Deep Learning-Based AI-Assisted Visual Inspection Systems for Historic Buildings and their Comparative Performance with ChatGPT-4O

Historical buildings and monuments are typically subject to degradation over time due to the passage of time and constant exposure to external agents. The use of artificial intelligence (AI) to support the work of conservation and restoration specialists in identifying surface decay is a research to...

Full description

Saved in:
Bibliographic Details
Published inInternational archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLVIII-2/W8-2024; pp. 327 - 334
Main Authors Mishra, Mayank, Zhang, Kai, Mea, Chiara, Barazzetti, Luigi, Fassi, Francesco, Fiorillo, Fausta, Previtali, Mattia
Format Journal Article Conference Proceeding
LanguageEnglish
Published Gottingen Copernicus GmbH 14.12.2024
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Historical buildings and monuments are typically subject to degradation over time due to the passage of time and constant exposure to external agents. The use of artificial intelligence (AI) to support the work of conservation and restoration specialists in identifying surface decay is a research topic of considerable interest at present. This study presents two approaches: ChatGPT and an object detection architecture (YOLOv5). Specifically, this investigation sought to evaluate the ChatGPT’s ability to identify and describe surface degradation pathologies by exploiting its pre-trained models for image analysis. The ICOMOS-ISCS: Illustrated Glossary on Stone Deterioration Patterns (2008) was provided as a reference to guide the use of specific terminology. In the first test phase, to verify the accuracy of the ChatGPT results, benchmark images (depicting different types of damage) extracted from the UNI 11182 (2006) standard referring to the definition of degradation types were used. Only later were images from literature studies and other photographic datasets also used. In general, the results of the analysis were validated with the conclusions of professionals and with the conclusions of other AI techniques, as well as with the descriptions provided by reference manuals in the literature. In particular, the decay annotations predicted by the pre-trained object detection model were compared with those made by human experts. The capabilities and limitations of both approaches as tools for identifying deterioration pathologies are illustrated.
AbstractList Historical buildings and monuments are typically subject to degradation over time due to the passage of time and constant exposure to external agents. The use of artificial intelligence (AI) to support the work of conservation and restoration specialists in identifying surface decay is a research topic of considerable interest at present. This study presents two approaches: ChatGPT and an object detection architecture (YOLOv5). Specifically, this investigation sought to evaluate the ChatGPT's ability to identify and describe surface degradation pathologies by exploiting its pre-trained models for image analysis. The ICOMOS-ISCS: Illustrated Glossary on Stone Deterioration Patterns (2008) was provided as a reference to guide the use of specific terminology. In the first test phase, to verify the accuracy of the ChatGPT results, benchmark images (depicting different types of damage) extracted from the UNI 11182 (2006) standard referring to the definition of degradation types were used. Only later were images from literature studies and other photographic datasets also used. In general, the results of the analysis were validated with the conclusions of professionals and with the conclusions of other AI techniques, as well as with the descriptions provided by reference manuals in the literature. In particular, the decay annotations predicted by the pre-trained object detection model were compared with those made by human experts. The capabilities and limitations of both approaches as tools for identifying deterioration pathologies are illustrated.
Author Mea, Chiara
Previtali, Mattia
Mishra, Mayank
Fiorillo, Fausta
Barazzetti, Luigi
Zhang, Kai
Fassi, Francesco
Author_xml – sequence: 1
  givenname: Mayank
  surname: Mishra
  fullname: Mishra, Mayank
– sequence: 2
  givenname: Kai
  orcidid: 0009-0000-6205-0183
  surname: Zhang
  fullname: Zhang, Kai
– sequence: 3
  givenname: Chiara
  surname: Mea
  fullname: Mea, Chiara
– sequence: 4
  givenname: Luigi
  surname: Barazzetti
  fullname: Barazzetti, Luigi
– sequence: 5
  givenname: Francesco
  orcidid: 0000-0001-6555-8310
  surname: Fassi
  fullname: Fassi, Francesco
– sequence: 6
  givenname: Fausta
  surname: Fiorillo
  fullname: Fiorillo, Fausta
– sequence: 7
  givenname: Mattia
  surname: Previtali
  fullname: Previtali, Mattia
BookMark eNpNkU9vEzEQxVeoSJTS72CJs8F_d9fHNECzUqRWorTcrFl7tnGUrBd7U9Qrnxw3AcRp3thPb570e1udjXHEqmKcfdDcqI8hTylTSG4TnjDT7-v7ruuooA8tFUwoKkVzFK-qc1H81DCpzv7Tb6rLnLeMMa7qWjN9Xv36hDiRNUIaw_hIryCjJ4uOLnIOeS76PuQD7Eg35gndHOJIvj6Xj30mQ0xkVUwxBUeuDmHnS0ImMHoybzAksoz7CRLMpSu5xVT8exgdkp9h3pDlBubr2zuqbt5VrwfYZbz8My-qb18-3y1XdH1z3S0Xa-qE0Iq6QfWNQ_RQt00LouxKDQCtVMZJZK3X6A2a1vtaAwzgsRG1MtwgcDAoL6rulOsjbO2Uwh7Ss40Q7PEhpkcLaQ5uh5Yro5u-1yVKKm2kcaCByd5I2TctVyXr_SlrSvHHAfNst_GQxlLfSq6UbEtHVlyrk8ulmHPC4d9VzuwLUHsEav8CtSegVtiH1r5wtAXoUcjfK52e4g
ContentType Journal Article
Conference Proceeding
Copyright 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.5194/isprs-archives-XLVIII-2-W8-2024-327-2024
DatabaseName CrossRef
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 2194-9034
EndPage 334
ExternalDocumentID oai_doaj_org_article_14957bb5dd6345939ca5a03b933b7814
10_5194_isprs_archives_XLVIII_2_W8_2024_327_2024
GroupedDBID 8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TUS
7TN
ABUWG
AZQEC
DWQXO
F1W
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c2254-cf4b7ceeda6878a2cf444faa8349c3e08d5ed9e98dd65aafade7264919ea1a9e3
IEDL.DBID BENPR
ISSN 2194-9034
1682-1750
IngestDate Wed Aug 27 01:22:34 EDT 2025
Fri Jul 25 09:23:51 EDT 2025
Thu Jul 24 04:56:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2254-cf4b7ceeda6878a2cf444faa8349c3e08d5ed9e98dd65aafade7264919ea1a9e3
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
ORCID 0009-0000-6205-0183
0000-0001-6555-8310
OpenAccessLink https://www.proquest.com/docview/3144386870?pq-origsite=%requestingapplication%
PQID 3144386870
PQPubID 2037674
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_14957bb5dd6345939ca5a03b933b7814
proquest_journals_3144386870
crossref_primary_10_5194_isprs_archives_XLVIII_2_W8_2024_327_2024
PublicationCentury 2000
PublicationDate 2024-12-14
PublicationDateYYYYMMDD 2024-12-14
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-14
  day: 14
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle International archives of the photogrammetry, remote sensing and spatial information sciences.
PublicationYear 2024
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssj0001466505
Score 2.3281689
Snippet Historical buildings and monuments are typically subject to degradation over time due to the passage of time and constant exposure to external agents. The use...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 327
SubjectTerms Agents (artificial intelligence)
Annotations
Artificial intelligence
Chatbots
Decay
Deep learning
Deterioration
Historic buildings & sites
Historical buildings
Image analysis
Image degradation
Machine learning
Object recognition
Visual inspection
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTsQgFCXGhdGF8RnHV1i4JbYFWljOjI-p8bVQZ3YECqNu6mQ68wN-uRfK-IgLN-4oaWnDuXDPpZcDQieZ5toYzolxRhJmTUWE8Np4heFaJhVPc793-OY2HzyyqxEffTvqy-eEtfLAbcedegZfQGvW5pRxSWUFrSfUQCBuvFyTn33B530LpsLqCsuBevj8xTQHCgk-MllBPo0LCAs7fW0m04boKO1KRtdPZVmSjAy90WSM0KwIhR--Kkj6_5qxgxu62EDrkT_ibvvdm2jJ1Vto7em1mbe1zTZ6P3NugqNw6jPpgZ-yuFsSQMJjanG8u6zbbZZvNY665RgYLF4Ih-BePDG7wbq2OPxRwP0vsXB8_7XnAPvlXNx_0bPL-wfC7nbQ48X5Q39A4lELpIIBzUg1Zqbw_lLnohA6g2vGxloLymRFXSIsd1Y6KQAGrvVYW1cAlZKpdDrV0tFdtFy_1W4P4coWVUJFYiS0kUkmqM2TYpxKDiACf-mg7qJT1aRV1FAQiXhgVABGLYBRLTAqU0OhPB4KgAmFDup5ND6f9xrZoQIsR0XLUX9ZTgcdLrBUceA2ikKASQV0QrL_H-84QKvBosD6U3aIlmfTuTsCFjMzx8FgPwC8nO2M
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep Learning-Based AI-Assisted Visual Inspection Systems for Historic Buildings and their Comparative Performance with ChatGPT-4O
URI https://www.proquest.com/docview/3144386870
https://doaj.org/article/14957bb5dd6345939ca5a03b933b7814
Volume XLVIII-2/W8-2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JTxsxFLYKSFU5daFqWoh86NViZmzP2KcqSQlM1dKoYsnN8hZAqiYhE_4Av5xnx8MIVerNs8ry9-y32O97CH0tNNfGcE6MN5IwZywRInDjVYZrmVmelyF3-Nd5eXbJfsz5PAXc2nSsslsT40LtljbEyI8pWP5UlCBe31b3JFSNCrurqYTGDtqDJViA87U3Pjmf_emjLKwEEyScY8xLMCVBV2avUTjOBYYLO75rV-uW6ETxSuY_r-q6JgW5DsJTMEKLKjZe6KxI7f_Pyh3V0fQtOugT9fDsWQW9Q6988x7tX921D_ovHq037Qf0-N37FU40qjdkDFrL4VFNAJeAsMPp7brZJl0uG5xYzDHYs7ijEcHjVD-7xbpxOO4v4ElPHY5nfQYCDsFdPLnVm9PZBWG_D9Dl9ORickZS4QViYXozYhfMVKHrGsZb6AKuGVtoLSiTlvpMOO6d9FI4V3KtF9r5CgwrmUuvcy09_Yh2m2XjPyFsXWUzKjIj4R-FZIK6MqsWueSGO7BmBmjUDa1abfk1FPglAR4V4VEdPGoLjyrUtVABFQXwxMYAjQMmz98Hxux4Y7m-UWkCquAJViCV0GXKuKTSgpRm1EhKTaD9GqDDDlGVpnGreqH7_P_HX9CbKDEg5Tk7RLub9YM_AmtlY4ZoR0xPh0kwh9HnfwIFx-uv
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkXiceBQRKOADHK3uru1d-4BQkpJmaVpySNvcjF8pldAmZFMhrvwgfiNjZ7crhMStt31aq_2-8Ywf8w1CbzPNtTGcE-ONJMwZS4QI2niF4Vomlqd5yB0-Oc3HZ-zTnM930O82FyZsq2z7xNhRu6UNc-QHFCJ_KnKg14fVdxKqRoXV1baExpYWx_7nDxiy1e_LQ8D3XZaNPs6GY9JUFSAWuMuIXTBTBNegoTGhMzhnbKG1oExa6hPhuHfSS-FczrVeaOcLiBpkKr1OtfQU2r2D7jJKZbAoMTrq5nRYDgFP2DWZ5hC4gmdO7qGweQzCJHZwVa_WNdGNoCyZT87LsiQZuQhUzRihWREP_vKQsZDAP34iOr_RI7TXpQXi6Y3De4x2fPUEPTy_qq_1N9xfb-qn6Neh9yvciLZekgH4SIf7JQEWBD453DxdVtsUz2WFG810DNEzbkVL8KCp1l1jXTkcVzPwsBMqx9Mu3wGHqWQ8_Ko3R9MZYZ_30NmtAPIM7VbLyj9H2LrCJlQkRkIbmWSCujwpFqnkhjuInXqo3_5atdqqeSgYBQV4VIRHtfCoLTwqUxdCBVQUwBMPemgQMLl5P-hzxwvL9aVqzF2FcWcBNgCfTBmXVFqwiYQaSakJImM9tN8iqppOo1YdxV_8__YbdH88O5moSXl6_BI9iOwB-0rZPtrdrK_9K4iTNuZ1JCdGX27bGv4ASdkn3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.atitle=Deep+Learning-Based+AI-Assisted+Visual+Inspection+Systems+for+Historic+Buildings+and+their+Comparative+Performance+with+ChatGPT-4O&rft.au=Mishra%2C+Mayank&rft.au=Zhang%2C+Kai&rft.au=Mea%2C+Chiara&rft.au=Barazzetti%2C+Luigi&rft.date=2024-12-14&rft.pub=Copernicus+GmbH&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XLVIII-2%2FW8-2024&rft.spage=327&rft.epage=334&rft_id=info:doi/10.5194%2Fisprs-archives-XLVIII-2-W8-2024-327-2024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon