An Application of the Implicit Function Theorem to an Energy Model of the Semiconductor Theory
In dieser Arbeit behandeln wir ein mathematisches Modell zur Beschreibung der Wärmeausbreitung und des Ladungstransports in einem Halbleiter mit heterogener Materialstruktur. Wir lösen ein gekoppeltes System nichtlinearer elliptischer Differentialgleichungen, welches aus einer Wärmeleitungsgleichung...
Saved in:
Published in | Zeitschrift für angewandte Mathematik und Mechanik Vol. 79; no. 1; pp. 43 - 51 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin
WILEY-VCH Verlag
01.01.1999
WILEY‐VCH Verlag Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 0044-2267 1521-4001 |
DOI | 10.1002/(SICI)1521-4001(199901)79:1<43::AID-ZAMM43>3.0.CO;2-C |
Cover
Loading…
Abstract | In dieser Arbeit behandeln wir ein mathematisches Modell zur Beschreibung der Wärmeausbreitung und des Ladungstransports in einem Halbleiter mit heterogener Materialstruktur. Wir lösen ein gekoppeltes System nichtlinearer elliptischer Differentialgleichungen, welches aus einer Wärmeleitungsgleichung mit Joulescher Wärme als Quelle, einer Poisson‐Gleichung für das elektrische Feld und den beiden Drift‐Diffusions‐Gleichungen für die Ladungsträger mit jeweils temperaturabhängigen Koeffizienten besteht und durch thermische und elektrische Randbedingungen ergänzt wird. Zum Beweis der Existenz und der Eindeutigkeit von Hölder‐stetigen schwachen Lösungen in der Nähe von thermodynamischen Gleichgewichtspunkten benutzen wir den Satz über Implizite Funktionen, wobei beim Beweis der stetigen Differenzierbarkeit der aus der schwachen Formulierung des Problems resultierenden Abbildungen die Regularitätstheorie für nichtglatte elliptische Randwertprobleme in Sobolev‐Campanato‐Räumen zur Anwendung kommt.
In this paper we deal with a mathematical model for the description of heat conduction and carrier transport in semiconductor heterostructures. We solve a coupled system of nonlinear elliptic differential equations consisting of the heat equation with Joule heating as a source, the Poisson equation for the electric field and drift‐diffusion equations with temperature dependent coefficients describing the charge and current conservation, subject to general thermal and electrical boundary conditions. We prove the existence and uniqueness of Hölder continuous weak solutions near thermodynamic equilibria points using the Implicit Function Theorem. To show the continuous differentiability of maps corresponding to the weak formulation of the problem we use regularity results from the theory of nonsmooth linear elliptic boundary value problems in Sobolev‐Campanato spaces. |
---|---|
AbstractList | In dieser Arbeit behandeln wir ein mathematisches Modell zur Beschreibung der Wärmeausbreitung und des Ladungstransports in einem Halbleiter mit heterogener Materialstruktur. Wir lösen ein gekoppeltes System nichtlinearer elliptischer Differentialgleichungen, welches aus einer Wärmeleitungsgleichung mit Joulescher Wärme als Quelle, einer Poisson‐Gleichung für das elektrische Feld und den beiden Drift‐Diffusions‐Gleichungen für die Ladungsträger mit jeweils temperaturabhängigen Koeffizienten besteht und durch thermische und elektrische Randbedingungen ergänzt wird. Zum Beweis der Existenz und der Eindeutigkeit von Hölder‐stetigen schwachen Lösungen in der Nähe von thermodynamischen Gleichgewichtspunkten benutzen wir den Satz über Implizite Funktionen, wobei beim Beweis der stetigen Differenzierbarkeit der aus der schwachen Formulierung des Problems resultierenden Abbildungen die Regularitätstheorie für nichtglatte elliptische Randwertprobleme in Sobolev‐Campanato‐Räumen zur Anwendung kommt.
In this paper we deal with a mathematical model for the description of heat conduction and carrier transport in semiconductor heterostructures. We solve a coupled system of nonlinear elliptic differential equations consisting of the heat equation with Joule heating as a source, the Poisson equation for the electric field and drift‐diffusion equations with temperature dependent coefficients describing the charge and current conservation, subject to general thermal and electrical boundary conditions. We prove the existence and uniqueness of Hölder continuous weak solutions near thermodynamic equilibria points using the Implicit Function Theorem. To show the continuous differentiability of maps corresponding to the weak formulation of the problem we use regularity results from the theory of nonsmooth linear elliptic boundary value problems in Sobolev‐Campanato spaces. |
Author | Griepentrog, J.A. |
Author_xml | – sequence: 1 givenname: J.A. surname: Griepentrog fullname: Griepentrog, J.A. email: griepent@wias-berlin.de organization: Weierstrass Institute of Applied Analysis and Stochastics, Mohrenstrasse 39, D-10117 Berlin, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1954348$$DView record in Pascal Francis |
BookMark | eNp9kE1r20AQhpeSQp2k_0GHHpKD3N0dSat1P0CocSKwa2jSBnrosFqPGjWy1kgKjf99pCpxDi09DbzzzjPwHLKD2tXE2AfBp4Jz-fbkMkuzUxFK4QecixOhtebiVOmZeB_AbJZkn_zvyXIZwEeY8mm6eif99AWb7C8O2ITzIPCljNQrdti2v3ifagET9iOpvWS7rUprutLVniu87oa8bDNEZefN72r7Z3F1Q66hjdc5z9TeWU3Nz523dGuqnm4uaVNaV6_vbOeasb87Zi8LU7X0-nEesa_zs6v0wl-szrM0WfhWyhB8olAaVWhDCuK8iChfU2hFoeJIRASk4oCHIlSBNTYGnZPRCnIAWyjK5VrBEXszcremtaYqGlPbssVtU25Ms0OhwwCCGPbvbePatqHiucFxcI04uMbBHA7mcHSNSmMfAGLvGkfXCMgxXaHEtOdej9zfZUW7v6D_Z_4T-Zj0ZH8kl21H93uyaW4xUqBCvP58jt_0l_kClnNcwAOZ96Ni |
CODEN | ZAMMAX |
ContentType | Journal Article |
Copyright | 1999 WILEY‐VCH Verlag Berlin GmbH, Fed. Rep. of Germany 1999 INIST-CNRS |
Copyright_xml | – notice: 1999 WILEY‐VCH Verlag Berlin GmbH, Fed. Rep. of Germany – notice: 1999 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW |
DOI | 10.1002/(SICI)1521-4001(199901)79:1<43::AID-ZAMM43>3.0.CO;2-C |
DatabaseName | Istex CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics |
EISSN | 1521-4001 |
EndPage | 51 |
ExternalDocumentID | 1954348 10_1002__SICI_1521_4001_199901_79_1_43__AID_ZAMM43_3_0_CO_2_C ZAMM43 ark_67375_WNG_V9RFL3MF_L |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCQX ABCUV ABEML ABIJN ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEIGN AEIMD AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EDO EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RJQFR RWI RX1 SAMSI SUPJJ TN5 UB1 V2E VOH W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW |
ID | FETCH-LOGICAL-c2253-ee52a7f9ae738bf6ebde5c1f78616e3e784051574cac839bea973b33cf7eb2d73 |
IEDL.DBID | DR2 |
ISSN | 0044-2267 |
IngestDate | Mon Jul 21 09:15:16 EDT 2025 Tue Jul 01 03:24:35 EDT 2025 Wed Jan 22 16:22:12 EST 2025 Wed Oct 30 09:49:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Non linear equation Elliptic equation Boundary value problem Weak solution Semiconductor heterojunctions Heterojunctions Implicit function theorem Paired system Mathematical model Partial differential equation |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2253-ee52a7f9ae738bf6ebde5c1f78616e3e784051574cac839bea973b33cf7eb2d73 |
Notes | ark:/67375/WNG-V9RFL3MF-L ArticleID:ZAMM43 istex:B44CE1A76A854601689C1B24E440ED942F9B94F9 |
PageCount | 9 |
ParticipantIDs | pascalfrancis_primary_1954348 crossref_primary_10_1002__SICI_1521_4001_199901_79_1_43__AID_ZAMM43_3_0_CO_2_C wiley_primary_10_1002_SICI_1521_4001_199901_79_1_43_AID_ZAMM43_3_0_CO_2_C_ZAMM43 istex_primary_ark_67375_WNG_V9RFL3MF_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1999-01 January 1999 1999-01-00 1999 |
PublicationDateYYYYMMDD | 1999-01-01 |
PublicationDate_xml | – month: 01 year: 1999 text: 1999-01 |
PublicationDecade | 1990 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Zeitschrift für angewandte Mathematik und Mechanik |
PublicationTitleAlternate | Z. angew. Math. Mech |
PublicationYear | 1999 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley-VCH |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley-VCH |
References | Hong Xie: ℒ︁2, μ (Omega;) estimate to the mixed boundary value problem for second order elliptic equations and its application in the thermistor problem. Nonlinear Analysis 24 (1995), 9-27. Howison, S., Rodrigues, J., Shillor, M.: Stationary solutions to the thermistor problem. J. Math. Anal. Appl. 174 (1993), 573-588. Troianiello, G. M.: Elliptic differential equations and obstacle problems. Plenum Press, New York-London 1987. Gröger, K.: A W1, p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989), 679-687. Gröger, K.: On steady-state carrier distributions in semiconductor devices. Aplikace Mat. 32 (1987) 1, 49-56. Recke, L.: Solvability properties of linear elliptic boundary value problems with nonsmooth data. Preprint Nr. 94 - 3, Fachbereich Mathematik, Humboldt-Universitat zu Berlin 1994. Recke, L.: Applications of the Implicit Function Theorem to quasi-linear elliptic boundary value problems with non-smooth data. Comm. Part. Diff. Equations 20 (1995), 1457-1479. 1995; 20 1987 1993; 174 1989; 283 1994 1987; 32 1995; 24 1988 |
References_xml | – reference: Howison, S., Rodrigues, J., Shillor, M.: Stationary solutions to the thermistor problem. J. Math. Anal. Appl. 174 (1993), 573-588. – reference: Gröger, K.: On steady-state carrier distributions in semiconductor devices. Aplikace Mat. 32 (1987) 1, 49-56. – reference: Hong Xie: ℒ︁2, μ (Omega;) estimate to the mixed boundary value problem for second order elliptic equations and its application in the thermistor problem. Nonlinear Analysis 24 (1995), 9-27. – reference: Troianiello, G. M.: Elliptic differential equations and obstacle problems. Plenum Press, New York-London 1987. – reference: Recke, L.: Applications of the Implicit Function Theorem to quasi-linear elliptic boundary value problems with non-smooth data. Comm. Part. Diff. Equations 20 (1995), 1457-1479. – reference: Gröger, K.: A W1, p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989), 679-687. – reference: Recke, L.: Solvability properties of linear elliptic boundary value problems with nonsmooth data. Preprint Nr. 94 - 3, Fachbereich Mathematik, Humboldt-Universitat zu Berlin 1994. – volume: 283 start-page: 679 year: 1989 end-page: 687 article-title: A W ‐estimate for solutions to mixed boundary value problems for second order elliptic differential equations publication-title: Math. Ann. – volume: 174 start-page: 573 year: 1993 end-page: 588 article-title: Stationary solutions to the thermistor problem publication-title: J. Math. Anal. Appl. – volume: 20 start-page: 1457 year: 1995 end-page: 1479 article-title: Applications of the Implicit Function Theorem to quasi‐linear elliptic boundary value problems with non‐smooth data publication-title: Comm. Part. Diff. Equations – volume: 24 start-page: 9 year: 1995 end-page: 27 article-title: ℒ︁ (Omega;) estimate to the mixed boundary value problem for second order elliptic equations and its application in the thermistor problem publication-title: Nonlinear Analysis – year: 1994 – year: 1987 – start-page: 83 year: 1988 end-page: 95 – volume: 32 start-page: 49 issue: 1 year: 1987 end-page: 56 article-title: On steady‐state carrier distributions in semiconductor devices publication-title: Aplikace Mat. |
SSID | ssj0001913 |
Score | 1.4727505 |
Snippet | In dieser Arbeit behandeln wir ein mathematisches Modell zur Beschreibung der Wärmeausbreitung und des Ladungstransports in einem Halbleiter mit heterogener... |
SourceID | pascalfrancis crossref wiley istex |
SourceType | Index Database Publisher |
StartPage | 43 |
SubjectTerms | Exact sciences and technology Fundamental areas of phenomenology (including applications) Heat transfer Heat transfer in inhomogeneous media, in porous media, and through interfaces Mathematical analysis Mathematics Partial differential equations Physics Sciences and techniques of general use |
Title | An Application of the Implicit Function Theorem to an Energy Model of the Semiconductor Theory |
URI | https://api.istex.fr/ark:/67375/WNG-V9RFL3MF-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291521-4001%28199901%2979%3A1%3C43%3A%3AAID-ZAMM43%3E3.0.CO%3B2-C |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lb9QwELaqIiE48EYsUOQDRe0h2yRO4mR5SCFs6KLuFrUUqh5q2VlbQoUE7aYSj7_Cj2Umzm5YQJyQkHJw7MRjjR8zY898JuQhdKsXcDd2lB9KDMlJnFjF2jE64to1HgsK3IccT6Ldo-DVcXi8Rr4tYmEsPsRyww1nRrNe4wSXar7TgYaCAnY4ykZgMKMIAjsIIedjjKrHRMITBCPYZFnAIAFPOnrhnKTjMb4PWd_tZ_ub7LnvZLB-o68XKlQHHfQU2DHt6XTggIrCL5KnLe2dLaS7vaS6ZWlu82TgPQnYYNBRembpPAYqK3LvAnbhZ_TDlHPoCmPv0FjVjxsBl18l3xessX4tZ_3zWvWLr7-gRv4n3l0jV1rFmaZ2pF8na7q8QS7_BKcIb-MlBu38JjlNS5p2x_O0MhRK6ahxoX9f0xwkelPQwBPoj7SuqCzpsAmGpHhH3IfFP4cYQVCVCI1bzez3X26Ro3z4Jtt12tsknALWLOZoHfqSm0RqzmJlIq2mOiw8w-PIizTTHExdUO54UMgCtEalZcKZYqwwXCt_ytltsl5Wpb5DaGBMDHJcKhcvC4hl7BvpRcbXmvOp6xc9Mln0tfhkQUOEhYf2hUDGC2S7QLYLy3TBEwEZTAhgtbCsFky4ItsXvsh65FEzYpa1ydkZeuTxULybvBRvk4N8j41zsdcjGytDqiOfYAxx3COvm3HxW7P-3qo_NqrNufvvq7xHLll0DNzpuk_W69m53gDdr1YPmkn6A-IFN8s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3db9MwELfGJsF44HuiwMAPDG0P6ZI4jZPyIZXQ0EDToX3AxAMnJ7UlNEhR10mA-Ff4X7mL-0EB8YSElAfHTnzW-ePubN_vGLuP3eoF0o2cwm8pcsmJnaiItGN0KLVrPBGUtA-ZD8LeUfDiuHW8wr7NfGEsPsR8w41mRr1e0wSnDendBWooamAHWZKhxUwyCA0hwpyPyK2eErGMCY1gSySBwAQ-neyZ87aT5_TeFU23mextiae-k5xjaxQRvDbI9hfgU2jJTM-nAweVFHmePZ4S390mwjtzstuW6I6M296jQLTbC1JPLKGHSGZJ8q1RJ36mm5jqFDvD2CgayxpyLeLSy-z7jDn2ZstJ82xSNMuvv-BG_i_uXWGXproz79jBfpWt6Ooau_gToiK-5XMY2tPr7F2n4p3FCT0fGY6lPKtv0b-f8BSFel1QIxToj3wy4qri3dofklOYuA-zfw7IiWBUETruaGy__3KDHaXdw6TnTANKOCUuW8LRuuUraWKlpYgKE-piqFulZ2QUeqEWWqK1i_qdDEpVouJYaBVLUQhRGqkLfyjFBlutRpW-yXhgTISiXBUuxQuIVOQb5YXG11rKoeuXDTaYdTZ8srghYBGifQBiPBDbgdgOlukgY8AMAYCsBstqEOBCsgc-JA32oB4y89rU-IQu5ckWvBk8h9fxftoXeQr9BttcGlML8jG5EUcN9qoeGL816--t-mOjpjm3_n2V99iF3mHeh342eHmbrVuwDNr4usNWJ-MzvYmq4KS4W8_YH4MLO-Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1bb9MwFLbGJk3sgTtagYEfGNoe0iVxEjvlIoW0YYW1mzYGEw9YTmpLaJBOXSZx-Sv8WM6J05YC4gkJKQ--JD7O8eWcY_t8JuQhNKsXcFc4uR8qdMmJHZEL7Rgdce0ajwUFrkMOhtHucfDyJDxZIt-mvjAWH2K24IYjo56vcYCfjczOHDQUFLCjftoHgxlFENhBCDkv0KseAzGPEYxgk6UBgwA8Sb_rvEsGA4z3WNttp_ub7LnvpJfIShC5AodE93COPQWGTLM9HTigo_BV8rQhvrOFhLdnZLcs0W0ed7wnAet05qSeWUKPgcyC4FvBNvyMBzHVObSFsZdoLCrItYTLrpLvU97Ygy2n7Ysqbxdff4GN_E_Mu0auNJozTWxXv06WdHmDrP2EpwixwQyE9vwmeZ-UNJnvz9OxoZBL-_UZ-g8VzUCk1xk1PoH-RKsxVSXt1d6QFC-J-zj95ghdCMYlYuOOJ_b9L7fIcdZ7ne46zXUSTgGTFnO0Dn3FTaw0ZyI3kc5HOiw8w0XkRZppDrYuaHc8KFQBamOuVcxZzlhhuM79EWe3yXI5LvU6oYExAgS5yl28LUAo4RvlRcbXmvOR6xctMpy2tTyzqCHS4kP7UiLjJbJdItulZbrksYQEJiWwWlpWSyZdme5LX6Yt8qjuMbPS1OQUj-TxUL4dvpBv4sNsjw0yudciGwtdak4-Ridi0SIHdb_4rVp_r9UfK9Wk3Pn3RT4gqwdd-Jv-8NVdctkiZeCq1z2yXE0u9AbogVV-vx6vPwCM-Tqe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+application+of+the+Implicit+Function+theorem+to+an+energy+model+of+the+semiconductor+theory&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Mechanik&rft.au=GRIEPENTROG%2C+J.+A&rft.date=1999&rft.pub=Wiley-VCH&rft.issn=0044-2267&rft.volume=79&rft.issue=1&rft.spage=43&rft.epage=51&rft_id=info:doi/10.1002%2F%28SICI%291521-4001%28199901%2979%3A1%3C43%3A%3AAID-ZAMM43%3E3.0.CO%3B2-C&rft.externalDBID=n%2Fa&rft.externalDocID=1954348 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2267&client=summon |