  givenname: Carl
  orcidid: 0000-0002-2242-4328
  surname: Malings
  fullname: Malings, Carl
  email: carl.a.malings@nasa.gov
  organization: Global Modeling & Assimilation Office
– sequence: 2
  givenname: K. Emma
  orcidid: 0000-0003-0837-8502
  surname: Knowland
  fullname: Knowland, K. Emma
  organization: Global Modeling & Assimilation Office
– sequence: 3
  givenname: Nathan
  orcidid: 0000-0003-2127-3940
  surname: Pavlovic
  fullname: Pavlovic, Nathan
  organization: Sonoma Technology, Inc
– sequence: 4
  givenname: Justin G.
  orcidid: 0000-0003-3882-3064
  surname: Coughlin
  fullname: Coughlin, Justin G.
  organization: Now at U.S.D.A. Forest Service Pacific Northwest Region
– sequence: 5
  givenname: Daniel
  orcidid: 0009-0005-9430-3305
  surname: King
  fullname: King, Daniel
  organization: Sonoma Technology, Inc
– sequence: 6
  givenname: Christoph
  orcidid: 0000-0002-0552-4298
  surname: Keller
  fullname: Keller, Christoph
  organization: Now at Swiss Re Ltd
– sequence: 7
  givenname: Stephen
  orcidid: 0000-0001-8506-9354
  surname: Cohn
  fullname: Cohn, Stephen
  organization: Global Modeling & Assimilation Office
– sequence: 8
  givenname: Randall V.
  orcidid: 0000-0003-2632-8402
  surname: Martin
  fullname: Martin, Randall V.
  organization: Washington University in St. Louis
BookMark eNp9kdlKAzEUhoNUsC53PkAewGqW2eJdqbZaCi5UvBxOMolGpxlJUqUP4HsbWxER9CrJyf9_Z9tFPdc5jdAhJceUMHHCCMumF4QQWvEt1GdC8EHOKOn9uO-ggxCekoZzRipS9tH70Hp8s4TWxhU-D9EuINrOYXANHndeK0gx94BfLeAziIDHy_D5f2_jI75zSvsI1iVvYrhojVVr_ymeP-pkj-nd4rGHhX7r_PMae-11axfWgV_hWx2WbQz7aNtAG_TB17mH5uPz-ehiMLuaXI6Gs4FiLK8GjRCZMo0qiqrJJS2M4jnNZE4rUUjOuAHZNEpyJQ1TxmS6LLTODONAiMyB76HLDbbp4Kl-8alZv6o7sPU60PmHGnwqudV1KTmpcs6pIE2W5ieo0BIShWklSmUS62jDUr4LwWvzzaOk_lxI_XMhSc5-yZWN61FFD7b9y0Q2pjfb6tW_Cerp5JaWFf8A5eSgNA
CitedBy_id crossref_primary_10_1088_1748_9326_ada397
Cites_doi 10.3390/atmos12101344
10.3390/s21238009
10.1038/s41370‐020‐0255‐x
10.1002/qj.4490
10.1029/2011JD015780
10.3390/ijerph16142523
10.1175/JAMC‐D‐16‐0110.1
10.5281/ZENODO.10650853
10.3390/atmos12010091
10.1029/2019JD032293
10.3390/atmos14030540
10.1021/acs.est.1c05578
10.1029/2020GH000270
10.1016/j.atmosenv.2024.120603
10.48550/ARXIV.1909.11865
10.1289/ehp.1408646
10.1016/j.envint.2020.105965
10.1175/WAF‐D‐22‐0185.1
10.1016/j.envpol.2017.10.025
10.1088/1748‐9326/acf0b7
10.1080/10962247.2019.1668498
10.1021/acs.est.1c05309
10.5194/acp‐15‐5325‐2015
10.5194/acp‐23‐12525‐2023
10.1021/acsearthspacechem.1c00391
10.1175/WCAS‐D‐10‐05010.1
10.1038/s41467‐023‐43862‐3
10.1016/j.envpol.2022.120448
10.5194/acp‐24‐1673‐2024
10.1016/j.inffus.2021.05.008
10.1029/2021EA001743
10.1016/j.jaerosci.2021.105833
10.1146/annurev‐biodatasci‐110920‐093120
10.1021/acsearthspacechem.1c00217
10.1038/jes.2013.90
10.5194/amt‐12‐6091‐2019
10.1029/2021JD035563
10.1029/2020MS002413
10.1029/2006JD007971
10.1002/2015JD023674
10.3390/s20143845
10.5194/acp‐20‐7231‐2020
10.4209/aaqr.200619
10.3390/rs10040623
10.1021/acs.est.9b06046
10.1016/j.aeaoa.2019.100040
10.1021/acs.est.3c03661
10.5194/acp‐21‐3555‐2021
10.1029/2021GH000451
10.1016/j.atmosenv.2020.117293
10.1201/9781420072884-c1
10.1016/S0140‐6736(20)30752‐2
10.1016/j.rse.2011.09.027
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Copyright_xml – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1029/2024JH000183
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7b308533190d4299919eba0b52ec97cf
10_1029_2024JH000183
JGR178
Genre researchArticle
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01ES030616
– fundername: National Aeronautics and Space Administration
  funderid: 80NSSC22K1473; WBS 389018.02.09.02.72
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-LOGICAL-c2258-d994cfdc668d5b16fc3514b51896b323fabddcb3cbf2cff4e76ee4f23a00b5a3
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Wed Aug 27 01:12:21 EDT 2025
Tue Aug 05 12:09:26 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
Wed Jan 22 17:11:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2258-d994cfdc668d5b16fc3514b51896b323fabddcb3cbf2cff4e76ee4f23a00b5a3
ORCID 0000-0003-2127-3940
0009-0005-9430-3305
0000-0001-8506-9354
0000-0003-0837-8502
0000-0002-2242-4328
0000-0003-2632-8402
0000-0002-0552-4298
0000-0003-3882-3064
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000183
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_7b308533190d4299919eba0b52ec97cf
crossref_primary_10_1029_2024JH000183
crossref_citationtrail_10_1029_2024JH000183
wiley_primary_10_1029_2024JH000183_JGR178
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2011; 116
2012; 120
2021; 21
2020; 20
2023; 38
2019; 12
2023; 149
2019; 16
2014; 24
2020; 54
2024
2020; 125
2021; 76
2020; 4
2023; 23
2021; 158
2019; 69
2019; 25
2024; 24
2022; 127
2021; 8
2015; 15
2021; 5
2023; 57
2021; 4
2019; 3
2023; 14
2023; 18
2010
2020; 143
2015; 123
2015; 120
2006
2020; 223
2021; 13
2007; 112
2021; 12
2021; 55
2020; 30
2020; 396
2022; 6
2018; 233
2017; 56
2022; 56
2019
2017
2024; 331
2023; 317
2018; 10
2012; 4
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_34_1
e_1_2_8_53_1
Copernicus Sentinel data processed by ESA, Koninklijk Nederlands Meteorologisch Instituut (KNMI) (e_1_2_8_11_1) 2019
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
US EPA (e_1_2_8_50_1) 2017
Rasmussen C. E. (e_1_2_8_43_1) 2006
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
References_xml – volume: 20
  issue: 14
  year: 2020
  article-title: Forecasting the concentration of particulate matter in the Seoul metropolitan area using a Gaussian process model
  publication-title: Sensors
– volume: 149
  start-page: 1953
  issue: 754
  year: 2023
  end-page: 1989
  article-title: A generalized, compactly supported correlation function for data assimilation applications
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 76
  start-page: 243
  year: 2021
  end-page: 297
  article-title: A review of uncertainty quantification in deep learning: Techniques, applications and challenges
  publication-title: Information Fusion
– volume: 57
  start-page: 15162
  issue: 40
  year: 2023
  end-page: 15172
  article-title: Low‐cost particulate matter sensors for monitoring residential wood burning
  publication-title: Environmental Science & Technology
– volume: 25
  start-page: 127
  year: 2019
  end-page: 147
  article-title: Probabilistic forecasting using deep generative models
  publication-title: GeoInformatica
– volume: 4
  start-page: 417
  issue: 1
  year: 2021
  end-page: 447
  article-title: Satellite monitoring for air quality and health
  publication-title: Annual Review of Biomedical Data Science
– volume: 317
  year: 2023
  article-title: Source identification with high‐temporal resolution data from low‐cost sensors using bivariate polar plots in urban areas of Ghana
  publication-title: Environmental Pollution
– year: 2024
– volume: 125
  issue: 14
  year: 2020
  article-title: Improving surface PM forecasts in the United States using an ensemble of chemical transport model outputs: 1. Bias correction with surface observations in nonrural areas
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 15
  start-page: 5325
  issue: 10
  year: 2015
  end-page: 5358
  article-title: Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models
  publication-title: Atmospheric Chemistry and Physics
– volume: 21
  start-page: 3555
  year: 2021
  end-page: 3592
  article-title: Global impact of COVID‐19 restrictions on the surface concentrations of nitrogen dioxide and ozone
  publication-title: Atmospheric Chemistry and Physics
– volume: 233
  start-page: 1147
  year: 2018
  end-page: 1154
  article-title: Modelling daily PM concentrations at high spatio‐temporal resolution across Switzerland
  publication-title: Environmental Pollution
– volume: 56
  start-page: 1544
  issue: 3
  year: 2022
  end-page: 1556
  article-title: Combining machine learning and numerical simulation for high‐resolution PM concentration forecast
  publication-title: Environmental Science & Technology
– volume: 24
  start-page: 398
  issue: 4
  year: 2014
  end-page: 404
  article-title: Calibrating MODIS aerosol optical depth for predicting daily PM concentrations via statistical downscaling
  publication-title: Journal of Exposure Science & Environmental Epidemiology
– volume: 21
  issue: 23
  year: 2021
  article-title: Probabilistic deep learning to quantify uncertainty in air quality forecasting
  publication-title: Sensors
– volume: 13
  issue: 4
  year: 2021
  article-title: Description of the NASA GEOS Composition Forecast Modeling System GEOS‐CF v1.0
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 23
  start-page: 12525
  year: 2023
  end-page: 12543
  article-title: Development and evaluation of processes affecting simulation of diel fine particulate matter variation in the GEOS‐Chem model
  publication-title: Atmospheric Chemistry and Physics
– volume: 223
  year: 2020
  article-title: Integrating low‐cost air quality sensor networks with fixed and satellite monitoring systems to study ground‐level PM
  publication-title: Atmospheric Environment
– volume: 3
  year: 2019
  article-title: No one knows which city has the highest concentration of fine particulate matter
  publication-title: Atmospheric Environment: X
– volume: 4
  issue: 7
  year: 2020
  article-title: Using satellites to track indicators of global air pollution and climate change impacts: Lessons learned from a NASA‐Supported Science‐Stakeholder Collaborative
  publication-title: GeoHealth
– volume: 10
  issue: 4
  year: 2018
  article-title: Characterization of subgrid‐scale variability in particulate matter with respect to satellite aerosol observations
  publication-title: Remote Sensing
– volume: 24
  start-page: 1673
  issue: 3
  year: 2024
  end-page: 1689
  article-title: Technical note: Accurate, reliable, and high‐resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post‐processing method
  publication-title: Atmospheric Chemistry and Physics
– volume: 21
  issue: 7
  year: 2021
  article-title: First measurements of ambient PM in Kinshasa, Democratic Republic of Congo and Brazzaville, Republic of Congo using field‐calibrated low‐cost sensors
  publication-title: Aerosol and Air Quality Research
– volume: 55
  start-page: 15287
  issue: 22
  year: 2021
  end-page: 15300
  article-title: Monthly global estimates of fine particulate matter and their uncertainty
  publication-title: Environmental Science & Technology
– volume: 127
  issue: 1
  year: 2022
  article-title: Improving surface PM forecasts in the United States using an ensemble of chemical transport model outputs: 2. Bias correction with satellite data for rural areas
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 8
  issue: 7
  year: 2021
  article-title: Sub‐city scale hourly air quality forecasting by combining models, satellite observations, and ground measurements
  publication-title: Earth and Space Science
– volume: 20
  start-page: 7231
  issue: 12
  year: 2020
  end-page: 7241
  article-title: Effects of a priori profile shape assumptions on comparisons between satellite NO columns and model simulations
  publication-title: Atmospheric Chemistry and Physics
– volume: 4
  start-page: 69
  issue: 1
  year: 2012
  end-page: 79
  article-title: The value of air quality forecasting in the mid‐Atlantic region
  publication-title: Weather, Climate, and Society
– volume: 56
  start-page: 297
  issue: 2
  year: 2017
  end-page: 316
  article-title: Probabilistic forecasting of surface ozone with a novel statistical approach
  publication-title: Journal of Applied Meteorology and Climatology
– year: 2019
– volume: 18
  issue: 9
  year: 2023
  article-title: Tropospheric ozone data assimilation in the NASA GEOS Composition Forecast modeling system (GEOS‐CF v2.0) using satellite data for ozone vertical profiles (MLS), total ozone columns (OMI), and thermal infrared radiances (AIRS, IASI)
  publication-title: Environmental Research Letters
– start-page: 3
  year: 2010
  end-page: 14
– volume: 5
  start-page: 2268
  issue: 9
  year: 2021
  end-page: 2279
  article-title: Application of Gaussian mixture regression for the correction of low cost PM monitoring data in Accra, Ghana
  publication-title: ACS Earth and Space Chemistry
– volume: 14
  issue: 3
  year: 2023
  article-title: Deployment and evaluation of a network of open low‐cost air quality sensor systems
  publication-title: Atmosphere
– volume: 120
  start-page: 12259
  issue: 23
  year: 2015
  end-page: 12280
  article-title: Impact of inherent meteorology uncertainty on air quality model predictions
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 112
  issue: D11
  year: 2007
  article-title: Nitrogen oxide measurements at rural sites in Switzerland: Bias of conventional measurement techniques
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 135
  issue: 2
  year: 2015
  end-page: 143
  article-title: Use of satellite observations for long‐term exposure assessment of global concentrations of fine particulate matter
  publication-title: Environmental Health Perspectives
– volume: 396
  start-page: 1223
  issue: 10258
  year: 2020
  end-page: 1249
  article-title: Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019
  publication-title: The Lancet
– volume: 38
  start-page: 1895
  issue: 10
  year: 2023
  end-page: 1906
  article-title: Interpretation of probabilistic surface ozone forecasts: A case study for Philadelphia
  publication-title: Weather and Forecasting
– volume: 30
  start-page: 949
  issue: 6
  year: 2020
  end-page: 961
  article-title: Using a network of lower‐cost monitors to identify the influence of modifiable factors driving spatial patterns in fine particulate matter concentrations in an urban environment
  publication-title: Journal of Exposure Science & Environmental Epidemiology
– volume: 6
  start-page: 1011
  issue: 4
  year: 2022
  end-page: 1021
  article-title: A network of field‐calibrated low‐cost sensor measurements of PM in Lomé, Togo, over one to two years
  publication-title: ACS Earth and Space Chemistry
– volume: 5
  issue: 9
  year: 2021
  article-title: Augmenting the standard operating procedures of health and air quality stakeholders with NASA resources
  publication-title: GeoHealth
– volume: 69
  start-page: 1391
  issue: 12
  year: 2019
  end-page: 1414
  article-title: Methods, availability, and applications of PM exposure estimates derived from ground measurements, satellite, and atmospheric models
  publication-title: Journal of the Air & Waste Management Association
– volume: 158
  year: 2021
  article-title: From low‐cost sensors to high‐quality data: A summary of challenges and best practices for effectively calibrating low‐cost particulate matter mass sensors
  publication-title: Journal of Aerosol Science
– volume: 143
  year: 2020
  article-title: Data fusion for air quality mapping using low‐cost sensor observations: Feasibility and added‐value
  publication-title: Environment International
– volume: 12
  start-page: 6091
  issue: 11
  year: 2019
  end-page: 6111
  article-title: Evaluating the impact of spatial resolution on tropospheric NO column comparisons within urban areas using high‐resolution airborne data
  publication-title: Atmospheric Measurement Techniques
– year: 2006
– volume: 12
  issue: 10
  year: 2021
  article-title: A Gaussian process method with uncertainty quantification for air quality monitoring
  publication-title: Atmosphere
– volume: 54
  start-page: 2152
  issue: 4
  year: 2020
  end-page: 2162
  article-title: Incorporating low‐cost sensor measurements into high‐resolution PM modeling at a large spatial scale
  publication-title: Environmental Science & Technology
– volume: 331
  year: 2024
  article-title: Ozone, nitrogen dioxide, and PM estimation from observation‐model machine learning fusion over S. Korea: Influence of observation density, chemical transport model resolution, and geostationary remotely sensed AOD
  publication-title: Atmospheric Environment
– volume: 16
  issue: 14
  year: 2019
  article-title: Demonstration of a low‐cost multi‐pollutant network to quantify intra‐urban spatial variations in air pollutant source impacts and to evaluate environmental justice
  publication-title: International Journal of Environmental Research and Public Health
– volume: 120
  start-page: 70
  year: 2012
  end-page: 83
  article-title: TROPOMI on the ESA Sentinel‐5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications
  publication-title: Remote Sensing of Environment
– volume: 14
  issue: 1
  year: 2023
  article-title: First close insight into global daily gapless 1 km PM pollution, variability, and health impact
  publication-title: Nature Communications
– year: 2017
– volume: 116
  issue: D19
  year: 2011
  article-title: Automatic calibration of an ensemble for uncertainty estimation and probabilistic forecast: Application to air quality
  publication-title: Journal of Geophysical Research
– volume: 12
  issue: 1
  year: 2021
  article-title: Urban air quality modeling using low‐cost sensor network and data assimilation in the Aburrá Valley, Colombia
  publication-title: Atmosphere
– ident: e_1_2_8_54_1
  doi: 10.3390/atmos12101344
– ident: e_1_2_8_40_1
  doi: 10.3390/s21238009
– ident: e_1_2_8_45_1
  doi: 10.1038/s41370‐020‐0255‐x
– ident: e_1_2_8_21_1
  doi: 10.1002/qj.4490
– ident: e_1_2_8_18_1
  doi: 10.1029/2011JD015780
– ident: e_1_2_8_49_1
  doi: 10.3390/ijerph16142523
– ident: e_1_2_8_5_1
  doi: 10.1175/JAMC‐D‐16‐0110.1
– ident: e_1_2_8_35_1
  doi: 10.5281/ZENODO.10650853
– ident: e_1_2_8_34_1
  doi: 10.3390/atmos12010091
– ident: e_1_2_8_56_1
  doi: 10.1029/2019JD032293
– ident: e_1_2_8_46_1
  doi: 10.3390/atmos14030540
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.est.1c05578
– ident: e_1_2_8_3_1
  doi: 10.1029/2020GH000270
– ident: e_1_2_8_48_1
  doi: 10.1016/j.atmosenv.2024.120603
– ident: e_1_2_8_16_1
  doi: 10.48550/ARXIV.1909.11865
– ident: e_1_2_8_52_1
  doi: 10.1289/ehp.1408646
– ident: e_1_2_8_23_1
  doi: 10.1016/j.envint.2020.105965
– ident: e_1_2_8_4_1
  doi: 10.1175/WAF‐D‐22‐0185.1
– ident: e_1_2_8_12_1
  doi: 10.1016/j.envpol.2017.10.025
– ident: e_1_2_8_31_1
  doi: 10.1088/1748‐9326/acf0b7
– ident: e_1_2_8_13_1
  doi: 10.1080/10962247.2019.1668498
– ident: e_1_2_8_51_1
  doi: 10.1021/acs.est.1c05309
– ident: e_1_2_8_8_1
  doi: 10.5194/acp‐15‐5325‐2015
– ident: e_1_2_8_33_1
  doi: 10.5194/acp‐23‐12525‐2023
– ident: e_1_2_8_42_1
  doi: 10.1021/acsearthspacechem.1c00391
– ident: e_1_2_8_19_1
  doi: 10.1175/WCAS‐D‐10‐05010.1
– ident: e_1_2_8_55_1
  doi: 10.1038/s41467‐023‐43862‐3
– ident: e_1_2_8_25_1
  doi: 10.1016/j.envpol.2022.120448
– ident: e_1_2_8_44_1
  doi: 10.5194/acp‐24‐1673‐2024
– ident: e_1_2_8_2_1
  doi: 10.1016/j.inffus.2021.05.008
– ident: e_1_2_8_36_1
  doi: 10.1029/2021EA001743
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jaerosci.2021.105833
– ident: e_1_2_8_26_1
  doi: 10.1146/annurev‐biodatasci‐110920‐093120
– ident: e_1_2_8_39_1
  doi: 10.1021/acsearthspacechem.1c00217
– ident: e_1_2_8_9_1
  doi: 10.1038/jes.2013.90
– ident: e_1_2_8_28_1
  doi: 10.5194/amt‐12‐6091‐2019
– ident: e_1_2_8_57_1
  doi: 10.1029/2021JD035563
– ident: e_1_2_8_30_1
  doi: 10.1029/2020MS002413
– ident: e_1_2_8_47_1
  doi: 10.1029/2006JD007971
– ident: e_1_2_8_20_1
  doi: 10.1002/2015JD023674
– ident: e_1_2_8_27_1
  doi: 10.3390/s20143845
– ident: e_1_2_8_10_1
  doi: 10.5194/acp‐20‐7231‐2020
– ident: e_1_2_8_38_1
  doi: 10.4209/aaqr.200619
– ident: e_1_2_8_17_1
  doi: 10.3390/rs10040623
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: e_1_2_8_43_1
– volume-title: Sentinel‐5P TROPOMI Tropospheric NO2 1‐Orbit L2 5.5km x 3.5km
  year: 2019
  ident: e_1_2_8_11_1
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.est.9b06046
– ident: e_1_2_8_37_1
  doi: 10.1016/j.aeaoa.2019.100040
– ident: e_1_2_8_24_1
  doi: 10.1021/acs.est.3c03661
– ident: e_1_2_8_29_1
  doi: 10.5194/acp‐21‐3555‐2021
– ident: e_1_2_8_15_1
  doi: 10.1029/2021GH000451
– ident: e_1_2_8_32_1
  doi: 10.1016/j.atmosenv.2020.117293
– ident: e_1_2_8_14_1
  doi: 10.1201/9781420072884-c1
– ident: e_1_2_8_41_1
  doi: 10.1016/S0140‐6736(20)30752‐2
– ident: e_1_2_8_53_1
  doi: 10.1016/j.rse.2011.09.027
– volume-title: Policy Assessment for the Review of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen (No. EPA‐452/R‐17‐003)
  year: 2017
  ident: e_1_2_8_50_1
SSID ssj0003320807
Score 2.2761889
Snippet Integrating air quality information from models, satellites, and in situ monitors allows for both better estimation of air quality and better quantification of...
Abstract Integrating air quality information from models, satellites, and in situ monitors allows for both better estimation of air quality and better...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms air quality
data fusion
forecasting
uncertainty quantification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BahsxEBUlp1xKQxLqNA06JIdQlu6uVtIqNyexawwtxTgkt0UaScRgnGKvA_6A_HdG2rVjH9pcel1GIzEzGs2snmYIOc-YUNy7NFFScUxQrEt0JnhihSqBG_QOEN4O__wlBnfF8IE_bLX6CpiwpjxwI7jv0jCMChhaSmqD71SZckanhucOlAQfvC-eeVvJVPDBjOUYCskW6Z7mKiT5xXAQQpqS7ZxBsVT_bmgaz5b-J_KxDQppt1nMAfngZofkpTuZ06bExYr2cCc2jwwppv40NNQEvQiQZfo80fRW15r2l-HPF72f1I_0DnUZ7_pxLPJoEEFx_BUdv71dpP01Niuy_T1309jla76iI7dYTuvFERn3e-ObQdI2TUgAt2aZWKUK8BaEKC03mfAQsPqGZ6UShuXMa2MtGAbG5-B94aRwrvA50ykKVbNjsjd7mrnPhNrSMcGdAGkxZ5RaFRJ3P2gAUTot0g75tpZiBW1B8dDXYlrFi-1cVdsy75CLDfWfppDGX-iug0I2NKH8dfyARlG1RlG9ZxQdchnV-c-ZquGPUSbLk_8x4ReyH1g3OJdTslfPl-4rRiu1OYuG-QrNtOZI
  priority: 102
  providerName: Directory of Open Access Journals
Title Air Quality Estimation and Forecasting via Data Fusion With Uncertainty Quantification: Theoretical Framework and Preliminary Results
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000183
https://doaj.org/article/7b308533190d4299919eba0b52ec97cf
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegXHZBQ4AobJUPcEAoIoljJ-Y2oKWqNFRNnegtsp_trdLopjadxGU3_m_ec7LSHobEJQfLfon88j793s-Mvc2E0jL4NNGllhigOJ-YTMnEKV2BtKgdgHqHT7-r8Xkxmct5l3CjXpgWH2KbcCPJiPqaBNzYdQc2QBiZGLUXkzH5KJV4zJ5Qdy1h5-fFdJtjESJP247pnMrU0FKlXe07kvi4S2DPKkXw_n1nNVqb0SF72rmJ_KTl6zP2yC-fs98nixVvQS9-8SHKZtt2yM3ScbpiE8yaipj57cLwr6YxfLShXBj_sWgu-TlyN57-41qk0dYIxfWf-OxvNyMf3VdrRbLTFe7Sz9izy8_8enPVrF-w2Wg4-zJOumsUEkBhrRKndQHBgVKVkzZTAah638qs0sqKXARjnQMrwIYcQih8qbwvQi5MmlppxEvWW14v_SvGXeWFkl5B6TCKLI0uStQHYABU5Y1K--zD_S7W0EGM000XV3U86s51vbvnffZuO_umhdZ4YN5nYsh2DgFix4Hr1UXdyVddWoHOo0CFkjoysTrT3hr8_tyDLiH02fvIzn--qZ58O8vK6vV_zH3DDmi0LXA5Yr1mtfHH6KY0dhD_xUEM8vF5ejf8A_ZP4iA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHOBSgQCxPH2AA0IRiR3bMbcCXZalrapqK3qL7LFdVirbajeLxA_gfzPjpEt7AIlrNJ5EnszD45lvGHtZSW1VimVhjVV4QAmxcJVWRdC2AeXROgD1Du8f6MlxPT1RJ8OcU-qF6fEhNgk30oxsr0nBKSE9oA0QSCYe2-vphIKURt5kt2otDGmmqA83SRYpRdm3TAuqU0NXVQ7F78ji7VUG19xSRu-_Hq1mdzO-y7aHOJHv9IK9x27ExX32a2e-5D3qxU--i8rZ9x1ytwicZmyCW1EVM_8xd_yj6xwfrykZxr_Ou2_8GMWbr_9xLfLoi4Ty-nd89qedkY8vy7Uy28MlbtP33LTLj-JqfdatHrDZeHf2YVIMcxQKQG1timBtDSmA1k1QvtIJqHzfq6qx2kshk_MhgJfgk4CU6mh0jHUS0pWlV04-ZFuL80V8xHhootQqajABj5HG2dqgQQAHoJvodDliby53sYUBY5xGXZy1-a5b2Pbqno_Yqw31RY-t8Re69ySQDQ0hYucH58vTdlCw1niJ0aNEi1IG8rG2stE7_H4RwRpII_Y6i_Ofb2qnn44q0zz-D9oX7PZktr_X7n0--PKE3SGKvtrlKdvqluv4DGOWzj_P_-Vvji_jZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkRAX1AoQSyn1AQ4IRSRx7MTcWtqwXaBaVVvRW2SP7bJSu612s0j9Af3fnXHSpT2AxDUaTyJP5uF5fGbsXSaUlsGniS61xAOK84nJlEyc0hVIi9YBaHb4x5EanhSjU3naJ9xoFqbDh1gl3Egzor0mBb9yoQcbIIxMPLUXoyHFKJV4xB7Heh8hOxfjVY5FiDztJqZzalNDT5X2ve_I4tN9Bg-8UgTvfxisRm9Tb7BnfZjIdzu5brI1P3vObnanc96BXlzzA9TNbuyQm5njdMUmmAU1MfPfU8P3TWt4vaRcGP85bX_xE5RurP7jWuTR9QjF9Z_55M80I6_vurUi2_Ecd-kizuzyY79YnreLF2xSH0y-DJP-GoUEUFmrxGldQHCgVOWkzVQA6t63Mqu0siIXwVjnwAqwIYcQCl8q74uQC5OmVhrxkq3PLmf-FeOu8kJJr6B0eIosjS5KtAdgAFTljUoH7OPdLjbQQ4zTTRfnTSx157q5v-cD9n5FfdVBa_yFbo8EsqIhQOz44HJ-1vT61ZRWYPAo0KCkjlyszrS3Br8_96BLCAP2IYrzn29qRl-Ps7J6_R-0O-zJeL9uvh8efdtiT4mg63V5w9bb-dJvY8TS2rfxt7wFUBnimA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Air+Quality+Estimation+and+Forecasting+via+Data+Fusion+With+Uncertainty+Quantification%3A+Theoretical+Framework+and+Preliminary+Results&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Malings%2C+Carl&rft.au=Knowland%2C+K.+Emma&rft.au=Pavlovic%2C+Nathan&rft.au=Coughlin%2C+Justin+G.&rft.date=2024-12-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000183&rft.externalDBID=10.1029%252F2024JH000183&rft.externalDocID=JGR178
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon