Deep Forest Modeling: An Interpretable Deep Learning Method for Mineral Prospectivity Mapping
Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big data has advanced mineral prediction into intelligent forecasting. Machine learning methods have shown significant promise in enhancing outcomes...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big data has advanced mineral prediction into intelligent forecasting. Machine learning methods have shown significant promise in enhancing outcomes. Currently, neural network‐based approaches dominate deep learning (DL), but they lack interpretability and have high modeling complexity, making them less effective for complex problems and time‐consuming. Deep Forest, an innovative DL paradigm, addresses these issues by dynamically adjusting complexity and providing importance assessments for predictive factors. This study focuses on the North American Cordillera, known for its rich geological data and potential for porphyry copper deposits (PCDs). Predictions are made using Deep Forest with factors like Euclidean distance between faults and magmatic rock, fault line density, gravity anomalies, and stream‐sediment geochemical data. Deep neural networks, random forest, convolutional neural networks, transformer model and graph convolutional networks are also used for comparison. Deep Forest shows high performance and can avoid the black box problem of DL without relying on other tools in DL, providing a new perspective for the development and application of other non‐neural network DL models for mineral prediction. Feature importance analysis shows that geological structure and magmatism significantly influence PCD prediction. Elevated levels of elements like Al, Co, and Cr in stream sediments help identify mineralization‐related alterations. These findings underscore Deep Forest's capability to accurately and efficiently guide mineral exploration, highlighting its potential as a promising approach for mineral prospecting.
Plain Language Summary
Accurate mineral prediction is important for reducing costs and uncertainties in finding and extracting minerals. Using artificial intelligence and big data has greatly improved this process. Traditional methods like neural networks are complex and hard to understand. Deep Forest is a new method that adjusts its complexity and identifies important factors for predictions. This study focused on the North American Cordillera, an area with rich geological data and potential for valuable mineral deposits. The prediction considered factors like the distance to faults and magmatic rock, fault line density, gravity anomalies, and various elements in stream sediments. Deep Forest outperformed other methods in accuracy, especially in avoiding the black box problems of deep learning and in identifying important geological features and mineral indicators, and provides a new perspective on other non‐neural network‐based mineral prediction models. The results showed that geological structures and certain elements in sediments are crucial for predicting mineral deposits. Deep Forest proved to be an efficient and accurate tool for guiding mineral exploration, making it a promising approach for finding new mineral sources.
Key Points
Prediction of porphyry copper deposits (PCDs) in the Cordillera region of North America using Deep Forest
Deep Forest has the advantages of depth and interpretability and is an available method for mineral prediction
Deep Forest offers exploration recommendations for PCDs |
---|---|
AbstractList | Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big data has advanced mineral prediction into intelligent forecasting. Machine learning methods have shown significant promise in enhancing outcomes. Currently, neural network‐based approaches dominate deep learning (DL), but they lack interpretability and have high modeling complexity, making them less effective for complex problems and time‐consuming. Deep Forest, an innovative DL paradigm, addresses these issues by dynamically adjusting complexity and providing importance assessments for predictive factors. This study focuses on the North American Cordillera, known for its rich geological data and potential for porphyry copper deposits (PCDs). Predictions are made using Deep Forest with factors like Euclidean distance between faults and magmatic rock, fault line density, gravity anomalies, and stream‐sediment geochemical data. Deep neural networks, random forest, convolutional neural networks, transformer model and graph convolutional networks are also used for comparison. Deep Forest shows high performance and can avoid the black box problem of DL without relying on other tools in DL, providing a new perspective for the development and application of other non‐neural network DL models for mineral prediction. Feature importance analysis shows that geological structure and magmatism significantly influence PCD prediction. Elevated levels of elements like Al, Co, and Cr in stream sediments help identify mineralization‐related alterations. These findings underscore Deep Forest's capability to accurately and efficiently guide mineral exploration, highlighting its potential as a promising approach for mineral prospecting.
Accurate mineral prediction is important for reducing costs and uncertainties in finding and extracting minerals. Using artificial intelligence and big data has greatly improved this process. Traditional methods like neural networks are complex and hard to understand. Deep Forest is a new method that adjusts its complexity and identifies important factors for predictions. This study focused on the North American Cordillera, an area with rich geological data and potential for valuable mineral deposits. The prediction considered factors like the distance to faults and magmatic rock, fault line density, gravity anomalies, and various elements in stream sediments. Deep Forest outperformed other methods in accuracy, especially in avoiding the black box problems of deep learning and in identifying important geological features and mineral indicators, and provides a new perspective on other non‐neural network‐based mineral prediction models. The results showed that geological structures and certain elements in sediments are crucial for predicting mineral deposits. Deep Forest proved to be an efficient and accurate tool for guiding mineral exploration, making it a promising approach for finding new mineral sources.
Prediction of porphyry copper deposits (PCDs) in the Cordillera region of North America using Deep Forest Deep Forest has the advantages of depth and interpretability and is an available method for mineral prediction Deep Forest offers exploration recommendations for PCDs Abstract Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big data has advanced mineral prediction into intelligent forecasting. Machine learning methods have shown significant promise in enhancing outcomes. Currently, neural network‐based approaches dominate deep learning (DL), but they lack interpretability and have high modeling complexity, making them less effective for complex problems and time‐consuming. Deep Forest, an innovative DL paradigm, addresses these issues by dynamically adjusting complexity and providing importance assessments for predictive factors. This study focuses on the North American Cordillera, known for its rich geological data and potential for porphyry copper deposits (PCDs). Predictions are made using Deep Forest with factors like Euclidean distance between faults and magmatic rock, fault line density, gravity anomalies, and stream‐sediment geochemical data. Deep neural networks, random forest, convolutional neural networks, transformer model and graph convolutional networks are also used for comparison. Deep Forest shows high performance and can avoid the black box problem of DL without relying on other tools in DL, providing a new perspective for the development and application of other non‐neural network DL models for mineral prediction. Feature importance analysis shows that geological structure and magmatism significantly influence PCD prediction. Elevated levels of elements like Al, Co, and Cr in stream sediments help identify mineralization‐related alterations. These findings underscore Deep Forest's capability to accurately and efficiently guide mineral exploration, highlighting its potential as a promising approach for mineral prospecting. Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big data has advanced mineral prediction into intelligent forecasting. Machine learning methods have shown significant promise in enhancing outcomes. Currently, neural network‐based approaches dominate deep learning (DL), but they lack interpretability and have high modeling complexity, making them less effective for complex problems and time‐consuming. Deep Forest, an innovative DL paradigm, addresses these issues by dynamically adjusting complexity and providing importance assessments for predictive factors. This study focuses on the North American Cordillera, known for its rich geological data and potential for porphyry copper deposits (PCDs). Predictions are made using Deep Forest with factors like Euclidean distance between faults and magmatic rock, fault line density, gravity anomalies, and stream‐sediment geochemical data. Deep neural networks, random forest, convolutional neural networks, transformer model and graph convolutional networks are also used for comparison. Deep Forest shows high performance and can avoid the black box problem of DL without relying on other tools in DL, providing a new perspective for the development and application of other non‐neural network DL models for mineral prediction. Feature importance analysis shows that geological structure and magmatism significantly influence PCD prediction. Elevated levels of elements like Al, Co, and Cr in stream sediments help identify mineralization‐related alterations. These findings underscore Deep Forest's capability to accurately and efficiently guide mineral exploration, highlighting its potential as a promising approach for mineral prospecting. Plain Language Summary Accurate mineral prediction is important for reducing costs and uncertainties in finding and extracting minerals. Using artificial intelligence and big data has greatly improved this process. Traditional methods like neural networks are complex and hard to understand. Deep Forest is a new method that adjusts its complexity and identifies important factors for predictions. This study focused on the North American Cordillera, an area with rich geological data and potential for valuable mineral deposits. The prediction considered factors like the distance to faults and magmatic rock, fault line density, gravity anomalies, and various elements in stream sediments. Deep Forest outperformed other methods in accuracy, especially in avoiding the black box problems of deep learning and in identifying important geological features and mineral indicators, and provides a new perspective on other non‐neural network‐based mineral prediction models. The results showed that geological structures and certain elements in sediments are crucial for predicting mineral deposits. Deep Forest proved to be an efficient and accurate tool for guiding mineral exploration, making it a promising approach for finding new mineral sources. Key Points Prediction of porphyry copper deposits (PCDs) in the Cordillera region of North America using Deep Forest Deep Forest has the advantages of depth and interpretability and is an available method for mineral prediction Deep Forest offers exploration recommendations for PCDs |
Author | Dong, Yue‐Lin Zhang, Zhen‐Jie |
Author_xml | – sequence: 1 givenname: Yue‐Lin orcidid: 0009-0005-9640-3238 surname: Dong fullname: Dong, Yue‐Lin organization: China University of Geosciences – sequence: 2 givenname: Zhen‐Jie orcidid: 0000-0003-1079-8784 surname: Zhang fullname: Zhang, Zhen‐Jie email: zjzhang@cugb.edu.cn organization: China University of Geosciences |
BookMark | eNp9kN1Kw0AQhRepYP258wH2AYzO_mSTeFeqrZUWRfRSls1moisxGzaL0rc3tQoi6NUMM985zJx9Mmp9i4QcMzhlwIszDlxeXwGAYGyHjHlRiCTlDEY_-j1y1PcvG0ZwyCEbk8cLxI7OfMA-0pWvsHHt0zmdtHTRRgxdwGjKBukntkQT2mFPVxiffUVrH-jKtRhMQ2-D7zu00b25uKYr03UDeEh2a9P0ePRVD8jD7PJ-epUsb-aL6WSZWM5TlTArFSLUGS9FIfMULCuVNTlTpREgM5SirnkmQLHKWpFVHGUplc1kxVVmlDggi61v5c2L7oJ7NWGtvXH6c-DDkzYhOtugtpLnIi_zkkEtUwHGMjQp8ioVKEomBi--9bLDR33AWlsXTXS-jcG4RjPQm7z1z7wH0ckv0fcRf-Cwxd9dg-t_WX09v2NKiQ_Hpo8t |
CitedBy_id | crossref_primary_10_1007_s12145_025_01718_y crossref_primary_10_1007_s11600_024_01522_0 |
Cites_doi | 10.1016/j.gexplo.2019.05.003 10.1080/22020586.2019.12073248 10.1016/j.cageo.2014.10.004 10.1016/j.ecoinf.2010.06.003 10.1016/j.oregeorev.2014.02.001 10.1093/petrology/egi070 10.1007/BF00381554 10.1007/s12517‐016‐2587‐3 10.1017/S0016756820001326 10.1080/00206814.2012.728699 10.1144/SP318.10 10.1016/j.oregeorev.2018.10.006 10.1007/s11432‐015‐5470‐z 10.1007/s11042‐022‐13143‐0 10.11896/j.issn.1002‐137X.2016.06.042 10.1016/j.gca.2012.04.032 10.3390/min12050616 10.1016/j.oregeorev.2021.104300 10.5382/SP.17 10.1162/neco.2006.18.7.1527 10.3390/electronics12143106 10.1016/j.oregeorev.2023.105390 10.7185/geochempersp.6.1 10.1126/sciadv.abj5687 10.1080/08120099.2013.865676 10.1144/geochem2012‐144 10.1016/j.apgeochem.2020.104821 10.1016/j.gexplo.2012.02.002 10.1016/j.neucom.2021.12.075 10.1038/nature21359 10.1007/s11430‐024‐1309‐9 10.3390/min13060730 10.2113/econgeo.107.4.599 10.1016/j.gexplo.2016.03.009 10.1130/G48287.1 10.1016/S0169‐1368(96)00009‐1 10.1146/annurev.earth.32.101802.120257 10.1007/s11004‐023‐10055‐z 10.1109/CVPR.2016.319 10.1016/j.apgeochem.2020.104747 10.2113/econgeo.110.4.857 10.1007/s11004‐008‐9172‐6 10.5382/econgeo.4706 10.3390/min12070856 10.1007/s11430‐015‐5178‐3 10.1016/j.gexplo.2011.05.007 10.2113/gsecongeo.98.8.1515 10.1109/5.726791 10.2113/econgeo.106.8.1365 10.2113/econgeo.110.8.1995 10.1016/j.gexplo.2021.106888 10.1109/TMTT.2019.2932738 10.1006/jmva.1995.1069 10.1016/j.oregeorev.2015.01.001 10.1093/nsr/nwy108 10.1007/s11004‐008‐9181‐5 10.1126/science.140.3563.143 10.1007/s11053‐023‐10237‐w 10.1007/s11053‐020‐09700‐9 10.1144/1467‐7873/11‐RA‐070 10.1023/A:1010933404324 10.1016/j.earscirev.2016.01.003 10.1007/s11004‐023‐10054‐0 10.1007/s11004‐021‐09989‐z 10.1007/s11004‐013‐9457‐2 10.1016/j.oregeorev.2024.106007 10.1016/j.cageo.2010.09.014 10.1144/1467‐7873/10‐IM‐041 10.1016/0375‐6742(94)90013‐2 10.2113/gsecongeo.80.5.1328 10.1016/j.gexplo.2019.03.016 10.1007/s11004‐022‐10015‐z 10.1007/bf00206365 10.1109/ACCESS.2020.2979686 10.1007/s11004‐023‐10070‐0 10.3390/geosciences11070299 10.1016/j.gexplo.2018.07.020 10.1029/2022JB024584 10.3390/math10050787 10.5382/econgeo.4675 10.2113/gsecongeo.93.2.138 10.5382/econgeo.4970 10.1016/j.oregeorev.2022.105024 10.2113/gsecongeo.105.1.3 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1029/2024JH000311 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_c42838b8b10f4530ac1ea5e2d53e3b13 10_1029_2024JH000311 JGR166 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: grant number 2023YFC2906402 – fundername: Fundamental Research Funds for the Central Universities funderid: grant number 2652023001 – fundername: National Natural Science Foundation of China funderid: 42430111; 42472358; 42050103 |
GroupedDBID | 24P ACCMX ALMA_UNASSIGNED_HOLDINGS 0R~ AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION GROUPED_DOAJ M~E WIN |
ID | FETCH-LOGICAL-c2256-1c46ee0f72b394850c1b6ca816ba3047e43ff273061dcc37d2e4b46c74d267a63 |
IEDL.DBID | 24P |
ISSN | 2993-5210 |
IngestDate | Wed Aug 27 01:27:34 EDT 2025 Sun Jul 06 05:08:35 EDT 2025 Thu Apr 24 23:12:46 EDT 2025 Wed Jan 22 17:11:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2256-1c46ee0f72b394850c1b6ca816ba3047e43ff273061dcc37d2e4b46c74d267a63 |
ORCID | 0009-0005-9640-3238 0000-0003-1079-8784 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000311 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c42838b8b10f4530ac1ea5e2d53e3b13 crossref_citationtrail_10_1029_2024JH000311 crossref_primary_10_1029_2024JH000311 wiley_primary_10_1029_2024JH000311_JGR166 |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2010; 55 2017; 6 2015; 34 2023; 32 2019; 2019 2004; 20 2009; 41 1976; 25 2021; 124 2015; 71 2010; 105 2015; 74 2019; 204 2011; 11 2019; 202 2020; 122 2024 2001; 45 2009; 318 2012; 12 2014; 61 1998; 86 2003; 98 2011; 110 2004; 32 2020; 8 2017; 30 2013; 17 1990 2013; 55 2022; 81 2021; 158 2019; 67 2016; 43 2014; 14 2019; 114 2016; 154 2024; 67 1998; 93 2010; 5 2022; 127 2022; 232 2022; 475 2021; 49 2023; 13 2023; 55 2019; 6 1979; 14 2023; 12 2012 2011 2010 2013; 45 2018; 102 1995; 55 1985; 80 2006; 18 2007 2016; 165 2024; 167 2011; 37 1985; 89 2016; 59 2012; 107 1996; 11 1963; 140 2011; 106 2021; 11 2018; 194 2023 2022 2021; 137 2019; 46 2022; 8 2023; 156 2006; 47 2015; 110 2022; 12 2020; 115 2019 2017 2016 2022; 10 2022; 54 2023; 118 2013 2008; 40 2012; 115 2017; 543 2012; 88 2022; 148 1994; 51 2016; 9 2020; 29 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 Hammarstrom J. M. (e_1_2_9_43_1) 2019 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Hou Z. Q. (e_1_2_9_48_1) 2004; 20 Han H. (e_1_2_9_44_1) 2019; 46 Kipf T. N. (e_1_2_9_53_1) 2017 e_1_2_9_60_1 Mihalasky M. J. (e_1_2_9_67_1) 2011 Chen Y. (e_1_2_9_17_1) 2022 Lundberg S. M. (e_1_2_9_63_1) 2017 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 Sinclair W. D. (e_1_2_9_82_1) 2007 e_1_2_9_15_1 Dong Y. L. (e_1_2_9_31_1) 2024 e_1_2_9_38_1 e_1_2_9_19_1 Leveille R. A. (e_1_2_9_56_1) 2012 Xiao K. Y. (e_1_2_9_87_1) 2015; 34 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 Bonham‐Carter G. (e_1_2_9_7_1) 1990 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 Bond J. D. (e_1_2_9_6_1) 2010 Chalice Mining Limited (e_1_2_9_12_1) 2023 e_1_2_9_28_1 Hollister V. F. (e_1_2_9_47_1) 1976 e_1_2_9_74_1 Afzal P. (e_1_2_9_2_1) 2010; 55 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 Nelson J. L. (e_1_2_9_69_1) 2013 e_1_2_9_36_1 e_1_2_9_59_1 Vaswani A. (e_1_2_9_85_1) 2017 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_29_1 |
References_xml | – volume: 11 start-page: 321 issue: 4 year: 2011 end-page: 334 article-title: Porphyry Cu indicator minerals in till as an exploration tool: Example from the giant Pebble porphyry Cu‐Au‐Mo deposit, Alaska, USA publication-title: Geochemistry: Exploration, Environment, Analysis – volume: 32 start-page: 1859 issue: 5 year: 2023 end-page: 1869 article-title: A new generation of artificial intelligence algorithms for mineral prospectivity mapping publication-title: Natural Resources Research – start-page: 4768 year: 2017 end-page: 4777 – volume: 55 start-page: 1 issue: 1 year: 2023 end-page: 21 article-title: Graph deep learning model for mapping mineral prospectivity publication-title: Mathematical Geosciences – volume: 106 start-page: 1365 issue: 8 year: 2011 end-page: 1398 article-title: Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion‐centered Cu‐Au district, Luzon, Philippines publication-title: Economic Geology – start-page: 19 year: 2010 end-page: 32 – volume: 156 year: 2023 article-title: Metallogenic prediction based on geological‐model driven and data‐driven multisource information fusion: A case study of gold deposits in Xiong’ershan area, Henan Province, China publication-title: Ore Geology Reviews – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 55 start-page: 43 issue: 1 year: 2013 end-page: 65 article-title: Porphyry copper deposits: Strike‐slip faulting and throttling cupolas publication-title: International Geology Review – volume: 8 issue: 11 year: 2022 article-title: Pyrite mega‐analysis reveals modes of anoxia through geological time publication-title: Science Advances – volume: 51 start-page: 109 issue: 2 year: 1994 end-page: 130 article-title: The separation of geochemical anomalies from background by fractal methods publication-title: Journal of Geochemical Exploration – volume: 49 start-page: 597 issue: 5 year: 2021 end-page: 601 article-title: A new model for the optimal structural context for giant porphyry copper deposit formation publication-title: Geology – volume: 5 start-page: 441 issue: 6 year: 2010 end-page: 450 article-title: Classification in conservation biology: A comparison of five machine‐learning methods publication-title: Ecological Informatics – volume: 88 start-page: 27 year: 2012 end-page: 50 article-title: Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination publication-title: Geochimica et Cosmochimica Acta – volume: 30 year: 2017 – volume: 89 start-page: 317 issue: 4 year: 1985 end-page: 329 article-title: Chemical differences between minerals from mineralizing and barren intrusions from some North American porphyry copper deposits publication-title: Contributions to Mineralogy and Petrology – volume: 67 start-page: 4140 issue: 10 year: 2019 end-page: 4155 article-title: Deep neural network technique for high‐dimensional microwave modeling and applications to parameter extraction of microwave filters publication-title: IEEE Transactions on Microwave Theory and Techniques – volume: 124 year: 2021 article-title: Hydrogeochemistry in the Yukon‐Tanana upland region of east‐central Alaska: Possible exploration tool for porphyry‐style deposits publication-title: Applied Geochemistry – volume: 54 start-page: 593 issue: 3 year: 2022 end-page: 621 article-title: Stochastic modelling of mineral exploration targets publication-title: Mathematical Geosciences – volume: 55 start-page: 799 issue: 6 year: 2023 end-page: 828 article-title: Crucial geochemical signal identification for Cu‐Fertile magmas in Paleo‐Tethyan Arc based on machine learning publication-title: Mathematical Geosciences – start-page: 53 year: 2013 end-page: 109 – volume: 6 start-page: 1 year: 2017 end-page: 2 article-title: Future global mineral resources publication-title: Geochemical Perspectives – volume: 12 issue: 5 year: 2022 article-title: Overview on the development of intelligent methods for mineral resource prediction under the background of geological big data publication-title: Minerals – volume: 74 start-page: 60 year: 2015 end-page: 70 article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines) publication-title: Computers & Geosciences – volume: 59 start-page: 556 issue: 3 year: 2016 end-page: 572 article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn‐type Fe deposits in the southwestern Fujian metallogenic belt, China publication-title: Science China Earth Sciences – volume: 114 start-page: 1095 issue: 6 year: 2019 end-page: 1121 article-title: Porphyry copper potential of the United States Southern Basin and Range using ASTER data integrated with geochemical and geologic datasets to assess potential Near‐Surface Deposits in Well‐Explored permissive tracts publication-title: Economic Geology – volume: 122 year: 2020 article-title: Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China publication-title: Applied Geochemistry – year: 2019 – year: 2022 article-title: Integration of knowledge and data in machine learning publication-title: arXiv preprint – volume: 110 start-page: 857 issue: 4 year: 2015 end-page: 888 article-title: The red Chris porphyry copper‐gold deposit, northern British Columbia, Canada: Igneous phases, alteration, and controls of mineralization publication-title: Economic Geology – volume: 40 start-page: 503 issue: 5 year: 2008 end-page: 532 article-title: Non‐Linear Theory and Power‐Law Models for information integration and mineral resources quantitative assessments publication-title: Mathematical Geosciences – volume: 13 issue: 6 year: 2023 article-title: CNN2D‐SENet‐Based prospecting prediction method: A case study from the Cu deposits in the Zhunuo mineral concentrate area in Tibet publication-title: Minerals – year: 1990 article-title: Weights of evidence modelling: A new approach to mapping mineral potential publication-title: Geology – volume: 12 issue: 7 year: 2022 article-title: Porphyry copper: Revisiting mineral resource assessment predictions for the Andes publication-title: Minerals – volume: 12 start-page: 211 issue: 3 year: 2012 end-page: 226 article-title: An exploration hydrogeochemical study at the giant Pebble porphyry Cu‐Au‐Mo deposit, Alaska, USA, using high resolution ICP‐MS publication-title: Geochemistry: Exploration, Environment, Analysis – volume: 55 start-page: 287 issue: 3 year: 2023 end-page: 293 article-title: Special issue: Data‐driven discovery in geosciences: Opportunities and challenges publication-title: Mathematical Geosciences – volume: 6 start-page: 74 issue: 1 year: 2019 end-page: 86 article-title: Deep forest publication-title: National Science Review – volume: 55 start-page: 105 issue: 1 year: 1995 end-page: 124 article-title: Factor‐analysis and principal components publication-title: Journal of Multivariate Analysis – volume: 43 start-page: 208 year: 2016 end-page: 213 article-title: Deep random forest for Churn prediction publication-title: Journal of Computational Science – volume: 45 start-page: 777 issue: 7 year: 2013 end-page: 798 article-title: The Value of information in mineral exploration within a Multi‐Gaussian framework publication-title: Mathematical Geosciences – volume: 11 issue: 7 year: 2021 article-title: Stream sediment datasets and geophysical anomalies: A recipe for porphyry copper systems identification—The Eastern Papuan Peninsula experience publication-title: Geosciences – volume: 543 start-page: 367 issue: 7645 year: 2017 end-page: 372 article-title: Mineral supply for sustainable development requires resource governance publication-title: Nature – volume: 107 start-page: 599 issue: 4 year: 2012 end-page: 644 article-title: Geochemical evolution of the banded Iron formation‐hosted high‐grade Iron ore system in the Koolyanobbing Greenstone Belt, Western Australia publication-title: Economic Geology – start-page: 128 year: 2011 – volume: 115 start-page: 325 issue: 2 year: 2020 end-page: 354 article-title: White mica geochemistry: Discriminating between barren and mineralized porphyry systems publication-title: Economic Geology – volume: 47 start-page: 119 issue: 1 year: 2006 end-page: 144 article-title: Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization publication-title: Journal of Petrology – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 article-title: Gradient‐based learning applied to document recognition publication-title: Proceedings of the IEEE – volume: 71 start-page: 804 year: 2015 end-page: 818 article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geology Reviews – volume: 20 start-page: 239 year: 2004 end-page: 248 article-title: Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen publication-title: Acta Petrologica Sinica – volume: 41 start-page: 421 issue: 4 year: 2009 end-page: 446 article-title: Deriving optimal exploration target zones on mineral prospectivity maps publication-title: Mathematical Geosciences – volume: 8 start-page: 49090 year: 2020 end-page: 49099 article-title: Deep Forest regression for Short‐Term load forecasting of power systems publication-title: IEEE Access – volume: 55 start-page: 389 year: 2010 end-page: 401 article-title: Application of power spectrum‐area fractal model to separate anomalies from background in Kahang Cu‐Mo porphyry system, Central Iran publication-title: Archives of Mining Sciences – volume: 67 start-page: 2864 issue: 9 year: 2024 end-page: 2875 article-title: Explainable artificial intelligence models for mineral prospectivity mapping publication-title: Science China Earth Sciences – volume: 204 start-page: 12 year: 2019 end-page: 32 article-title: Modeling geochemical anomalies of stream sediment data through a weighted drainage catchment basin method for detecting porphyry Cu‐Au mineralization publication-title: Journal of Geochemical Exploration – volume: 232 year: 2022 article-title: Geological mapping of basalt using stream sediment geochemical data: Case study of covered areas in Jining, Inner Mongolia, China publication-title: Journal of Geochemical Exploration – volume: 55 start-page: 963 issue: 7 year: 2023 end-page: 987 article-title: Projection pursuit random forest for mineral prospectivity mapping publication-title: Mathematical Geosciences – volume: 11 start-page: 303 issue: 5 year: 1996 end-page: 338 article-title: Mineralogy of the sulphide deposits at Sulitjelma, northern Norway publication-title: Ore Geology Reviews – volume: 110 start-page: 167 issue: 2 year: 2011 end-page: 185 article-title: Analysis and mapping of geochemical anomalies using logratio‐transformed stream sediment data with censored values publication-title: Journal of Geochemical Exploration – volume: 37 start-page: 1967 issue: 12 year: 2011 end-page: 1975 article-title: Support vector machine: A tool for mapping mineral prospectivity publication-title: Computers and Geotechnics – year: 2024 – volume: 102 start-page: 811 year: 2018 end-page: 817 article-title: Mapping mineral prospectivity through big data analytics and a deep learning algorithm publication-title: Ore Geology Reviews – volume: 167 year: 2024 article-title: CNN‐transformers for mineral prospectivity mapping in the Maodeng–Baiyinchagan area, Southern Great Xing'an Range publication-title: Ore Geology Reviews – volume: 9 issue: 10 year: 2016 article-title: Performing the power spectrum‐area method to separate anomaly from background for induced polarization data: (A case study; Hamyj copper deposit, Iran) publication-title: Arabian Journal of Geosciences – volume: 110 start-page: 1995 issue: 8 year: 2015 end-page: 2023 article-title: Structural evolution of the Rio Blanco‐Los Bronces District, Andes of Central Chile: Controls on stratigraphy, magmatism, and mineralization publication-title: Economic Geology – volume: 17 year: 2013 – volume: 14 start-page: 353 issue: 3 year: 1979 end-page: 374 article-title: A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems ‐ Evidences from southern Tuscany pyritic deposits publication-title: Mineralium Deposita – volume: 137 year: 2021 article-title: Predicting the emplacement of Cordilleran porphyry copper systems using a spatio‐temporal machine learning model publication-title: Ore Geology Reviews – volume: 158 start-page: 1 year: 2021 end-page: 12 article-title: Subduction zone processes and crustal growth mechanisms at Pacific Rim convergent margins: Modern and ancient analogues publication-title: Geological Magazine – volume: 34 start-page: 1266 year: 2015 end-page: 1272 article-title: Mineral resources assessment under the thought of big data publication-title: Geological Bulletin of China – start-page: 2921 year: 2016 end-page: 2929 – volume: 165 start-page: 111 year: 2016 end-page: 124 article-title: Recognition of significant multi‐element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran publication-title: Journal of Geochemical Exploration – volume: 12 issue: 14 year: 2023 article-title: A review on Dropout regularization approaches for Deep Neural Networks within the scholarly domain publication-title: Electronics – volume: 202 start-page: 13 year: 2019 end-page: 26 article-title: A multivariate statistical approach identifying the areas underlain by potential porphyry‐style Cu mineralization, south‐central British Columbia, Canada publication-title: Journal of Geochemical Exploration – volume: 127 issue: 8 year: 2022 article-title: Application of machine learning to characterizing magma fertility in porphyry Cu deposits publication-title: Journal of Geophysical Research: Solid Earth – volume: 194 start-page: 167 year: 2018 end-page: 188 article-title: Machine learning strategies for classification and prediction of alteration facies: Examples from the Rosemont Cu‐Mo‐Ag skarn deposit, SE Tucson Arizona publication-title: Journal of Geochemical Exploration – volume: 148 year: 2022 article-title: Siamese network based prospecting prediction method: A case study from the Au deposit in the Chongli mineral concentrate area in Zhangjiakou, Hebei Province, China publication-title: Ore Geology Reviews – volume: 93 start-page: 138 issue: 2 year: 1998 end-page: 170 article-title: Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits publication-title: Economic Geology – volume: 25 start-page: 509 year: 1976 end-page: 514 – volume: 318 start-page: 273 issue: 1 year: 2009 end-page: 307 article-title: A Palaeozoic Northwest Passage: Incursion of Caledonian, Baltican and Siberian terranes into eastern Panthalassa, and the early evolution of the North American Cordillera publication-title: Geological Society, London, Special Publications – volume: 118 start-page: 411 issue: 2 year: 2023 end-page: 431 article-title: Stream sediment indicator mineral signatures of the Casino porphyry Cu‐Au‐Mo deposit, Yukon, Canada publication-title: Economic Geology – volume: 80 start-page: 1328 issue: 5 year: 1985 end-page: 1347 article-title: Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit publication-title: Economic Geology – volume: 32 start-page: 13 issue: 1 year: 2004 end-page: 45 article-title: Evolution of the north American Cordillera publication-title: Annual Review of Earth and Planetary Sciences – volume: 10 issue: 5 year: 2022 article-title: Novel ensemble tree solution for rockburst prediction using Deep Forest publication-title: Mathematics – start-page: 361 year: 2012 end-page: 401 – volume: 61 start-page: 5 issue: 1 year: 2014 end-page: 16 article-title: Distinctive composition of copper‐ore‐forming arcmagmas publication-title: Australian Journal of Earth Sciences – volume: 105 start-page: 3 issue: 1 year: 2010 end-page: 41 article-title: Porphyry copper systems publication-title: Economic Geology – volume: 2019 start-page: 1 year: 2019 end-page: 4 article-title: The geological characteristics, geochemical signature and geophysical expression of porphyry copper‐ (gold) deposits in the circum‐Pacific region publication-title: ASEG Extended Abstracts – volume: 46 start-page: 172 year: 2019 end-page: 179 article-title: Text sentiment classification based on deep forests with enhanced features publication-title: Journal of Computational Science – start-page: 59 year: 2023 – volume: 29 start-page: 3415 issue: 6 year: 2020 end-page: 3424 article-title: Geodata science‐based mineral prospectivity mapping: A review publication-title: Natural Resources Research – volume: 59 issue: 7 year: 2016 article-title: Dropout rademacher complexity of deep neural networks publication-title: Science China Information Sciences – volume: 61 start-page: 120 year: 2014 end-page: 140 article-title: Data fusion and porphyry copper prospectivity models, southeastern Arizona publication-title: Ore Geology Reviews – volume: 98 start-page: 1515 issue: 8 year: 2003 end-page: 1533 article-title: Tectono‐magmatic precursors for porphyry Cu‐ (Mo‐Au) deposit formation publication-title: Economic Geology – volume: 154 start-page: 191 year: 2016 end-page: 209 article-title: Terrane wrecks (coupled oroclines) and paleomagnetic inclination anomalies publication-title: Earth‐Science Reviews – volume: 81 start-page: 33185 issue: 23 year: 2022 end-page: 33203 article-title: Deep Metallogenic prediction model construction of the Xiongcun no. II orebody based on the DNN algorithm publication-title: Multimedia Tools and Applications – volume: 475 start-page: 112 year: 2022 end-page: 122 article-title: DBC‐Forest: Deep forest with binning confidence screening publication-title: Neurocomputing – volume: 140 start-page: 143 issue: 3563 year: 1963 end-page: 152 article-title: Geologic evolution of North America publication-title: Science – start-page: 223 year: 2007 end-page: 243 – volume: 115 start-page: 24 year: 2012 end-page: 35 article-title: Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping publication-title: Journal of Geochemical Exploration – year: 2017 – volume: 14 start-page: 45 issue: 1 year: 2014 end-page: 58 article-title: Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping publication-title: Geochemistry: Exploration, Environment, Analysis – volume: 18 start-page: 1527 issue: 7 year: 2006 end-page: 1554 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation – ident: e_1_2_9_37_1 doi: 10.1016/j.gexplo.2019.05.003 – volume-title: Assessment of undiscovered copper resources of the world, 2015 (ver. 1.2, December 2021) year: 2019 ident: e_1_2_9_43_1 – ident: e_1_2_9_40_1 doi: 10.1080/22020586.2019.12073248 – ident: e_1_2_9_11_1 doi: 10.1016/j.cageo.2014.10.004 – volume-title: Advances in neural information processing systems year: 2017 ident: e_1_2_9_85_1 – ident: e_1_2_9_50_1 doi: 10.1016/j.ecoinf.2010.06.003 – ident: e_1_2_9_61_1 doi: 10.1016/j.oregeorev.2014.02.001 – ident: e_1_2_9_86_1 doi: 10.1093/petrology/egi070 – ident: e_1_2_9_45_1 doi: 10.1007/BF00381554 – volume-title: Bliment/DF_NA: v1.0.0 year: 2024 ident: e_1_2_9_31_1 – ident: e_1_2_9_38_1 doi: 10.1007/s12517‐016‐2587‐3 – ident: e_1_2_9_28_1 doi: 10.1017/S0016756820001326 – ident: e_1_2_9_20_1 doi: 10.1080/00206814.2012.728699 – ident: e_1_2_9_22_1 doi: 10.1144/SP318.10 – ident: e_1_2_9_88_1 doi: 10.1016/j.oregeorev.2018.10.006 – ident: e_1_2_9_39_1 doi: 10.1007/s11432‐015‐5470‐z – ident: e_1_2_9_93_1 doi: 10.1007/s11042‐022‐13143‐0 – volume: 20 start-page: 239 year: 2004 ident: e_1_2_9_48_1 article-title: Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen publication-title: Acta Petrologica Sinica – ident: e_1_2_9_89_1 doi: 10.11896/j.issn.1002‐137X.2016.06.042 – ident: e_1_2_9_24_1 doi: 10.1016/j.gca.2012.04.032 – ident: e_1_2_9_60_1 doi: 10.3390/min12050616 – ident: e_1_2_9_26_1 doi: 10.1016/j.oregeorev.2021.104300 – ident: e_1_2_9_21_1 doi: 10.5382/SP.17 – ident: e_1_2_9_46_1 doi: 10.1162/neco.2006.18.7.1527 – ident: e_1_2_9_78_1 doi: 10.3390/electronics12143106 – ident: e_1_2_9_36_1 doi: 10.1016/j.oregeorev.2023.105390 – start-page: 509 volume-title: Circum‐pacific energy and mineral resources year: 1976 ident: e_1_2_9_47_1 – ident: e_1_2_9_5_1 doi: 10.7185/geochempersp.6.1 – ident: e_1_2_9_33_1 doi: 10.1126/sciadv.abj5687 – year: 1990 ident: e_1_2_9_7_1 article-title: Weights of evidence modelling: A new approach to mapping mineral potential publication-title: Geology – ident: e_1_2_9_62_1 doi: 10.1080/08120099.2013.865676 – ident: e_1_2_9_92_1 doi: 10.1144/geochem2012‐144 – ident: e_1_2_9_52_1 doi: 10.1016/j.apgeochem.2020.104821 – ident: e_1_2_9_91_1 doi: 10.1016/j.gexplo.2012.02.002 – ident: e_1_2_9_64_1 doi: 10.1016/j.neucom.2021.12.075 – ident: e_1_2_9_3_1 doi: 10.1038/nature21359 – volume: 46 start-page: 172 year: 2019 ident: e_1_2_9_44_1 article-title: Text sentiment classification based on deep forests with enhanced features publication-title: Journal of Computational Science – ident: e_1_2_9_101_1 doi: 10.1007/s11430‐024‐1309‐9 – ident: e_1_2_9_30_1 doi: 10.3390/min13060730 – ident: e_1_2_9_4_1 doi: 10.2113/econgeo.107.4.599 – ident: e_1_2_9_71_1 doi: 10.1016/j.gexplo.2016.03.009 – ident: e_1_2_9_72_1 doi: 10.1130/G48287.1 – start-page: 223 volume-title: Mineral deposits of Canada: A synthesis of major deposit‐types, District Metallogeny, the evolution of geological provinces, and exploration methods, geological association of Canada, mineral deposits division, special publication, Canada, Newfoundland year: 2007 ident: e_1_2_9_82_1 – start-page: 361 volume-title: Geology and genesis of major copper deposits and districts of the world: A tribute to richard H. Sillitoe year: 2012 ident: e_1_2_9_56_1 – ident: e_1_2_9_23_1 doi: 10.1016/S0169‐1368(96)00009‐1 – ident: e_1_2_9_27_1 doi: 10.1146/annurev.earth.32.101802.120257 – ident: e_1_2_9_94_1 doi: 10.1007/s11004‐023‐10055‐z – ident: e_1_2_9_96_1 doi: 10.1109/CVPR.2016.319 – ident: e_1_2_9_59_1 doi: 10.1016/j.apgeochem.2020.104747 – start-page: 53 volume-title: Tectonics, Metallogeny, and discovery: The North American Cordillera and similar accretionary settings year: 2013 ident: e_1_2_9_69_1 – ident: e_1_2_9_74_1 doi: 10.2113/econgeo.110.4.857 – ident: e_1_2_9_18_1 doi: 10.1007/s11004‐008‐9172‐6 – ident: e_1_2_9_84_1 doi: 10.5382/econgeo.4706 – ident: e_1_2_9_42_1 doi: 10.3390/min12070856 – ident: e_1_2_9_95_1 doi: 10.1007/s11430‐015‐5178‐3 – ident: e_1_2_9_10_1 doi: 10.1016/j.gexplo.2011.05.007 – ident: e_1_2_9_76_1 doi: 10.2113/gsecongeo.98.8.1515 – ident: e_1_2_9_55_1 doi: 10.1109/5.726791 – ident: e_1_2_9_13_1 doi: 10.2113/econgeo.106.8.1365 – ident: e_1_2_9_73_1 doi: 10.2113/econgeo.110.8.1995 – ident: e_1_2_9_41_1 doi: 10.1016/j.gexplo.2021.106888 – ident: e_1_2_9_49_1 doi: 10.1109/TMTT.2019.2932738 – ident: e_1_2_9_79_1 doi: 10.1006/jmva.1995.1069 – ident: e_1_2_9_77_1 doi: 10.1016/j.oregeorev.2015.01.001 – ident: e_1_2_9_97_1 doi: 10.1093/nsr/nwy108 – ident: e_1_2_9_25_1 doi: 10.1007/s11004‐008‐9181‐5 – start-page: 19 volume-title: Surficial geology, soils and permafrost of the northern Dawson Range year: 2010 ident: e_1_2_9_6_1 – ident: e_1_2_9_34_1 doi: 10.1126/science.140.3563.143 – volume: 34 start-page: 1266 year: 2015 ident: e_1_2_9_87_1 article-title: Mineral resources assessment under the thought of big data publication-title: Geological Bulletin of China – ident: e_1_2_9_102_1 doi: 10.1007/s11053‐023‐10237‐w – ident: e_1_2_9_99_1 doi: 10.1007/s11053‐020‐09700‐9 – ident: e_1_2_9_35_1 doi: 10.1144/1467‐7873/11‐RA‐070 – ident: e_1_2_9_9_1 doi: 10.1023/A:1010933404324 – volume-title: International Conference on Learning Representations (ICLR) year: 2017 ident: e_1_2_9_53_1 – ident: e_1_2_9_80_1 doi: 10.1016/j.earscirev.2016.01.003 – ident: e_1_2_9_14_1 doi: 10.1007/s11004‐023‐10054‐0 – ident: e_1_2_9_83_1 doi: 10.1007/s11004‐021‐09989‐z – ident: e_1_2_9_32_1 doi: 10.1007/s11004‐013‐9457‐2 – ident: e_1_2_9_57_1 doi: 10.1016/j.oregeorev.2024.106007 – ident: e_1_2_9_100_1 doi: 10.1016/j.cageo.2010.09.014 – ident: e_1_2_9_51_1 doi: 10.1144/1467‐7873/10‐IM‐041 – ident: e_1_2_9_19_1 doi: 10.1016/0375‐6742(94)90013‐2 – ident: e_1_2_9_75_1 doi: 10.2113/gsecongeo.80.5.1328 – ident: e_1_2_9_16_1 doi: 10.1016/j.gexplo.2019.03.016 – start-page: 59 volume-title: Australian Securities Exchange (ASX) Announcement year: 2023 ident: e_1_2_9_12_1 – ident: e_1_2_9_103_1 doi: 10.1007/s11004‐022‐10015‐z – volume: 55 start-page: 389 year: 2010 ident: e_1_2_9_2_1 article-title: Application of power spectrum‐area fractal model to separate anomalies from background in Kahang Cu‐Mo porphyry system, Central Iran publication-title: Archives of Mining Sciences – year: 2022 ident: e_1_2_9_17_1 article-title: Integration of knowledge and data in machine learning publication-title: arXiv preprint – ident: e_1_2_9_8_1 doi: 10.1007/bf00206365 – ident: e_1_2_9_90_1 doi: 10.1109/ACCESS.2020.2979686 – ident: e_1_2_9_15_1 doi: 10.1007/s11004‐023‐10070‐0 – ident: e_1_2_9_68_1 doi: 10.3390/geosciences11070299 – ident: e_1_2_9_70_1 doi: 10.1016/j.gexplo.2018.07.020 – ident: e_1_2_9_98_1 doi: 10.1029/2022JB024584 – ident: e_1_2_9_58_1 doi: 10.3390/math10050787 – ident: e_1_2_9_65_1 doi: 10.5382/econgeo.4675 – start-page: 128 volume-title: Porphyry copper assessment of British Columbia and Yukon Territory, Canada year: 2011 ident: e_1_2_9_67_1 – ident: e_1_2_9_54_1 doi: 10.2113/gsecongeo.93.2.138 – start-page: 4768 volume-title: Proceedings of the 31st International Conference on Neural Information Processing Systems year: 2017 ident: e_1_2_9_63_1 – ident: e_1_2_9_66_1 doi: 10.5382/econgeo.4970 – ident: e_1_2_9_29_1 doi: 10.1016/j.oregeorev.2022.105024 – ident: e_1_2_9_81_1 doi: 10.2113/gsecongeo.105.1.3 |
SSID | ssj0003320807 |
Score | 2.27599 |
Snippet | Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence and big... Abstract Accurate mineral prediction is crucial for reducing costs and uncertainties in mineral discovery and extraction. The use of artificial intelligence... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | Cordillera metallogenic belt Deep Forest deep learning mineral prospectivity mapping porphyry copper |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-iqFhf7EEPIsHsI7uJt_qopRARsdCLhH2lCCUtNf5_dzaxtgf14jUZsmG-JPMtmfk-hM6gikgrSGSpSCNuExGlytiImgzmdjVjDgaF80cxGPHhOBmvWH1BT1gjD9wk7sqAIliqU03ikicsVoY4lThqE-aYDn611Ne8lc0UfIMZo54KybbTPaYZbPL5cACnCFmrQUGqf52ahtrS30ZbLSnEveZmdtCGq3bR651zcwzWme81BssyGBy_xr0KfzcK6qnDIayVSZ3gPDhCY09Fcf4WFKXx02LWzlN6xo1zBYoMkz006t-_3A6i1gwhMv6VExExXDgXl5JqBoousSFaGJUSoRX8OnOclaXnIr4-W2OYtNRxzYWR3KMglWD7qFPNKneAsDQyja31cKSGK06yTAmjE1_LPRfzjKCLLr_SU5hWKRwMK6ZF-GNNs2I1mV10voyeNwoZP8TdQKaXMaBrHQ54tIsW7eIvtLvoIuD060rF8OGZCHH4HwseoU24dNPAcow69eLDnXgaUuvT8MR9AkFk1Lw priority: 102 providerName: Directory of Open Access Journals |
Title | Deep Forest Modeling: An Interpretable Deep Learning Method for Mineral Prospectivity Mapping |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000311 https://doaj.org/article/c42838b8b10f4530ac1ea5e2d53e3b13 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iFy-iqFgfJQc9iCxuHpvdeqvaWgorRSz0IkteW4SyLW29-tvNZGNtDwpe9hCGLGR2dr4k832D0CVkkdQIEhkqsoibRESZ1CaiugW8XcWYBaJw_ix6Q94fJaNw4AZcmFofYnXgBpHh_9cQ4FItgtgAaGS6XTvv9wDTA7V3B9i1UNJH-WB1xsIYjWvGNIUyNZep4lD77qa4XZ9gIyt58f5NsOqzTXcf7QWYiNu1Xw_Qlq0O0dujtTMMzTQXSwxNzIBKfofbFf4pHVQTi71ZEE4d49z3iMYOnOL83WtM48F8GhiWDoPjXIJGw_gIDbud14deFNojRNoFoYiI5sLauEypYqDxEmuihJYZEUrCZZrlrCwdOnEZ22jNUkMtV1zolDu_pFKwY7RdTSt7gnCq0yw2xjko01xy0mpJoVXisrtDZw4jNNDN9_IUOmiHQwuLSeHvsGmrWF_MBrpaWc9qzYxf7O5hpVc2oHTtB6bzcRECp9CgCJepTJG45AmLpSZWJpaahFmmCGuga--nP99U9J9eiBCn_7A9Q7swWleunKPt5fzDXjj8sVRN_5E1_e7dPfPPzhfbqdAA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kHvQiior1uQc9iASzj2xSb_VZa1OKtNCLhH21CKUttf5_dzZrbQ8KXsOQwE4m82V3vu9D6By6SGoEiQwVWcRNIqJMahNRXQPermLMAlE4b4tGjzf7ST_4nAIXptSHWGy4QWX47zUUOGxIB7UBEMl0v-282QBQD9zedS5oChYGlHcWmyyM0bikTFOYU3OtKg7D7-4W18s3WGlLXr1_Fa36dvO4jbYCTsT1MrE7aM2Od9HbvbVTDG6aH3MMLmbAJb_B9TH-mR1UI4t9WFBOHeLcm0Rjh05x_u5FpnFnNgkUSwfCcS5BpGG4h3qPD927RhT8ESLtqlBERHNhbTxIqWIg8hJrooSWGRFKwmma5WwwcPDEtWyjNUsNtVxxoVPuEpNKwfZRZTwZ2wOEU51msTEuQ5nmkpNaTQqtEtfeHTxzIKGKrr6Xp9BBPBw8LEaFP8SmtWJ5MavoYhE9LUUzfom7hZVexIDUtb8wmQ2LUDmFBkm4TGWKxAOesFhqYmViqUmYZYqwKrr0efrzSUXz6ZUIcfiP2DO00ejmraL13H45QpsQUY6xHKPKfPZpTxwYmatT_8J9AV9N0UY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQbyIomJ95qAHkcXNY7Nbb9Vaa7WliIVeZMlri1DaUuv_N5ONtT0oeF2GLMzsZL5N5vsGoXOoIqkRJDJUZBE3iYgyqU1EdQ14u4oxC0ThTle0-rw9SAbhwA24MKU-xOLADTLD79eQ4FNTBLEB0Mh0f-283QJMD9Tedbjvg5YuynuLMxbGaFwypim0qblKFYfed7fE9fICK1XJi_evglVfbZrbaCvARFwv47qD1ux4F701rJ1iGKb5MccwxAyo5De4PsY_rYNqZLE3C8KpQ9zxM6KxA6e48-41pnFvNgkMS4fBcUeCRsNwD_Wb9693rSiMR4i0S0IREc2FtXGRUsVA4yXWRAktMyKUhMs0y1lROHTiKrbRmqWGWq640Cl3cUmlYPuoMp6M7QHCqU6z2BgXoExzyUmtJoVWiavuDp05jFBFV9_uyXXQDocRFqPc32HTWr7szCq6WFhPS82MX-xuwdMLG1C69g8ms2EeEifXoAiXqUyRuOAJi6UmViaWmoRZpgiroksfpz_flLcfXogQh_-wPUMbvUYzf37sPh2hTTAom1iOUWU--7QnDorM1an_3r4ARSPQeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Forest+Modeling%3A+An+Interpretable+Deep+Learning+Method+for+Mineral+Prospectivity+Mapping&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Dong%2C+Yue%E2%80%90Lin&rft.au=Zhang%2C+Zhen%E2%80%90Jie&rft.date=2024-12-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000311&rft.externalDBID=10.1029%252F2024JH000311&rft.externalDocID=JGR166 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |