An Application of the Implicit Function Theorem to an Energy Model of the Semiconductor Theory

In dieser Arbeit behandeln wir ein mathematisches Modell zur Beschreibung der Wärmeausbreitung und des Ladungstransports in einem Halbleiter mit heterogener Materialstruktur. Wir lösen ein gekoppeltes System nichtlinearer elliptischer Differentialgleichungen, welches aus einer Wärmeleitungsgleichung...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Mechanik Vol. 79; no. 1; pp. 43 - 51
Main Author Griepentrog, J.A.
Format Journal Article
LanguageEnglish
Published Berlin WILEY-VCH Verlag 01.01.1999
WILEY‐VCH Verlag
Wiley-VCH
Subjects
Online AccessGet full text
ISSN0044-2267
1521-4001
DOI10.1002/(SICI)1521-4001(199901)79:1<43::AID-ZAMM43>3.0.CO;2-C

Cover

Loading…
Abstract In dieser Arbeit behandeln wir ein mathematisches Modell zur Beschreibung der Wärmeausbreitung und des Ladungstransports in einem Halbleiter mit heterogener Materialstruktur. Wir lösen ein gekoppeltes System nichtlinearer elliptischer Differentialgleichungen, welches aus einer Wärmeleitungsgleichung mit Joulescher Wärme als Quelle, einer Poisson‐Gleichung für das elektrische Feld und den beiden Drift‐Diffusions‐Gleichungen für die Ladungsträger mit jeweils temperaturabhängigen Koeffizienten besteht und durch thermische und elektrische Randbedingungen ergänzt wird. Zum Beweis der Existenz und der Eindeutigkeit von Hölder‐stetigen schwachen Lösungen in der Nähe von thermodynamischen Gleichgewichtspunkten benutzen wir den Satz über Implizite Funktionen, wobei beim Beweis der stetigen Differenzierbarkeit der aus der schwachen Formulierung des Problems resultierenden Abbildungen die Regularitätstheorie für nichtglatte elliptische Randwertprobleme in Sobolev‐Campanato‐Räumen zur Anwendung kommt. In this paper we deal with a mathematical model for the description of heat conduction and carrier transport in semiconductor heterostructures. We solve a coupled system of nonlinear elliptic differential equations consisting of the heat equation with Joule heating as a source, the Poisson equation for the electric field and drift‐diffusion equations with temperature dependent coefficients describing the charge and current conservation, subject to general thermal and electrical boundary conditions. We prove the existence and uniqueness of Hölder continuous weak solutions near thermodynamic equilibria points using the Implicit Function Theorem. To show the continuous differentiability of maps corresponding to the weak formulation of the problem we use regularity results from the theory of nonsmooth linear elliptic boundary value problems in Sobolev‐Campanato spaces.
AbstractList In dieser Arbeit behandeln wir ein mathematisches Modell zur Beschreibung der Wärmeausbreitung und des Ladungstransports in einem Halbleiter mit heterogener Materialstruktur. Wir lösen ein gekoppeltes System nichtlinearer elliptischer Differentialgleichungen, welches aus einer Wärmeleitungsgleichung mit Joulescher Wärme als Quelle, einer Poisson‐Gleichung für das elektrische Feld und den beiden Drift‐Diffusions‐Gleichungen für die Ladungsträger mit jeweils temperaturabhängigen Koeffizienten besteht und durch thermische und elektrische Randbedingungen ergänzt wird. Zum Beweis der Existenz und der Eindeutigkeit von Hölder‐stetigen schwachen Lösungen in der Nähe von thermodynamischen Gleichgewichtspunkten benutzen wir den Satz über Implizite Funktionen, wobei beim Beweis der stetigen Differenzierbarkeit der aus der schwachen Formulierung des Problems resultierenden Abbildungen die Regularitätstheorie für nichtglatte elliptische Randwertprobleme in Sobolev‐Campanato‐Räumen zur Anwendung kommt. In this paper we deal with a mathematical model for the description of heat conduction and carrier transport in semiconductor heterostructures. We solve a coupled system of nonlinear elliptic differential equations consisting of the heat equation with Joule heating as a source, the Poisson equation for the electric field and drift‐diffusion equations with temperature dependent coefficients describing the charge and current conservation, subject to general thermal and electrical boundary conditions. We prove the existence and uniqueness of Hölder continuous weak solutions near thermodynamic equilibria points using the Implicit Function Theorem. To show the continuous differentiability of maps corresponding to the weak formulation of the problem we use regularity results from the theory of nonsmooth linear elliptic boundary value problems in Sobolev‐Campanato spaces.
Author Griepentrog, J.A.
Author_xml – sequence: 1
  givenname: J.A.
  surname: Griepentrog
  fullname: Griepentrog, J.A.
  email: griepent@wias-berlin.de
  organization: Weierstrass Institute of Applied Analysis and Stochastics, Mohrenstrasse 39, D-10117 Berlin, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1954348$$DView record in Pascal Francis
BookMark eNp9kE1r20AQhpeSQp2k_0GHHpKD3N0dSat1P0CocSKwa2jSBnrosFqPGjWy1kgKjf99pCpxDi09DbzzzjPwHLKD2tXE2AfBp4Jz-fbkMkuzUxFK4QecixOhtebiVOmZeB_AbJZkn_zvyXIZwEeY8mm6eif99AWb7C8O2ITzIPCljNQrdti2v3ifagET9iOpvWS7rUprutLVniu87oa8bDNEZefN72r7Z3F1Q66hjdc5z9TeWU3Nz523dGuqnm4uaVNaV6_vbOeasb87Zi8LU7X0-nEesa_zs6v0wl-szrM0WfhWyhB8olAaVWhDCuK8iChfU2hFoeJIRASk4oCHIlSBNTYGnZPRCnIAWyjK5VrBEXszcremtaYqGlPbssVtU25Ms0OhwwCCGPbvbePatqHiucFxcI04uMbBHA7mcHSNSmMfAGLvGkfXCMgxXaHEtOdej9zfZUW7v6D_Z_4T-Zj0ZH8kl21H93uyaW4xUqBCvP58jt_0l_kClnNcwAOZ96Ni
CODEN ZAMMAX
ContentType Journal Article
Copyright 1999 WILEY‐VCH Verlag Berlin GmbH, Fed. Rep. of Germany
1999 INIST-CNRS
Copyright_xml – notice: 1999 WILEY‐VCH Verlag Berlin GmbH, Fed. Rep. of Germany
– notice: 1999 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/(SICI)1521-4001(199901)79:1<43::AID-ZAMM43>3.0.CO;2-C
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
EISSN 1521-4001
EndPage 51
ExternalDocumentID 1954348
10_1002__SICI_1521_4001_199901_79_1_43__AID_ZAMM43_3_0_CO_2_C
ZAMM43
ark_67375_WNG_V9RFL3MF_L
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCQX
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EDO
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RJQFR
RWI
RX1
SAMSI
SUPJJ
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
ID FETCH-LOGICAL-c2253-ee52a7f9ae738bf6ebde5c1f78616e3e784051574cac839bea973b33cf7eb2d73
IEDL.DBID DR2
ISSN 0044-2267
IngestDate Mon Jul 21 09:15:16 EDT 2025
Tue Jul 01 03:24:35 EDT 2025
Wed Jan 22 16:22:12 EST 2025
Wed Oct 30 09:49:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Non linear equation
Elliptic equation
Boundary value problem
Weak solution
Semiconductor heterojunctions
Heterojunctions
Implicit function theorem
Paired system
Mathematical model
Partial differential equation
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2253-ee52a7f9ae738bf6ebde5c1f78616e3e784051574cac839bea973b33cf7eb2d73
Notes ark:/67375/WNG-V9RFL3MF-L
ArticleID:ZAMM43
istex:B44CE1A76A854601689C1B24E440ED942F9B94F9
PageCount 9
ParticipantIDs pascalfrancis_primary_1954348
crossref_primary_10_1002__SICI_1521_4001_199901_79_1_43__AID_ZAMM43_3_0_CO_2_C
wiley_primary_10_1002_SICI_1521_4001_199901_79_1_43_AID_ZAMM43_3_0_CO_2_C_ZAMM43
istex_primary_ark_67375_WNG_V9RFL3MF_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-01
January 1999
1999-01-00
1999
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – month: 01
  year: 1999
  text: 1999-01
PublicationDecade 1990
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Zeitschrift für angewandte Mathematik und Mechanik
PublicationTitleAlternate Z. angew. Math. Mech
PublicationYear 1999
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley-VCH
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley-VCH
References Hong Xie: ℒ︁2, μ (Omega;) estimate to the mixed boundary value problem for second order elliptic equations and its application in the thermistor problem. Nonlinear Analysis 24 (1995), 9-27.
Howison, S., Rodrigues, J., Shillor, M.: Stationary solutions to the thermistor problem. J. Math. Anal. Appl. 174 (1993), 573-588.
Troianiello, G. M.: Elliptic differential equations and obstacle problems. Plenum Press, New York-London 1987.
Gröger, K.: A W1, p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989), 679-687.
Gröger, K.: On steady-state carrier distributions in semiconductor devices. Aplikace Mat. 32 (1987) 1, 49-56.
Recke, L.: Solvability properties of linear elliptic boundary value problems with nonsmooth data. Preprint Nr. 94 - 3, Fachbereich Mathematik, Humboldt-Universitat zu Berlin 1994.
Recke, L.: Applications of the Implicit Function Theorem to quasi-linear elliptic boundary value problems with non-smooth data. Comm. Part. Diff. Equations 20 (1995), 1457-1479.
1995; 20
1987
1993; 174
1989; 283
1994
1987; 32
1995; 24
1988
References_xml – reference: Howison, S., Rodrigues, J., Shillor, M.: Stationary solutions to the thermistor problem. J. Math. Anal. Appl. 174 (1993), 573-588.
– reference: Gröger, K.: On steady-state carrier distributions in semiconductor devices. Aplikace Mat. 32 (1987) 1, 49-56.
– reference: Hong Xie: ℒ︁2, μ (Omega;) estimate to the mixed boundary value problem for second order elliptic equations and its application in the thermistor problem. Nonlinear Analysis 24 (1995), 9-27.
– reference: Troianiello, G. M.: Elliptic differential equations and obstacle problems. Plenum Press, New York-London 1987.
– reference: Recke, L.: Applications of the Implicit Function Theorem to quasi-linear elliptic boundary value problems with non-smooth data. Comm. Part. Diff. Equations 20 (1995), 1457-1479.
– reference: Gröger, K.: A W1, p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989), 679-687.
– reference: Recke, L.: Solvability properties of linear elliptic boundary value problems with nonsmooth data. Preprint Nr. 94 - 3, Fachbereich Mathematik, Humboldt-Universitat zu Berlin 1994.
– volume: 283
  start-page: 679
  year: 1989
  end-page: 687
  article-title: A W ‐estimate for solutions to mixed boundary value problems for second order elliptic differential equations
  publication-title: Math. Ann.
– volume: 174
  start-page: 573
  year: 1993
  end-page: 588
  article-title: Stationary solutions to the thermistor problem
  publication-title: J. Math. Anal. Appl.
– volume: 20
  start-page: 1457
  year: 1995
  end-page: 1479
  article-title: Applications of the Implicit Function Theorem to quasi‐linear elliptic boundary value problems with non‐smooth data
  publication-title: Comm. Part. Diff. Equations
– volume: 24
  start-page: 9
  year: 1995
  end-page: 27
  article-title: ℒ︁ (Omega;) estimate to the mixed boundary value problem for second order elliptic equations and its application in the thermistor problem
  publication-title: Nonlinear Analysis
– year: 1994
– year: 1987
– start-page: 83
  year: 1988
  end-page: 95
– volume: 32
  start-page: 49
  issue: 1
  year: 1987
  end-page: 56
  article-title: On steady‐state carrier distributions in semiconductor devices
  publication-title: Aplikace Mat.
SSID ssj0001913
Score 1.4727505
Snippet In dieser Arbeit behandeln wir ein mathematisches Modell zur Beschreibung der Wärmeausbreitung und des Ladungstransports in einem Halbleiter mit heterogener...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Publisher
StartPage 43
SubjectTerms Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Heat transfer
Heat transfer in inhomogeneous media, in porous media, and through interfaces
Mathematical analysis
Mathematics
Partial differential equations
Physics
Sciences and techniques of general use
Title An Application of the Implicit Function Theorem to an Energy Model of the Semiconductor Theory
URI https://api.istex.fr/ark:/67375/WNG-V9RFL3MF-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291521-4001%28199901%2979%3A1%3C43%3A%3AAID-ZAMM43%3E3.0.CO%3B2-C
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lb9QwELaqIiE48EYsUOQDRe0h2yRO4mR5SCFs6KLuFrUUqh5q2VlbQoUE7aYSj7_Cj2Umzm5YQJyQkHJw7MRjjR8zY898JuQhdKsXcDd2lB9KDMlJnFjF2jE64to1HgsK3IccT6Ldo-DVcXi8Rr4tYmEsPsRyww1nRrNe4wSXar7TgYaCAnY4ykZgMKMIAjsIIedjjKrHRMITBCPYZFnAIAFPOnrhnKTjMb4PWd_tZ_ub7LnvZLB-o68XKlQHHfQU2DHt6XTggIrCL5KnLe2dLaS7vaS6ZWlu82TgPQnYYNBRembpPAYqK3LvAnbhZ_TDlHPoCmPv0FjVjxsBl18l3xessX4tZ_3zWvWLr7-gRv4n3l0jV1rFmaZ2pF8na7q8QS7_BKcIb-MlBu38JjlNS5p2x_O0MhRK6ahxoX9f0xwkelPQwBPoj7SuqCzpsAmGpHhH3IfFP4cYQVCVCI1bzez3X26Ro3z4Jtt12tsknALWLOZoHfqSm0RqzmJlIq2mOiw8w-PIizTTHExdUO54UMgCtEalZcKZYqwwXCt_ytltsl5Wpb5DaGBMDHJcKhcvC4hl7BvpRcbXmvOp6xc9Mln0tfhkQUOEhYf2hUDGC2S7QLYLy3TBEwEZTAhgtbCsFky4ItsXvsh65FEzYpa1ydkZeuTxULybvBRvk4N8j41zsdcjGytDqiOfYAxx3COvm3HxW7P-3qo_NqrNufvvq7xHLll0DNzpuk_W69m53gDdr1YPmkn6A-IFN8s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3db9MwELfGJsF44HuiwMAPDG0P6ZI4jZPyIZXQ0EDToX3AxAMnJ7UlNEhR10mA-Ff4X7mL-0EB8YSElAfHTnzW-ePubN_vGLuP3eoF0o2cwm8pcsmJnaiItGN0KLVrPBGUtA-ZD8LeUfDiuHW8wr7NfGEsPsR8w41mRr1e0wSnDendBWooamAHWZKhxUwyCA0hwpyPyK2eErGMCY1gSySBwAQ-neyZ87aT5_TeFU23mextiae-k5xjaxQRvDbI9hfgU2jJTM-nAweVFHmePZ4S390mwjtzstuW6I6M296jQLTbC1JPLKGHSGZJ8q1RJ36mm5jqFDvD2CgayxpyLeLSy-z7jDn2ZstJ82xSNMuvv-BG_i_uXWGXproz79jBfpWt6Ooau_gToiK-5XMY2tPr7F2n4p3FCT0fGY6lPKtv0b-f8BSFel1QIxToj3wy4qri3dofklOYuA-zfw7IiWBUETruaGy__3KDHaXdw6TnTANKOCUuW8LRuuUraWKlpYgKE-piqFulZ2QUeqEWWqK1i_qdDEpVouJYaBVLUQhRGqkLfyjFBlutRpW-yXhgTISiXBUuxQuIVOQb5YXG11rKoeuXDTaYdTZ8srghYBGifQBiPBDbgdgOlukgY8AMAYCsBstqEOBCsgc-JA32oB4y89rU-IQu5ckWvBk8h9fxftoXeQr9BttcGlML8jG5EUcN9qoeGL816--t-mOjpjm3_n2V99iF3mHeh342eHmbrVuwDNr4usNWJ-MzvYmq4KS4W8_YH4MLO-Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1bb9MwFLbGJk3sgTtagYEfGNoe0iVxEjvlIoW0YYW1mzYGEw9YTmpLaJBOXSZx-Sv8WM6J05YC4gkJKQ--JD7O8eWcY_t8JuQhNKsXcFc4uR8qdMmJHZEL7Rgdce0ajwUFrkMOhtHucfDyJDxZIt-mvjAWH2K24IYjo56vcYCfjczOHDQUFLCjftoHgxlFENhBCDkv0KseAzGPEYxgk6UBgwA8Sb_rvEsGA4z3WNttp_ub7LnvpJfIShC5AodE93COPQWGTLM9HTigo_BV8rQhvrOFhLdnZLcs0W0ed7wnAet05qSeWUKPgcyC4FvBNvyMBzHVObSFsZdoLCrItYTLrpLvU97Ygy2n7Ysqbxdff4GN_E_Mu0auNJozTWxXv06WdHmDrP2EpwixwQyE9vwmeZ-UNJnvz9OxoZBL-_UZ-g8VzUCk1xk1PoH-RKsxVSXt1d6QFC-J-zj95ghdCMYlYuOOJ_b9L7fIcdZ7ne46zXUSTgGTFnO0Dn3FTaw0ZyI3kc5HOiw8w0XkRZppDrYuaHc8KFQBamOuVcxZzlhhuM79EWe3yXI5LvU6oYExAgS5yl28LUAo4RvlRcbXmvOR6xctMpy2tTyzqCHS4kP7UiLjJbJdItulZbrksYQEJiWwWlpWSyZdme5LX6Yt8qjuMbPS1OQUj-TxUL4dvpBv4sNsjw0yudciGwtdak4-Ridi0SIHdb_4rVp_r9UfK9Wk3Pn3RT4gqwdd-Jv-8NVdctkiZeCq1z2yXE0u9AbogVV-vx6vPwCM-Tqe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+application+of+the+Implicit+Function+theorem+to+an+energy+model+of+the+semiconductor+theory&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Mechanik&rft.au=GRIEPENTROG%2C+J.+A&rft.date=1999&rft.pub=Wiley-VCH&rft.issn=0044-2267&rft.volume=79&rft.issue=1&rft.spage=43&rft.epage=51&rft_id=info:doi/10.1002%2F%28SICI%291521-4001%28199901%2979%3A1%3C43%3A%3AAID-ZAMM43%3E3.0.CO%3B2-C&rft.externalDBID=n%2Fa&rft.externalDocID=1954348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2267&client=summon