Deep Learning-Based AI-Assisted Visual Inspection Systems for Historic Buildings and their Comparative Performance with ChatGPT-4O
Historical buildings and monuments are typically subject to degradation over time due to the passage of time and constant exposure to external agents. The use of artificial intelligence (AI) to support the work of conservation and restoration specialists in identifying surface decay is a research to...
Saved in:
Published in | International archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLVIII-2/W8-2024; pp. 327 - 334 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Gottingen
Copernicus GmbH
14.12.2024
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Historical buildings and monuments are typically subject to degradation over time due to the passage of time and constant exposure to external agents. The use of artificial intelligence (AI) to support the work of conservation and restoration specialists in identifying surface decay is a research topic of considerable interest at present. This study presents two approaches: ChatGPT and an object detection architecture (YOLOv5). Specifically, this investigation sought to evaluate the ChatGPT’s ability to identify and describe surface degradation pathologies by exploiting its pre-trained models for image analysis. The ICOMOS-ISCS: Illustrated Glossary on Stone Deterioration Patterns (2008) was provided as a reference to guide the use of specific terminology. In the first test phase, to verify the accuracy of the ChatGPT results, benchmark images (depicting different types of damage) extracted from the UNI 11182 (2006) standard referring to the definition of degradation types were used. Only later were images from literature studies and other photographic datasets also used. In general, the results of the analysis were validated with the conclusions of professionals and with the conclusions of other AI techniques, as well as with the descriptions provided by reference manuals in the literature. In particular, the decay annotations predicted by the pre-trained object detection model were compared with those made by human experts. The capabilities and limitations of both approaches as tools for identifying deterioration pathologies are illustrated. |
---|---|
AbstractList | Historical buildings and monuments are typically subject to degradation over time due to the passage of time and constant exposure to external agents. The use of artificial intelligence (AI) to support the work of conservation and restoration specialists in identifying surface decay is a research topic of considerable interest at present. This study presents two approaches: ChatGPT and an object detection architecture (YOLOv5). Specifically, this investigation sought to evaluate the ChatGPT's ability to identify and describe surface degradation pathologies by exploiting its pre-trained models for image analysis. The ICOMOS-ISCS: Illustrated Glossary on Stone Deterioration Patterns (2008) was provided as a reference to guide the use of specific terminology. In the first test phase, to verify the accuracy of the ChatGPT results, benchmark images (depicting different types of damage) extracted from the UNI 11182 (2006) standard referring to the definition of degradation types were used. Only later were images from literature studies and other photographic datasets also used. In general, the results of the analysis were validated with the conclusions of professionals and with the conclusions of other AI techniques, as well as with the descriptions provided by reference manuals in the literature. In particular, the decay annotations predicted by the pre-trained object detection model were compared with those made by human experts. The capabilities and limitations of both approaches as tools for identifying deterioration pathologies are illustrated. |
Author | Mea, Chiara Previtali, Mattia Mishra, Mayank Fiorillo, Fausta Barazzetti, Luigi Zhang, Kai Fassi, Francesco |
Author_xml | – sequence: 1 givenname: Mayank surname: Mishra fullname: Mishra, Mayank – sequence: 2 givenname: Kai orcidid: 0009-0000-6205-0183 surname: Zhang fullname: Zhang, Kai – sequence: 3 givenname: Chiara surname: Mea fullname: Mea, Chiara – sequence: 4 givenname: Luigi surname: Barazzetti fullname: Barazzetti, Luigi – sequence: 5 givenname: Francesco orcidid: 0000-0001-6555-8310 surname: Fassi fullname: Fassi, Francesco – sequence: 6 givenname: Fausta surname: Fiorillo fullname: Fiorillo, Fausta – sequence: 7 givenname: Mattia surname: Previtali fullname: Previtali, Mattia |
BookMark | eNpNkU9vEzEQxVeoSJTS72CJs8F_d9fHNECzUqRWorTcrFl7tnGUrBd7U9Qrnxw3AcRp3thPb570e1udjXHEqmKcfdDcqI8hTylTSG4TnjDT7-v7ruuooA8tFUwoKkVzFK-qc1H81DCpzv7Tb6rLnLeMMa7qWjN9Xv36hDiRNUIaw_hIryCjJ4uOLnIOeS76PuQD7Eg35gndHOJIvj6Xj30mQ0xkVUwxBUeuDmHnS0ImMHoybzAksoz7CRLMpSu5xVT8exgdkp9h3pDlBubr2zuqbt5VrwfYZbz8My-qb18-3y1XdH1z3S0Xa-qE0Iq6QfWNQ_RQt00LouxKDQCtVMZJZK3X6A2a1vtaAwzgsRG1MtwgcDAoL6rulOsjbO2Uwh7Ss40Q7PEhpkcLaQ5uh5Yro5u-1yVKKm2kcaCByd5I2TctVyXr_SlrSvHHAfNst_GQxlLfSq6UbEtHVlyrk8ulmHPC4d9VzuwLUHsEav8CtSegVtiH1r5wtAXoUcjfK52e4g |
ContentType | Journal Article Conference Proceeding |
Copyright | 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ L.G L6V M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.5194/isprs-archives-XLVIII-2-W8-2024-327-2024 |
DatabaseName | CrossRef Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 2194-9034 |
EndPage | 334 |
ExternalDocumentID | oai_doaj_org_article_14957bb5dd6345939ca5a03b933b7814 10_5194_isprs_archives_XLVIII_2_W8_2024_327_2024 |
GroupedDBID | 8FE 8FG 8FH AAFWJ AAYXX ABJCF ACIWK ADBBV AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TUS 7TN ABUWG AZQEC DWQXO F1W H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c2254-cf4b7ceeda6878a2cf444faa8349c3e08d5ed9e98dd65aafade7264919ea1a9e3 |
IEDL.DBID | BENPR |
ISSN | 2194-9034 1682-1750 |
IngestDate | Wed Aug 27 01:22:34 EDT 2025 Fri Jul 25 09:23:51 EDT 2025 Thu Jul 24 04:56:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2254-cf4b7ceeda6878a2cf444faa8349c3e08d5ed9e98dd65aafade7264919ea1a9e3 |
Notes | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
ORCID | 0009-0000-6205-0183 0000-0001-6555-8310 |
OpenAccessLink | https://www.proquest.com/docview/3144386870?pq-origsite=%requestingapplication% |
PQID | 3144386870 |
PQPubID | 2037674 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_14957bb5dd6345939ca5a03b933b7814 proquest_journals_3144386870 crossref_primary_10_5194_isprs_archives_XLVIII_2_W8_2024_327_2024 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-14 |
PublicationDateYYYYMMDD | 2024-12-14 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Gottingen |
PublicationPlace_xml | – name: Gottingen |
PublicationTitle | International archives of the photogrammetry, remote sensing and spatial information sciences. |
PublicationYear | 2024 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
SSID | ssj0001466505 |
Score | 2.3281689 |
Snippet | Historical buildings and monuments are typically subject to degradation over time due to the passage of time and constant exposure to external agents. The use... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 327 |
SubjectTerms | Agents (artificial intelligence) Annotations Artificial intelligence Chatbots Decay Deep learning Deterioration Historic buildings & sites Historical buildings Image analysis Image degradation Machine learning Object recognition Visual inspection |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTsQgFCXGhdGF8RnHV1i4JbYFWljOjI-p8bVQZ3YECqNu6mQ68wN-uRfK-IgLN-4oaWnDuXDPpZcDQieZ5toYzolxRhJmTUWE8Np4heFaJhVPc793-OY2HzyyqxEffTvqy-eEtfLAbcedegZfQGvW5pRxSWUFrSfUQCBuvFyTn33B530LpsLqCsuBevj8xTQHCgk-MllBPo0LCAs7fW0m04boKO1KRtdPZVmSjAy90WSM0KwIhR--Kkj6_5qxgxu62EDrkT_ibvvdm2jJ1Vto7em1mbe1zTZ6P3NugqNw6jPpgZ-yuFsSQMJjanG8u6zbbZZvNY665RgYLF4Ih-BePDG7wbq2OPxRwP0vsXB8_7XnAPvlXNx_0bPL-wfC7nbQ48X5Q39A4lELpIIBzUg1Zqbw_lLnohA6g2vGxloLymRFXSIsd1Y6KQAGrvVYW1cAlZKpdDrV0tFdtFy_1W4P4coWVUJFYiS0kUkmqM2TYpxKDiACf-mg7qJT1aRV1FAQiXhgVABGLYBRLTAqU0OhPB4KgAmFDup5ND6f9xrZoQIsR0XLUX9ZTgcdLrBUceA2ikKASQV0QrL_H-84QKvBosD6U3aIlmfTuTsCFjMzx8FgPwC8nO2M priority: 102 providerName: Directory of Open Access Journals |
Title | Deep Learning-Based AI-Assisted Visual Inspection Systems for Historic Buildings and their Comparative Performance with ChatGPT-4O |
URI | https://www.proquest.com/docview/3144386870 https://doaj.org/article/14957bb5dd6345939ca5a03b933b7814 |
Volume | XLVIII-2/W8-2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JTxsxFLYKSFU5daFqWoh86NViZmzP2KcqSQlM1dKoYsnN8hZAqiYhE_4Av5xnx8MIVerNs8ry9-y32O97CH0tNNfGcE6MN5IwZywRInDjVYZrmVmelyF3-Nd5eXbJfsz5PAXc2nSsslsT40LtljbEyI8pWP5UlCBe31b3JFSNCrurqYTGDtqDJViA87U3Pjmf_emjLKwEEyScY8xLMCVBV2avUTjOBYYLO75rV-uW6ETxSuY_r-q6JgW5DsJTMEKLKjZe6KxI7f_Pyh3V0fQtOugT9fDsWQW9Q6988x7tX921D_ovHq037Qf0-N37FU40qjdkDFrL4VFNAJeAsMPp7brZJl0uG5xYzDHYs7ijEcHjVD-7xbpxOO4v4ElPHY5nfQYCDsFdPLnVm9PZBWG_D9Dl9ORickZS4QViYXozYhfMVKHrGsZb6AKuGVtoLSiTlvpMOO6d9FI4V3KtF9r5CgwrmUuvcy09_Yh2m2XjPyFsXWUzKjIj4R-FZIK6MqsWueSGO7BmBmjUDa1abfk1FPglAR4V4VEdPGoLjyrUtVABFQXwxMYAjQMmz98Hxux4Y7m-UWkCquAJViCV0GXKuKTSgpRm1EhKTaD9GqDDDlGVpnGreqH7_P_HX9CbKDEg5Tk7RLub9YM_AmtlY4ZoR0xPh0kwh9HnfwIFx-uv |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkXiceBQRKOADHK3uru1d-4BQkpJmaVpySNvcjF8pldAmZFMhrvwgfiNjZ7crhMStt31aq_2-8Ywf8w1CbzPNtTGcE-ONJMwZS4QI2niF4Vomlqd5yB0-Oc3HZ-zTnM930O82FyZsq2z7xNhRu6UNc-QHFCJ_KnKg14fVdxKqRoXV1baExpYWx_7nDxiy1e_LQ8D3XZaNPs6GY9JUFSAWuMuIXTBTBNegoTGhMzhnbKG1oExa6hPhuHfSS-FczrVeaOcLiBpkKr1OtfQU2r2D7jJKZbAoMTrq5nRYDgFP2DWZ5hC4gmdO7qGweQzCJHZwVa_WNdGNoCyZT87LsiQZuQhUzRihWREP_vKQsZDAP34iOr_RI7TXpQXi6Y3De4x2fPUEPTy_qq_1N9xfb-qn6Neh9yvciLZekgH4SIf7JQEWBD453DxdVtsUz2WFG810DNEzbkVL8KCp1l1jXTkcVzPwsBMqx9Mu3wGHqWQ8_Ko3R9MZYZ_30NmtAPIM7VbLyj9H2LrCJlQkRkIbmWSCujwpFqnkhjuInXqo3_5atdqqeSgYBQV4VIRHtfCoLTwqUxdCBVQUwBMPemgQMLl5P-hzxwvL9aVqzF2FcWcBNgCfTBmXVFqwiYQaSakJImM9tN8iqppOo1YdxV_8__YbdH88O5moSXl6_BI9iOwB-0rZPtrdrK_9K4iTNuZ1JCdGX27bGv4ASdkn3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.atitle=Deep+Learning-Based+AI-Assisted+Visual+Inspection+Systems+for+Historic+Buildings+and+their+Comparative+Performance+with+ChatGPT-4O&rft.au=Mishra%2C+Mayank&rft.au=Zhang%2C+Kai&rft.au=Mea%2C+Chiara&rft.au=Barazzetti%2C+Luigi&rft.date=2024-12-14&rft.pub=Copernicus+GmbH&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XLVIII-2%2FW8-2024&rft.spage=327&rft.epage=334&rft_id=info:doi/10.5194%2Fisprs-archives-XLVIII-2-W8-2024-327-2024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon |