Deep Forest Modeling: An Interpretable Deep Learning Method for Mineral Prospectivity Mapping

Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big data has advanced mineral prediction into intelligent forecasting. Machine learning methods have shown significant promise in enhancing outcomes...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 4
Main Authors Dong, Yue‐Lin, Zhang, Zhen‐Jie
Format Journal Article
LanguageEnglish
Published Wiley 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big data has advanced mineral prediction into intelligent forecasting. Machine learning methods have shown significant promise in enhancing outcomes. Currently, neural network‐based approaches dominate deep learning (DL), but they lack interpretability and have high modeling complexity, making them less effective for complex problems and time‐consuming. Deep Forest, an innovative DL paradigm, addresses these issues by dynamically adjusting complexity and providing importance assessments for predictive factors. This study focuses on the North American Cordillera, known for its rich geological data and potential for porphyry copper deposits (PCDs). Predictions are made using Deep Forest with factors like Euclidean distance between faults and magmatic rock, fault line density, gravity anomalies, and stream‐sediment geochemical data. Deep neural networks, random forest, convolutional neural networks, transformer model and graph convolutional networks are also used for comparison. Deep Forest shows high performance and can avoid the black box problem of DL without relying on other tools in DL, providing a new perspective for the development and application of other non‐neural network DL models for mineral prediction. Feature importance analysis shows that geological structure and magmatism significantly influence PCD prediction. Elevated levels of elements like Al, Co, and Cr in stream sediments help identify mineralization‐related alterations. These findings underscore Deep Forest's capability to accurately and efficiently guide mineral exploration, highlighting its potential as a promising approach for mineral prospecting. Plain Language Summary Accurate mineral prediction is important for reducing costs and uncertainties in finding and extracting minerals. Using artificial intelligence and big data has greatly improved this process. Traditional methods like neural networks are complex and hard to understand. Deep Forest is a new method that adjusts its complexity and identifies important factors for predictions. This study focused on the North American Cordillera, an area with rich geological data and potential for valuable mineral deposits. The prediction considered factors like the distance to faults and magmatic rock, fault line density, gravity anomalies, and various elements in stream sediments. Deep Forest outperformed other methods in accuracy, especially in avoiding the black box problems of deep learning and in identifying important geological features and mineral indicators, and provides a new perspective on other non‐neural network‐based mineral prediction models. The results showed that geological structures and certain elements in sediments are crucial for predicting mineral deposits. Deep Forest proved to be an efficient and accurate tool for guiding mineral exploration, making it a promising approach for finding new mineral sources. Key Points Prediction of porphyry copper deposits (PCDs) in the Cordillera region of North America using Deep Forest Deep Forest has the advantages of depth and interpretability and is an available method for mineral prediction Deep Forest offers exploration recommendations for PCDs
AbstractList Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big data has advanced mineral prediction into intelligent forecasting. Machine learning methods have shown significant promise in enhancing outcomes. Currently, neural network‐based approaches dominate deep learning (DL), but they lack interpretability and have high modeling complexity, making them less effective for complex problems and time‐consuming. Deep Forest, an innovative DL paradigm, addresses these issues by dynamically adjusting complexity and providing importance assessments for predictive factors. This study focuses on the North American Cordillera, known for its rich geological data and potential for porphyry copper deposits (PCDs). Predictions are made using Deep Forest with factors like Euclidean distance between faults and magmatic rock, fault line density, gravity anomalies, and stream‐sediment geochemical data. Deep neural networks, random forest, convolutional neural networks, transformer model and graph convolutional networks are also used for comparison. Deep Forest shows high performance and can avoid the black box problem of DL without relying on other tools in DL, providing a new perspective for the development and application of other non‐neural network DL models for mineral prediction. Feature importance analysis shows that geological structure and magmatism significantly influence PCD prediction. Elevated levels of elements like Al, Co, and Cr in stream sediments help identify mineralization‐related alterations. These findings underscore Deep Forest's capability to accurately and efficiently guide mineral exploration, highlighting its potential as a promising approach for mineral prospecting. Accurate mineral prediction is important for reducing costs and uncertainties in finding and extracting minerals. Using artificial intelligence and big data has greatly improved this process. Traditional methods like neural networks are complex and hard to understand. Deep Forest is a new method that adjusts its complexity and identifies important factors for predictions. This study focused on the North American Cordillera, an area with rich geological data and potential for valuable mineral deposits. The prediction considered factors like the distance to faults and magmatic rock, fault line density, gravity anomalies, and various elements in stream sediments. Deep Forest outperformed other methods in accuracy, especially in avoiding the black box problems of deep learning and in identifying important geological features and mineral indicators, and provides a new perspective on other non‐neural network‐based mineral prediction models. The results showed that geological structures and certain elements in sediments are crucial for predicting mineral deposits. Deep Forest proved to be an efficient and accurate tool for guiding mineral exploration, making it a promising approach for finding new mineral sources. Prediction of porphyry copper deposits (PCDs) in the Cordillera region of North America using Deep Forest Deep Forest has the advantages of depth and interpretability and is an available method for mineral prediction Deep Forest offers exploration recommendations for PCDs
Abstract Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big data has advanced mineral prediction into intelligent forecasting. Machine learning methods have shown significant promise in enhancing outcomes. Currently, neural network‐based approaches dominate deep learning (DL), but they lack interpretability and have high modeling complexity, making them less effective for complex problems and time‐consuming. Deep Forest, an innovative DL paradigm, addresses these issues by dynamically adjusting complexity and providing importance assessments for predictive factors. This study focuses on the North American Cordillera, known for its rich geological data and potential for porphyry copper deposits (PCDs). Predictions are made using Deep Forest with factors like Euclidean distance between faults and magmatic rock, fault line density, gravity anomalies, and stream‐sediment geochemical data. Deep neural networks, random forest, convolutional neural networks, transformer model and graph convolutional networks are also used for comparison. Deep Forest shows high performance and can avoid the black box problem of DL without relying on other tools in DL, providing a new perspective for the development and application of other non‐neural network DL models for mineral prediction. Feature importance analysis shows that geological structure and magmatism significantly influence PCD prediction. Elevated levels of elements like Al, Co, and Cr in stream sediments help identify mineralization‐related alterations. These findings underscore Deep Forest's capability to accurately and efficiently guide mineral exploration, highlighting its potential as a promising approach for mineral prospecting.
Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big data has advanced mineral prediction into intelligent forecasting. Machine learning methods have shown significant promise in enhancing outcomes. Currently, neural network‐based approaches dominate deep learning (DL), but they lack interpretability and have high modeling complexity, making them less effective for complex problems and time‐consuming. Deep Forest, an innovative DL paradigm, addresses these issues by dynamically adjusting complexity and providing importance assessments for predictive factors. This study focuses on the North American Cordillera, known for its rich geological data and potential for porphyry copper deposits (PCDs). Predictions are made using Deep Forest with factors like Euclidean distance between faults and magmatic rock, fault line density, gravity anomalies, and stream‐sediment geochemical data. Deep neural networks, random forest, convolutional neural networks, transformer model and graph convolutional networks are also used for comparison. Deep Forest shows high performance and can avoid the black box problem of DL without relying on other tools in DL, providing a new perspective for the development and application of other non‐neural network DL models for mineral prediction. Feature importance analysis shows that geological structure and magmatism significantly influence PCD prediction. Elevated levels of elements like Al, Co, and Cr in stream sediments help identify mineralization‐related alterations. These findings underscore Deep Forest's capability to accurately and efficiently guide mineral exploration, highlighting its potential as a promising approach for mineral prospecting. Plain Language Summary Accurate mineral prediction is important for reducing costs and uncertainties in finding and extracting minerals. Using artificial intelligence and big data has greatly improved this process. Traditional methods like neural networks are complex and hard to understand. Deep Forest is a new method that adjusts its complexity and identifies important factors for predictions. This study focused on the North American Cordillera, an area with rich geological data and potential for valuable mineral deposits. The prediction considered factors like the distance to faults and magmatic rock, fault line density, gravity anomalies, and various elements in stream sediments. Deep Forest outperformed other methods in accuracy, especially in avoiding the black box problems of deep learning and in identifying important geological features and mineral indicators, and provides a new perspective on other non‐neural network‐based mineral prediction models. The results showed that geological structures and certain elements in sediments are crucial for predicting mineral deposits. Deep Forest proved to be an efficient and accurate tool for guiding mineral exploration, making it a promising approach for finding new mineral sources. Key Points Prediction of porphyry copper deposits (PCDs) in the Cordillera region of North America using Deep Forest Deep Forest has the advantages of depth and interpretability and is an available method for mineral prediction Deep Forest offers exploration recommendations for PCDs
Author Dong, Yue‐Lin
Zhang, Zhen‐Jie
Author_xml – sequence: 1
  givenname: Yue‐Lin
  orcidid: 0009-0005-9640-3238
  surname: Dong
  fullname: Dong, Yue‐Lin
  organization: China University of Geosciences
– sequence: 2
  givenname: Zhen‐Jie
  orcidid: 0000-0003-1079-8784
  surname: Zhang
  fullname: Zhang, Zhen‐Jie
  email: zjzhang@cugb.edu.cn
  organization: China University of Geosciences
BookMark eNp9kN1Kw0AQhRepYP258wH2AYzO_mSTeFeqrZUWRfRSls1moisxGzaL0rc3tQoi6NUMM985zJx9Mmp9i4QcMzhlwIszDlxeXwGAYGyHjHlRiCTlDEY_-j1y1PcvG0ZwyCEbk8cLxI7OfMA-0pWvsHHt0zmdtHTRRgxdwGjKBukntkQT2mFPVxiffUVrH-jKtRhMQ2-D7zu00b25uKYr03UDeEh2a9P0ePRVD8jD7PJ-epUsb-aL6WSZWM5TlTArFSLUGS9FIfMULCuVNTlTpREgM5SirnkmQLHKWpFVHGUplc1kxVVmlDggi61v5c2L7oJ7NWGtvXH6c-DDkzYhOtugtpLnIi_zkkEtUwHGMjQp8ioVKEomBi--9bLDR33AWlsXTXS-jcG4RjPQm7z1z7wH0ckv0fcRf-Cwxd9dg-t_WX09v2NKiQ_Hpo8t
CitedBy_id crossref_primary_10_1007_s12145_025_01718_y
crossref_primary_10_1007_s11600_024_01522_0
Cites_doi 10.1016/j.gexplo.2019.05.003
10.1080/22020586.2019.12073248
10.1016/j.cageo.2014.10.004
10.1016/j.ecoinf.2010.06.003
10.1016/j.oregeorev.2014.02.001
10.1093/petrology/egi070
10.1007/BF00381554
10.1007/s12517‐016‐2587‐3
10.1017/S0016756820001326
10.1080/00206814.2012.728699
10.1144/SP318.10
10.1016/j.oregeorev.2018.10.006
10.1007/s11432‐015‐5470‐z
10.1007/s11042‐022‐13143‐0
10.11896/j.issn.1002‐137X.2016.06.042
10.1016/j.gca.2012.04.032
10.3390/min12050616
10.1016/j.oregeorev.2021.104300
10.5382/SP.17
10.1162/neco.2006.18.7.1527
10.3390/electronics12143106
10.1016/j.oregeorev.2023.105390
10.7185/geochempersp.6.1
10.1126/sciadv.abj5687
10.1080/08120099.2013.865676
10.1144/geochem2012‐144
10.1016/j.apgeochem.2020.104821
10.1016/j.gexplo.2012.02.002
10.1016/j.neucom.2021.12.075
10.1038/nature21359
10.1007/s11430‐024‐1309‐9
10.3390/min13060730
10.2113/econgeo.107.4.599
10.1016/j.gexplo.2016.03.009
10.1130/G48287.1
10.1016/S0169‐1368(96)00009‐1
10.1146/annurev.earth.32.101802.120257
10.1007/s11004‐023‐10055‐z
10.1109/CVPR.2016.319
10.1016/j.apgeochem.2020.104747
10.2113/econgeo.110.4.857
10.1007/s11004‐008‐9172‐6
10.5382/econgeo.4706
10.3390/min12070856
10.1007/s11430‐015‐5178‐3
10.1016/j.gexplo.2011.05.007
10.2113/gsecongeo.98.8.1515
10.1109/5.726791
10.2113/econgeo.106.8.1365
10.2113/econgeo.110.8.1995
10.1016/j.gexplo.2021.106888
10.1109/TMTT.2019.2932738
10.1006/jmva.1995.1069
10.1016/j.oregeorev.2015.01.001
10.1093/nsr/nwy108
10.1007/s11004‐008‐9181‐5
10.1126/science.140.3563.143
10.1007/s11053‐023‐10237‐w
10.1007/s11053‐020‐09700‐9
10.1144/1467‐7873/11‐RA‐070
10.1023/A:1010933404324
10.1016/j.earscirev.2016.01.003
10.1007/s11004‐023‐10054‐0
10.1007/s11004‐021‐09989‐z
10.1007/s11004‐013‐9457‐2
10.1016/j.oregeorev.2024.106007
10.1016/j.cageo.2010.09.014
10.1144/1467‐7873/10‐IM‐041
10.1016/0375‐6742(94)90013‐2
10.2113/gsecongeo.80.5.1328
10.1016/j.gexplo.2019.03.016
10.1007/s11004‐022‐10015‐z
10.1007/bf00206365
10.1109/ACCESS.2020.2979686
10.1007/s11004‐023‐10070‐0
10.3390/geosciences11070299
10.1016/j.gexplo.2018.07.020
10.1029/2022JB024584
10.3390/math10050787
10.5382/econgeo.4675
10.2113/gsecongeo.93.2.138
10.5382/econgeo.4970
10.1016/j.oregeorev.2022.105024
10.2113/gsecongeo.105.1.3
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1029/2024JH000311
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_c42838b8b10f4530ac1ea5e2d53e3b13
10_1029_2024JH000311
JGR166
Genre researchArticle
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: grant number 2023YFC2906402
– fundername: Fundamental Research Funds for the Central Universities
  funderid: grant number 2652023001
– fundername: National Natural Science Foundation of China
  funderid: 42430111; 42472358; 42050103
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
GROUPED_DOAJ
M~E
WIN
ID FETCH-LOGICAL-c2256-1c46ee0f72b394850c1b6ca816ba3047e43ff273061dcc37d2e4b46c74d267a63
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Wed Aug 27 01:27:34 EDT 2025
Sun Jul 06 05:08:35 EDT 2025
Thu Apr 24 23:12:46 EDT 2025
Wed Jan 22 17:11:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2256-1c46ee0f72b394850c1b6ca816ba3047e43ff273061dcc37d2e4b46c74d267a63
ORCID 0009-0005-9640-3238
0000-0003-1079-8784
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000311
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_c42838b8b10f4530ac1ea5e2d53e3b13
crossref_citationtrail_10_1029_2024JH000311
crossref_primary_10_1029_2024JH000311
wiley_primary_10_1029_2024JH000311_JGR166
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2010; 55
2017; 6
2015; 34
2023; 32
2019; 2019
2004; 20
2009; 41
1976; 25
2021; 124
2015; 71
2010; 105
2015; 74
2019; 204
2011; 11
2019; 202
2020; 122
2024
2001; 45
2009; 318
2012; 12
2014; 61
1998; 86
2003; 98
2011; 110
2004; 32
2020; 8
2017; 30
2013; 17
1990
2013; 55
2022; 81
2021; 158
2019; 67
2016; 43
2014; 14
2019; 114
2016; 154
2024; 67
1998; 93
2010; 5
2022; 127
2022; 232
2022; 475
2021; 49
2023; 13
2023; 55
2019; 6
1979; 14
2023; 12
2012
2011
2010
2013; 45
2018; 102
1995; 55
1985; 80
2006; 18
2007
2016; 165
2024; 167
2011; 37
1985; 89
2016; 59
2012; 107
1996; 11
1963; 140
2011; 106
2021; 11
2018; 194
2023
2022
2021; 137
2019; 46
2022; 8
2023; 156
2006; 47
2015; 110
2022; 12
2020; 115
2019
2017
2016
2022; 10
2022; 54
2023; 118
2013
2008; 40
2012; 115
2017; 543
2012; 88
2022; 148
1994; 51
2016; 9
2020; 29
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
Hammarstrom J. M. (e_1_2_9_43_1) 2019
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
Hou Z. Q. (e_1_2_9_48_1) 2004; 20
Han H. (e_1_2_9_44_1) 2019; 46
Kipf T. N. (e_1_2_9_53_1) 2017
e_1_2_9_60_1
Mihalasky M. J. (e_1_2_9_67_1) 2011
Chen Y. (e_1_2_9_17_1) 2022
Lundberg S. M. (e_1_2_9_63_1) 2017
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
Sinclair W. D. (e_1_2_9_82_1) 2007
e_1_2_9_15_1
Dong Y. L. (e_1_2_9_31_1) 2024
e_1_2_9_38_1
e_1_2_9_19_1
Leveille R. A. (e_1_2_9_56_1) 2012
Xiao K. Y. (e_1_2_9_87_1) 2015; 34
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
Bonham‐Carter G. (e_1_2_9_7_1) 1990
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
Bond J. D. (e_1_2_9_6_1) 2010
Chalice Mining Limited (e_1_2_9_12_1) 2023
e_1_2_9_28_1
Hollister V. F. (e_1_2_9_47_1) 1976
e_1_2_9_74_1
Afzal P. (e_1_2_9_2_1) 2010; 55
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
Nelson J. L. (e_1_2_9_69_1) 2013
e_1_2_9_36_1
e_1_2_9_59_1
Vaswani A. (e_1_2_9_85_1) 2017
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_29_1
References_xml – volume: 11
  start-page: 321
  issue: 4
  year: 2011
  end-page: 334
  article-title: Porphyry Cu indicator minerals in till as an exploration tool: Example from the giant Pebble porphyry Cu‐Au‐Mo deposit, Alaska, USA
  publication-title: Geochemistry: Exploration, Environment, Analysis
– volume: 32
  start-page: 1859
  issue: 5
  year: 2023
  end-page: 1869
  article-title: A new generation of artificial intelligence algorithms for mineral prospectivity mapping
  publication-title: Natural Resources Research
– start-page: 4768
  year: 2017
  end-page: 4777
– volume: 55
  start-page: 1
  issue: 1
  year: 2023
  end-page: 21
  article-title: Graph deep learning model for mapping mineral prospectivity
  publication-title: Mathematical Geosciences
– volume: 106
  start-page: 1365
  issue: 8
  year: 2011
  end-page: 1398
  article-title: Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion‐centered Cu‐Au district, Luzon, Philippines
  publication-title: Economic Geology
– start-page: 19
  year: 2010
  end-page: 32
– volume: 156
  year: 2023
  article-title: Metallogenic prediction based on geological‐model driven and data‐driven multisource information fusion: A case study of gold deposits in Xiong’ershan area, Henan Province, China
  publication-title: Ore Geology Reviews
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 55
  start-page: 43
  issue: 1
  year: 2013
  end-page: 65
  article-title: Porphyry copper deposits: Strike‐slip faulting and throttling cupolas
  publication-title: International Geology Review
– volume: 8
  issue: 11
  year: 2022
  article-title: Pyrite mega‐analysis reveals modes of anoxia through geological time
  publication-title: Science Advances
– volume: 51
  start-page: 109
  issue: 2
  year: 1994
  end-page: 130
  article-title: The separation of geochemical anomalies from background by fractal methods
  publication-title: Journal of Geochemical Exploration
– volume: 49
  start-page: 597
  issue: 5
  year: 2021
  end-page: 601
  article-title: A new model for the optimal structural context for giant porphyry copper deposit formation
  publication-title: Geology
– volume: 5
  start-page: 441
  issue: 6
  year: 2010
  end-page: 450
  article-title: Classification in conservation biology: A comparison of five machine‐learning methods
  publication-title: Ecological Informatics
– volume: 88
  start-page: 27
  year: 2012
  end-page: 50
  article-title: Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination
  publication-title: Geochimica et Cosmochimica Acta
– volume: 30
  year: 2017
– volume: 89
  start-page: 317
  issue: 4
  year: 1985
  end-page: 329
  article-title: Chemical differences between minerals from mineralizing and barren intrusions from some North American porphyry copper deposits
  publication-title: Contributions to Mineralogy and Petrology
– volume: 67
  start-page: 4140
  issue: 10
  year: 2019
  end-page: 4155
  article-title: Deep neural network technique for high‐dimensional microwave modeling and applications to parameter extraction of microwave filters
  publication-title: IEEE Transactions on Microwave Theory and Techniques
– volume: 124
  year: 2021
  article-title: Hydrogeochemistry in the Yukon‐Tanana upland region of east‐central Alaska: Possible exploration tool for porphyry‐style deposits
  publication-title: Applied Geochemistry
– volume: 54
  start-page: 593
  issue: 3
  year: 2022
  end-page: 621
  article-title: Stochastic modelling of mineral exploration targets
  publication-title: Mathematical Geosciences
– volume: 55
  start-page: 799
  issue: 6
  year: 2023
  end-page: 828
  article-title: Crucial geochemical signal identification for Cu‐Fertile magmas in Paleo‐Tethyan Arc based on machine learning
  publication-title: Mathematical Geosciences
– start-page: 53
  year: 2013
  end-page: 109
– volume: 6
  start-page: 1
  year: 2017
  end-page: 2
  article-title: Future global mineral resources
  publication-title: Geochemical Perspectives
– volume: 12
  issue: 5
  year: 2022
  article-title: Overview on the development of intelligent methods for mineral resource prediction under the background of geological big data
  publication-title: Minerals
– volume: 74
  start-page: 60
  year: 2015
  end-page: 70
  article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)
  publication-title: Computers & Geosciences
– volume: 59
  start-page: 556
  issue: 3
  year: 2016
  end-page: 572
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn‐type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Science China Earth Sciences
– volume: 114
  start-page: 1095
  issue: 6
  year: 2019
  end-page: 1121
  article-title: Porphyry copper potential of the United States Southern Basin and Range using ASTER data integrated with geochemical and geologic datasets to assess potential Near‐Surface Deposits in Well‐Explored permissive tracts
  publication-title: Economic Geology
– volume: 122
  year: 2020
  article-title: Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China
  publication-title: Applied Geochemistry
– year: 2019
– year: 2022
  article-title: Integration of knowledge and data in machine learning
  publication-title: arXiv preprint
– volume: 110
  start-page: 857
  issue: 4
  year: 2015
  end-page: 888
  article-title: The red Chris porphyry copper‐gold deposit, northern British Columbia, Canada: Igneous phases, alteration, and controls of mineralization
  publication-title: Economic Geology
– volume: 40
  start-page: 503
  issue: 5
  year: 2008
  end-page: 532
  article-title: Non‐Linear Theory and Power‐Law Models for information integration and mineral resources quantitative assessments
  publication-title: Mathematical Geosciences
– volume: 13
  issue: 6
  year: 2023
  article-title: CNN2D‐SENet‐Based prospecting prediction method: A case study from the Cu deposits in the Zhunuo mineral concentrate area in Tibet
  publication-title: Minerals
– year: 1990
  article-title: Weights of evidence modelling: A new approach to mapping mineral potential
  publication-title: Geology
– volume: 12
  issue: 7
  year: 2022
  article-title: Porphyry copper: Revisiting mineral resource assessment predictions for the Andes
  publication-title: Minerals
– volume: 12
  start-page: 211
  issue: 3
  year: 2012
  end-page: 226
  article-title: An exploration hydrogeochemical study at the giant Pebble porphyry Cu‐Au‐Mo deposit, Alaska, USA, using high resolution ICP‐MS
  publication-title: Geochemistry: Exploration, Environment, Analysis
– volume: 55
  start-page: 287
  issue: 3
  year: 2023
  end-page: 293
  article-title: Special issue: Data‐driven discovery in geosciences: Opportunities and challenges
  publication-title: Mathematical Geosciences
– volume: 6
  start-page: 74
  issue: 1
  year: 2019
  end-page: 86
  article-title: Deep forest
  publication-title: National Science Review
– volume: 55
  start-page: 105
  issue: 1
  year: 1995
  end-page: 124
  article-title: Factor‐analysis and principal components
  publication-title: Journal of Multivariate Analysis
– volume: 43
  start-page: 208
  year: 2016
  end-page: 213
  article-title: Deep random forest for Churn prediction
  publication-title: Journal of Computational Science
– volume: 45
  start-page: 777
  issue: 7
  year: 2013
  end-page: 798
  article-title: The Value of information in mineral exploration within a Multi‐Gaussian framework
  publication-title: Mathematical Geosciences
– volume: 11
  issue: 7
  year: 2021
  article-title: Stream sediment datasets and geophysical anomalies: A recipe for porphyry copper systems identification—The Eastern Papuan Peninsula experience
  publication-title: Geosciences
– volume: 543
  start-page: 367
  issue: 7645
  year: 2017
  end-page: 372
  article-title: Mineral supply for sustainable development requires resource governance
  publication-title: Nature
– volume: 107
  start-page: 599
  issue: 4
  year: 2012
  end-page: 644
  article-title: Geochemical evolution of the banded Iron formation‐hosted high‐grade Iron ore system in the Koolyanobbing Greenstone Belt, Western Australia
  publication-title: Economic Geology
– start-page: 128
  year: 2011
– volume: 115
  start-page: 325
  issue: 2
  year: 2020
  end-page: 354
  article-title: White mica geochemistry: Discriminating between barren and mineralized porphyry systems
  publication-title: Economic Geology
– volume: 47
  start-page: 119
  issue: 1
  year: 2006
  end-page: 144
  article-title: Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization
  publication-title: Journal of Petrology
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  article-title: Gradient‐based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– volume: 71
  start-page: 804
  year: 2015
  end-page: 818
  article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geology Reviews
– volume: 20
  start-page: 239
  year: 2004
  end-page: 248
  article-title: Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen
  publication-title: Acta Petrologica Sinica
– volume: 41
  start-page: 421
  issue: 4
  year: 2009
  end-page: 446
  article-title: Deriving optimal exploration target zones on mineral prospectivity maps
  publication-title: Mathematical Geosciences
– volume: 8
  start-page: 49090
  year: 2020
  end-page: 49099
  article-title: Deep Forest regression for Short‐Term load forecasting of power systems
  publication-title: IEEE Access
– volume: 55
  start-page: 389
  year: 2010
  end-page: 401
  article-title: Application of power spectrum‐area fractal model to separate anomalies from background in Kahang Cu‐Mo porphyry system, Central Iran
  publication-title: Archives of Mining Sciences
– volume: 67
  start-page: 2864
  issue: 9
  year: 2024
  end-page: 2875
  article-title: Explainable artificial intelligence models for mineral prospectivity mapping
  publication-title: Science China Earth Sciences
– volume: 204
  start-page: 12
  year: 2019
  end-page: 32
  article-title: Modeling geochemical anomalies of stream sediment data through a weighted drainage catchment basin method for detecting porphyry Cu‐Au mineralization
  publication-title: Journal of Geochemical Exploration
– volume: 232
  year: 2022
  article-title: Geological mapping of basalt using stream sediment geochemical data: Case study of covered areas in Jining, Inner Mongolia, China
  publication-title: Journal of Geochemical Exploration
– volume: 55
  start-page: 963
  issue: 7
  year: 2023
  end-page: 987
  article-title: Projection pursuit random forest for mineral prospectivity mapping
  publication-title: Mathematical Geosciences
– volume: 11
  start-page: 303
  issue: 5
  year: 1996
  end-page: 338
  article-title: Mineralogy of the sulphide deposits at Sulitjelma, northern Norway
  publication-title: Ore Geology Reviews
– volume: 110
  start-page: 167
  issue: 2
  year: 2011
  end-page: 185
  article-title: Analysis and mapping of geochemical anomalies using logratio‐transformed stream sediment data with censored values
  publication-title: Journal of Geochemical Exploration
– volume: 37
  start-page: 1967
  issue: 12
  year: 2011
  end-page: 1975
  article-title: Support vector machine: A tool for mapping mineral prospectivity
  publication-title: Computers and Geotechnics
– year: 2024
– volume: 102
  start-page: 811
  year: 2018
  end-page: 817
  article-title: Mapping mineral prospectivity through big data analytics and a deep learning algorithm
  publication-title: Ore Geology Reviews
– volume: 167
  year: 2024
  article-title: CNN‐transformers for mineral prospectivity mapping in the Maodeng–Baiyinchagan area, Southern Great Xing'an Range
  publication-title: Ore Geology Reviews
– volume: 9
  issue: 10
  year: 2016
  article-title: Performing the power spectrum‐area method to separate anomaly from background for induced polarization data: (A case study; Hamyj copper deposit, Iran)
  publication-title: Arabian Journal of Geosciences
– volume: 110
  start-page: 1995
  issue: 8
  year: 2015
  end-page: 2023
  article-title: Structural evolution of the Rio Blanco‐Los Bronces District, Andes of Central Chile: Controls on stratigraphy, magmatism, and mineralization
  publication-title: Economic Geology
– volume: 17
  year: 2013
– volume: 14
  start-page: 353
  issue: 3
  year: 1979
  end-page: 374
  article-title: A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems ‐ Evidences from southern Tuscany pyritic deposits
  publication-title: Mineralium Deposita
– volume: 137
  year: 2021
  article-title: Predicting the emplacement of Cordilleran porphyry copper systems using a spatio‐temporal machine learning model
  publication-title: Ore Geology Reviews
– volume: 158
  start-page: 1
  year: 2021
  end-page: 12
  article-title: Subduction zone processes and crustal growth mechanisms at Pacific Rim convergent margins: Modern and ancient analogues
  publication-title: Geological Magazine
– volume: 34
  start-page: 1266
  year: 2015
  end-page: 1272
  article-title: Mineral resources assessment under the thought of big data
  publication-title: Geological Bulletin of China
– start-page: 2921
  year: 2016
  end-page: 2929
– volume: 165
  start-page: 111
  year: 2016
  end-page: 124
  article-title: Recognition of significant multi‐element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran
  publication-title: Journal of Geochemical Exploration
– volume: 12
  issue: 14
  year: 2023
  article-title: A review on Dropout regularization approaches for Deep Neural Networks within the scholarly domain
  publication-title: Electronics
– volume: 202
  start-page: 13
  year: 2019
  end-page: 26
  article-title: A multivariate statistical approach identifying the areas underlain by potential porphyry‐style Cu mineralization, south‐central British Columbia, Canada
  publication-title: Journal of Geochemical Exploration
– volume: 127
  issue: 8
  year: 2022
  article-title: Application of machine learning to characterizing magma fertility in porphyry Cu deposits
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 194
  start-page: 167
  year: 2018
  end-page: 188
  article-title: Machine learning strategies for classification and prediction of alteration facies: Examples from the Rosemont Cu‐Mo‐Ag skarn deposit, SE Tucson Arizona
  publication-title: Journal of Geochemical Exploration
– volume: 148
  year: 2022
  article-title: Siamese network based prospecting prediction method: A case study from the Au deposit in the Chongli mineral concentrate area in Zhangjiakou, Hebei Province, China
  publication-title: Ore Geology Reviews
– volume: 93
  start-page: 138
  issue: 2
  year: 1998
  end-page: 170
  article-title: Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits
  publication-title: Economic Geology
– volume: 25
  start-page: 509
  year: 1976
  end-page: 514
– volume: 318
  start-page: 273
  issue: 1
  year: 2009
  end-page: 307
  article-title: A Palaeozoic Northwest Passage: Incursion of Caledonian, Baltican and Siberian terranes into eastern Panthalassa, and the early evolution of the North American Cordillera
  publication-title: Geological Society, London, Special Publications
– volume: 118
  start-page: 411
  issue: 2
  year: 2023
  end-page: 431
  article-title: Stream sediment indicator mineral signatures of the Casino porphyry Cu‐Au‐Mo deposit, Yukon, Canada
  publication-title: Economic Geology
– volume: 80
  start-page: 1328
  issue: 5
  year: 1985
  end-page: 1347
  article-title: Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit
  publication-title: Economic Geology
– volume: 32
  start-page: 13
  issue: 1
  year: 2004
  end-page: 45
  article-title: Evolution of the north American Cordillera
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 10
  issue: 5
  year: 2022
  article-title: Novel ensemble tree solution for rockburst prediction using Deep Forest
  publication-title: Mathematics
– start-page: 361
  year: 2012
  end-page: 401
– volume: 61
  start-page: 5
  issue: 1
  year: 2014
  end-page: 16
  article-title: Distinctive composition of copper‐ore‐forming arcmagmas
  publication-title: Australian Journal of Earth Sciences
– volume: 105
  start-page: 3
  issue: 1
  year: 2010
  end-page: 41
  article-title: Porphyry copper systems
  publication-title: Economic Geology
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 4
  article-title: The geological characteristics, geochemical signature and geophysical expression of porphyry copper‐ (gold) deposits in the circum‐Pacific region
  publication-title: ASEG Extended Abstracts
– volume: 46
  start-page: 172
  year: 2019
  end-page: 179
  article-title: Text sentiment classification based on deep forests with enhanced features
  publication-title: Journal of Computational Science
– start-page: 59
  year: 2023
– volume: 29
  start-page: 3415
  issue: 6
  year: 2020
  end-page: 3424
  article-title: Geodata science‐based mineral prospectivity mapping: A review
  publication-title: Natural Resources Research
– volume: 59
  issue: 7
  year: 2016
  article-title: Dropout rademacher complexity of deep neural networks
  publication-title: Science China Information Sciences
– volume: 61
  start-page: 120
  year: 2014
  end-page: 140
  article-title: Data fusion and porphyry copper prospectivity models, southeastern Arizona
  publication-title: Ore Geology Reviews
– volume: 98
  start-page: 1515
  issue: 8
  year: 2003
  end-page: 1533
  article-title: Tectono‐magmatic precursors for porphyry Cu‐ (Mo‐Au) deposit formation
  publication-title: Economic Geology
– volume: 154
  start-page: 191
  year: 2016
  end-page: 209
  article-title: Terrane wrecks (coupled oroclines) and paleomagnetic inclination anomalies
  publication-title: Earth‐Science Reviews
– volume: 81
  start-page: 33185
  issue: 23
  year: 2022
  end-page: 33203
  article-title: Deep Metallogenic prediction model construction of the Xiongcun no. II orebody based on the DNN algorithm
  publication-title: Multimedia Tools and Applications
– volume: 475
  start-page: 112
  year: 2022
  end-page: 122
  article-title: DBC‐Forest: Deep forest with binning confidence screening
  publication-title: Neurocomputing
– volume: 140
  start-page: 143
  issue: 3563
  year: 1963
  end-page: 152
  article-title: Geologic evolution of North America
  publication-title: Science
– start-page: 223
  year: 2007
  end-page: 243
– volume: 115
  start-page: 24
  year: 2012
  end-page: 35
  article-title: Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping
  publication-title: Journal of Geochemical Exploration
– year: 2017
– volume: 14
  start-page: 45
  issue: 1
  year: 2014
  end-page: 58
  article-title: Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping
  publication-title: Geochemistry: Exploration, Environment, Analysis
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– ident: e_1_2_9_37_1
  doi: 10.1016/j.gexplo.2019.05.003
– volume-title: Assessment of undiscovered copper resources of the world, 2015 (ver. 1.2, December 2021)
  year: 2019
  ident: e_1_2_9_43_1
– ident: e_1_2_9_40_1
  doi: 10.1080/22020586.2019.12073248
– ident: e_1_2_9_11_1
  doi: 10.1016/j.cageo.2014.10.004
– volume-title: Advances in neural information processing systems
  year: 2017
  ident: e_1_2_9_85_1
– ident: e_1_2_9_50_1
  doi: 10.1016/j.ecoinf.2010.06.003
– ident: e_1_2_9_61_1
  doi: 10.1016/j.oregeorev.2014.02.001
– ident: e_1_2_9_86_1
  doi: 10.1093/petrology/egi070
– ident: e_1_2_9_45_1
  doi: 10.1007/BF00381554
– volume-title: Bliment/DF_NA: v1.0.0
  year: 2024
  ident: e_1_2_9_31_1
– ident: e_1_2_9_38_1
  doi: 10.1007/s12517‐016‐2587‐3
– ident: e_1_2_9_28_1
  doi: 10.1017/S0016756820001326
– ident: e_1_2_9_20_1
  doi: 10.1080/00206814.2012.728699
– ident: e_1_2_9_22_1
  doi: 10.1144/SP318.10
– ident: e_1_2_9_88_1
  doi: 10.1016/j.oregeorev.2018.10.006
– ident: e_1_2_9_39_1
  doi: 10.1007/s11432‐015‐5470‐z
– ident: e_1_2_9_93_1
  doi: 10.1007/s11042‐022‐13143‐0
– volume: 20
  start-page: 239
  year: 2004
  ident: e_1_2_9_48_1
  article-title: Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen
  publication-title: Acta Petrologica Sinica
– ident: e_1_2_9_89_1
  doi: 10.11896/j.issn.1002‐137X.2016.06.042
– ident: e_1_2_9_24_1
  doi: 10.1016/j.gca.2012.04.032
– ident: e_1_2_9_60_1
  doi: 10.3390/min12050616
– ident: e_1_2_9_26_1
  doi: 10.1016/j.oregeorev.2021.104300
– ident: e_1_2_9_21_1
  doi: 10.5382/SP.17
– ident: e_1_2_9_46_1
  doi: 10.1162/neco.2006.18.7.1527
– ident: e_1_2_9_78_1
  doi: 10.3390/electronics12143106
– ident: e_1_2_9_36_1
  doi: 10.1016/j.oregeorev.2023.105390
– start-page: 509
  volume-title: Circum‐pacific energy and mineral resources
  year: 1976
  ident: e_1_2_9_47_1
– ident: e_1_2_9_5_1
  doi: 10.7185/geochempersp.6.1
– ident: e_1_2_9_33_1
  doi: 10.1126/sciadv.abj5687
– year: 1990
  ident: e_1_2_9_7_1
  article-title: Weights of evidence modelling: A new approach to mapping mineral potential
  publication-title: Geology
– ident: e_1_2_9_62_1
  doi: 10.1080/08120099.2013.865676
– ident: e_1_2_9_92_1
  doi: 10.1144/geochem2012‐144
– ident: e_1_2_9_52_1
  doi: 10.1016/j.apgeochem.2020.104821
– ident: e_1_2_9_91_1
  doi: 10.1016/j.gexplo.2012.02.002
– ident: e_1_2_9_64_1
  doi: 10.1016/j.neucom.2021.12.075
– ident: e_1_2_9_3_1
  doi: 10.1038/nature21359
– volume: 46
  start-page: 172
  year: 2019
  ident: e_1_2_9_44_1
  article-title: Text sentiment classification based on deep forests with enhanced features
  publication-title: Journal of Computational Science
– ident: e_1_2_9_101_1
  doi: 10.1007/s11430‐024‐1309‐9
– ident: e_1_2_9_30_1
  doi: 10.3390/min13060730
– ident: e_1_2_9_4_1
  doi: 10.2113/econgeo.107.4.599
– ident: e_1_2_9_71_1
  doi: 10.1016/j.gexplo.2016.03.009
– ident: e_1_2_9_72_1
  doi: 10.1130/G48287.1
– start-page: 223
  volume-title: Mineral deposits of Canada: A synthesis of major deposit‐types, District Metallogeny, the evolution of geological provinces, and exploration methods, geological association of Canada, mineral deposits division, special publication, Canada, Newfoundland
  year: 2007
  ident: e_1_2_9_82_1
– start-page: 361
  volume-title: Geology and genesis of major copper deposits and districts of the world: A tribute to richard H. Sillitoe
  year: 2012
  ident: e_1_2_9_56_1
– ident: e_1_2_9_23_1
  doi: 10.1016/S0169‐1368(96)00009‐1
– ident: e_1_2_9_27_1
  doi: 10.1146/annurev.earth.32.101802.120257
– ident: e_1_2_9_94_1
  doi: 10.1007/s11004‐023‐10055‐z
– ident: e_1_2_9_96_1
  doi: 10.1109/CVPR.2016.319
– ident: e_1_2_9_59_1
  doi: 10.1016/j.apgeochem.2020.104747
– start-page: 53
  volume-title: Tectonics, Metallogeny, and discovery: The North American Cordillera and similar accretionary settings
  year: 2013
  ident: e_1_2_9_69_1
– ident: e_1_2_9_74_1
  doi: 10.2113/econgeo.110.4.857
– ident: e_1_2_9_18_1
  doi: 10.1007/s11004‐008‐9172‐6
– ident: e_1_2_9_84_1
  doi: 10.5382/econgeo.4706
– ident: e_1_2_9_42_1
  doi: 10.3390/min12070856
– ident: e_1_2_9_95_1
  doi: 10.1007/s11430‐015‐5178‐3
– ident: e_1_2_9_10_1
  doi: 10.1016/j.gexplo.2011.05.007
– ident: e_1_2_9_76_1
  doi: 10.2113/gsecongeo.98.8.1515
– ident: e_1_2_9_55_1
  doi: 10.1109/5.726791
– ident: e_1_2_9_13_1
  doi: 10.2113/econgeo.106.8.1365
– ident: e_1_2_9_73_1
  doi: 10.2113/econgeo.110.8.1995
– ident: e_1_2_9_41_1
  doi: 10.1016/j.gexplo.2021.106888
– ident: e_1_2_9_49_1
  doi: 10.1109/TMTT.2019.2932738
– ident: e_1_2_9_79_1
  doi: 10.1006/jmva.1995.1069
– ident: e_1_2_9_77_1
  doi: 10.1016/j.oregeorev.2015.01.001
– ident: e_1_2_9_97_1
  doi: 10.1093/nsr/nwy108
– ident: e_1_2_9_25_1
  doi: 10.1007/s11004‐008‐9181‐5
– start-page: 19
  volume-title: Surficial geology, soils and permafrost of the northern Dawson Range
  year: 2010
  ident: e_1_2_9_6_1
– ident: e_1_2_9_34_1
  doi: 10.1126/science.140.3563.143
– volume: 34
  start-page: 1266
  year: 2015
  ident: e_1_2_9_87_1
  article-title: Mineral resources assessment under the thought of big data
  publication-title: Geological Bulletin of China
– ident: e_1_2_9_102_1
  doi: 10.1007/s11053‐023‐10237‐w
– ident: e_1_2_9_99_1
  doi: 10.1007/s11053‐020‐09700‐9
– ident: e_1_2_9_35_1
  doi: 10.1144/1467‐7873/11‐RA‐070
– ident: e_1_2_9_9_1
  doi: 10.1023/A:1010933404324
– volume-title: International Conference on Learning Representations (ICLR)
  year: 2017
  ident: e_1_2_9_53_1
– ident: e_1_2_9_80_1
  doi: 10.1016/j.earscirev.2016.01.003
– ident: e_1_2_9_14_1
  doi: 10.1007/s11004‐023‐10054‐0
– ident: e_1_2_9_83_1
  doi: 10.1007/s11004‐021‐09989‐z
– ident: e_1_2_9_32_1
  doi: 10.1007/s11004‐013‐9457‐2
– ident: e_1_2_9_57_1
  doi: 10.1016/j.oregeorev.2024.106007
– ident: e_1_2_9_100_1
  doi: 10.1016/j.cageo.2010.09.014
– ident: e_1_2_9_51_1
  doi: 10.1144/1467‐7873/10‐IM‐041
– ident: e_1_2_9_19_1
  doi: 10.1016/0375‐6742(94)90013‐2
– ident: e_1_2_9_75_1
  doi: 10.2113/gsecongeo.80.5.1328
– ident: e_1_2_9_16_1
  doi: 10.1016/j.gexplo.2019.03.016
– start-page: 59
  volume-title: Australian Securities Exchange (ASX) Announcement
  year: 2023
  ident: e_1_2_9_12_1
– ident: e_1_2_9_103_1
  doi: 10.1007/s11004‐022‐10015‐z
– volume: 55
  start-page: 389
  year: 2010
  ident: e_1_2_9_2_1
  article-title: Application of power spectrum‐area fractal model to separate anomalies from background in Kahang Cu‐Mo porphyry system, Central Iran
  publication-title: Archives of Mining Sciences
– year: 2022
  ident: e_1_2_9_17_1
  article-title: Integration of knowledge and data in machine learning
  publication-title: arXiv preprint
– ident: e_1_2_9_8_1
  doi: 10.1007/bf00206365
– ident: e_1_2_9_90_1
  doi: 10.1109/ACCESS.2020.2979686
– ident: e_1_2_9_15_1
  doi: 10.1007/s11004‐023‐10070‐0
– ident: e_1_2_9_68_1
  doi: 10.3390/geosciences11070299
– ident: e_1_2_9_70_1
  doi: 10.1016/j.gexplo.2018.07.020
– ident: e_1_2_9_98_1
  doi: 10.1029/2022JB024584
– ident: e_1_2_9_58_1
  doi: 10.3390/math10050787
– ident: e_1_2_9_65_1
  doi: 10.5382/econgeo.4675
– start-page: 128
  volume-title: Porphyry copper assessment of British Columbia and Yukon Territory, Canada
  year: 2011
  ident: e_1_2_9_67_1
– ident: e_1_2_9_54_1
  doi: 10.2113/gsecongeo.93.2.138
– start-page: 4768
  volume-title: Proceedings of the 31st International Conference on Neural Information Processing Systems
  year: 2017
  ident: e_1_2_9_63_1
– ident: e_1_2_9_66_1
  doi: 10.5382/econgeo.4970
– ident: e_1_2_9_29_1
  doi: 10.1016/j.oregeorev.2022.105024
– ident: e_1_2_9_81_1
  doi: 10.2113/gsecongeo.105.1.3
SSID ssj0003320807
Score 2.27599
Snippet Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big...
Abstract Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms Cordillera metallogenic belt
Deep Forest
deep learning
mineral prospectivity mapping
porphyry copper
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-iqFhf7EEPIsHsI7uJt_qopRARsdCLhH2lCCUtNf5_dzaxtgf14jUZsmG-JPMtmfk-hM6gikgrSGSpSCNuExGlytiImgzmdjVjDgaF80cxGPHhOBmvWH1BT1gjD9wk7sqAIliqU03ikicsVoY4lThqE-aYDn611Ne8lc0UfIMZo54KybbTPaYZbPL5cACnCFmrQUGqf52ahtrS30ZbLSnEveZmdtCGq3bR651zcwzWme81BssyGBy_xr0KfzcK6qnDIayVSZ3gPDhCY09Fcf4WFKXx02LWzlN6xo1zBYoMkz006t-_3A6i1gwhMv6VExExXDgXl5JqBoousSFaGJUSoRX8OnOclaXnIr4-W2OYtNRxzYWR3KMglWD7qFPNKneAsDQyja31cKSGK06yTAmjE1_LPRfzjKCLLr_SU5hWKRwMK6ZF-GNNs2I1mV10voyeNwoZP8TdQKaXMaBrHQ54tIsW7eIvtLvoIuD060rF8OGZCHH4HwseoU24dNPAcow69eLDnXgaUuvT8MR9AkFk1Lw
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Forest Modeling: An Interpretable Deep Learning Method for Mineral Prospectivity Mapping
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000311
https://doaj.org/article/c42838b8b10f4530ac1ea5e2d53e3b13
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iFy-iqFgfJQc9iCxuHpvdeqvaWgorRSz0IkteW4SyLW29-tvNZGNtDwpe9hCGLGR2dr4k832D0CVkkdQIEhkqsoibRESZ1CaiugW8XcWYBaJw_ix6Q94fJaNw4AZcmFofYnXgBpHh_9cQ4FItgtgAaGS6XTvv9wDTA7V3B9i1UNJH-WB1xsIYjWvGNIUyNZep4lD77qa4XZ9gIyt58f5NsOqzTXcf7QWYiNu1Xw_Qlq0O0dujtTMMzTQXSwxNzIBKfofbFf4pHVQTi71ZEE4d49z3iMYOnOL83WtM48F8GhiWDoPjXIJGw_gIDbud14deFNojRNoFoYiI5sLauEypYqDxEmuihJYZEUrCZZrlrCwdOnEZ22jNUkMtV1zolDu_pFKwY7RdTSt7gnCq0yw2xjko01xy0mpJoVXisrtDZw4jNNDN9_IUOmiHQwuLSeHvsGmrWF_MBrpaWc9qzYxf7O5hpVc2oHTtB6bzcRECp9CgCJepTJG45AmLpSZWJpaahFmmCGuga--nP99U9J9eiBCn_7A9Q7swWleunKPt5fzDXjj8sVRN_5E1_e7dPfPPzhfbqdAA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHvQiior1uQc9iASzj2xSb_VZa1OKtNCLhH21CKUttf5_dzZrbQ8KXsOQwE4m82V3vu9D6By6SGoEiQwVWcRNIqJMahNRXQPermLMAlE4b4tGjzf7ST_4nAIXptSHWGy4QWX47zUUOGxIB7UBEMl0v-282QBQD9zedS5oChYGlHcWmyyM0bikTFOYU3OtKg7D7-4W18s3WGlLXr1_Fa36dvO4jbYCTsT1MrE7aM2Od9HbvbVTDG6aH3MMLmbAJb_B9TH-mR1UI4t9WFBOHeLcm0Rjh05x_u5FpnFnNgkUSwfCcS5BpGG4h3qPD927RhT8ESLtqlBERHNhbTxIqWIg8hJrooSWGRFKwmma5WwwcPDEtWyjNUsNtVxxoVPuEpNKwfZRZTwZ2wOEU51msTEuQ5nmkpNaTQqtEtfeHTxzIKGKrr6Xp9BBPBw8LEaFP8SmtWJ5MavoYhE9LUUzfom7hZVexIDUtb8wmQ2LUDmFBkm4TGWKxAOesFhqYmViqUmYZYqwKrr0efrzSUXz6ZUIcfiP2DO00ejmraL13H45QpsQUY6xHKPKfPZpTxwYmatT_8J9AV9N0UY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQbyIomJ95qAHkcXNY7Nbb9Vaa7WliIVeZMlri1DaUuv_N5ONtT0oeF2GLMzsZL5N5vsGoXOoIqkRJDJUZBE3iYgyqU1EdQ14u4oxC0ThTle0-rw9SAbhwA24MKU-xOLADTLD79eQ4FNTBLEB0Mh0f-283QJMD9Tedbjvg5YuynuLMxbGaFwypim0qblKFYfed7fE9fICK1XJi_evglVfbZrbaCvARFwv47qD1ux4F701rJ1iGKb5MccwxAyo5De4PsY_rYNqZLE3C8KpQ9zxM6KxA6e48-41pnFvNgkMS4fBcUeCRsNwD_Wb9693rSiMR4i0S0IREc2FtXGRUsVA4yXWRAktMyKUhMs0y1lROHTiKrbRmqWGWq640Cl3cUmlYPuoMp6M7QHCqU6z2BgXoExzyUmtJoVWiavuDp05jFBFV9_uyXXQDocRFqPc32HTWr7szCq6WFhPS82MX-xuwdMLG1C69g8ms2EeEifXoAiXqUyRuOAJi6UmViaWmoRZpgiroksfpz_flLcfXogQh_-wPUMbvUYzf37sPh2hTTAom1iOUWU--7QnDorM1an_3r4ARSPQeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Forest+Modeling%3A+An+Interpretable+Deep+Learning+Method+for+Mineral+Prospectivity+Mapping&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Dong%2C+Yue%E2%80%90Lin&rft.au=Zhang%2C+Zhen%E2%80%90Jie&rft.date=2024-12-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000311&rft.externalDBID=10.1029%252F2024JH000311&rft.externalDocID=JGR166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon