A sin2Θ theorem for graded indefinite Hermitian matrices

This paper gives double angle theorems that bound the change in an invariant subspace of an indefinite Hermitian matrix in the graded form H=D*AD subject to a perturbation H→H=D*(A+ΔA)D. These theorems extend recent results on a definite Hermitian matrix in the graded form (Linear Algebra Appl. 311...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 359; no. 1-3; pp. 263 - 276
Main Authors Truhar, Ninoslav, Li, Ren-Cang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.01.2003
Subjects
Online AccessGet full text
ISSN0024-3795
1873-1856
DOI10.1016/S0024-3795(02)00424-X

Cover

Abstract This paper gives double angle theorems that bound the change in an invariant subspace of an indefinite Hermitian matrix in the graded form H=D*AD subject to a perturbation H→H=D*(A+ΔA)D. These theorems extend recent results on a definite Hermitian matrix in the graded form (Linear Algebra Appl. 311 (2000) 45) but the bounds here are more complicated in that they depend on not only relative gaps and norms of ΔA as in the definite case but also norms of some J-unitary matrices, where J is diagonal with ±1 on its diagonal. For two special but interesting cases, bounds on these J-unitary matrices are obtained to show that their norms are of moderate magnitude.
AbstractList This paper gives double angle theorems that bound the change in an invariant subspace of an indefinite Hermitian matrix in the graded form H=D*AD subject to a perturbation H→H=D*(A+ΔA)D. These theorems extend recent results on a definite Hermitian matrix in the graded form (Linear Algebra Appl. 311 (2000) 45) but the bounds here are more complicated in that they depend on not only relative gaps and norms of ΔA as in the definite case but also norms of some J-unitary matrices, where J is diagonal with ±1 on its diagonal. For two special but interesting cases, bounds on these J-unitary matrices are obtained to show that their norms are of moderate magnitude.
Author Li, Ren-Cang
Truhar, Ninoslav
Author_xml – sequence: 1
  givenname: Ninoslav
  surname: Truhar
  fullname: Truhar, Ninoslav
  email: truhar@gfos.hr, ninoslav.truhar@fernuni-hagen.de
  organization: Lehrgebiet Mathematische Physik, Fernuniversität, 58084 Hagen, Germany
– sequence: 2
  givenname: Ren-Cang
  surname: Li
  fullname: Li, Ren-Cang
  email: rcli@ms.uky.edu
  organization: Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA
BookMark eNqFj81KAzEUhYNUsK0-gjBLXYxm8jNJcSGlqBUKLlToLqSZG73SyUgSBN_Ep_KZnLbiwk1Xl3M534FvRAahC0DIaUUvKlrVl4-UMlFyNZFnlJ1TKvq0PCDDSiteVlrWAzL8qxyRUUpvtG8pyoZkMi0SBvb9VeRX6CK0he9i8RJtA02BoQGPATMUc4gtZrShaG2O6CAdk0Nv1wlOfu-YPN_ePM3m5eLh7n42XZSOMZFL7_lECs-UkMrVVDuonfCWqZX21CrGKQfef72wyjrltGay1p5ZsRKSK8vHRO52XexSiuDNe8TWxk9TUbPxN1t_s5EzlJmtv1n23NU_zmG2GbuQo8X1Xvp6R0Ov9oEQTXIIwUGDEVw2TYd7Fn4AMFp2_A
CitedBy_id crossref_primary_10_1080_03081087_2013_802785
crossref_primary_10_1016_j_apnum_2015_08_006
crossref_primary_10_1137_050625059
crossref_primary_10_1016_j_laa_2003_11_008
Cites_doi 10.1109/78.134396
10.1016/S0024-3795(99)00198-6
10.1016/S0024-3795(99)00126-3
10.1016/0024-3795(94)00197-9
10.1016/S0024-3795(00)00077-X
10.1137/0707001
ContentType Journal Article
Copyright 2002 Elsevier Science Inc.
Copyright_xml – notice: 2002 Elsevier Science Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S0024-3795(02)00424-X
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 276
ExternalDocumentID 10_1016_S0024_3795_02_00424_X
S002437950200424X
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEBSH
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FA8
FGOYB
G-2
GBLVA
MVM
OHT
P-8
R2-
SEW
SSH
T9H
WUQ
ID FETCH-LOGICAL-c224t-ff3954f27457c608ce6c4fa27b8f0a72303e38cef4a7ac7c882568f2a4b4537a3
IEDL.DBID .~1
ISSN 0024-3795
IngestDate Tue Jul 01 03:52:41 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Fri Feb 23 02:30:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-3
Keywords Invariant subspaces
Relative perturbation bounds
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c224t-ff3954f27457c608ce6c4fa27b8f0a72303e38cef4a7ac7c882568f2a4b4537a3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S002437950200424X
PageCount 14
ParticipantIDs crossref_primary_10_1016_S0024_3795_02_00424_X
crossref_citationtrail_10_1016_S0024_3795_02_00424_X
elsevier_sciencedirect_doi_10_1016_S0024_3795_02_00424_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-01-15
PublicationDateYYYYMMDD 2003-01-15
PublicationDate_xml – month: 01
  year: 2003
  text: 2003-01-15
  day: 15
PublicationDecade 2000
PublicationTitle Linear algebra and its applications
PublicationYear 2003
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Horn, Johnson (BIB2) 1990
Stewart, Sun (BIB7) 1990
Zha (BIB9) 1996; 240
Slapničar, Truhar (BIB6) 2000; 309
Truhar, Slapničar (BIB8) 1999; 301
Horn, Johnson (BIB3) 1991
Onn, Steinhardt, Bojanczyk (BIB5) 1991
Davis, Kahan (BIB1) 1970; 7
Li (BIB4) 2000; 311
Truhar (10.1016/S0024-3795(02)00424-X_BIB8) 1999; 301
Li (10.1016/S0024-3795(02)00424-X_BIB4) 2000; 311
Horn (10.1016/S0024-3795(02)00424-X_BIB3) 1991
Onn (10.1016/S0024-3795(02)00424-X_BIB5) 1991
Slapničar (10.1016/S0024-3795(02)00424-X_BIB6) 2000; 309
Zha (10.1016/S0024-3795(02)00424-X_BIB9) 1996; 240
Davis (10.1016/S0024-3795(02)00424-X_BIB1) 1970; 7
Stewart (10.1016/S0024-3795(02)00424-X_BIB7) 1990
Horn (10.1016/S0024-3795(02)00424-X_BIB2) 1990
References_xml – start-page: 1575
  year: 1991
  end-page: 1588
  ident: BIB5
  article-title: Hyperbolic singular value decompositions and applications
  publication-title: IEEE Trans. Acoustics, Speech, Signal Process.
– year: 1990
  ident: BIB2
  article-title: Matrix Analysis
– volume: 301
  start-page: 171
  year: 1999
  end-page: 185
  ident: BIB8
  article-title: Relative perturbation bound for invariant subspaces of Hermitian matrices
  publication-title: Linear Algebra Appl.
– volume: 7
  start-page: 1
  year: 1970
  end-page: 46
  ident: BIB1
  article-title: The rotation of eigenvectors by a perturbation III
  publication-title: SIAM J. Numer. Anal.
– volume: 309
  start-page: 57
  year: 2000
  end-page: 72
  ident: BIB6
  article-title: Relative perturbation theory for hyperbolic eigenvalue problem
  publication-title: Linear Algebra Appl.
– year: 1990
  ident: BIB7
  article-title: Matrix Perturbation Theory
– volume: 311
  start-page: 45
  year: 2000
  end-page: 60
  ident: BIB4
  article-title: Relative perturbation theory: (iv) sin2Θ theorems
  publication-title: Linear Algebra Appl.
– volume: 240
  start-page: 199
  year: 1996
  end-page: 205
  ident: BIB9
  article-title: A note on the existence of the hyperbolic singular value decomposition
  publication-title: Linear Algebra Appl.
– year: 1991
  ident: BIB3
  article-title: Topics in Matrix Analysis
– start-page: 1575
  year: 1991
  ident: 10.1016/S0024-3795(02)00424-X_BIB5
  article-title: Hyperbolic singular value decompositions and applications
  publication-title: IEEE Trans. Acoustics, Speech, Signal Process.
  doi: 10.1109/78.134396
– year: 1990
  ident: 10.1016/S0024-3795(02)00424-X_BIB2
– volume: 301
  start-page: 171
  year: 1999
  ident: 10.1016/S0024-3795(02)00424-X_BIB8
  article-title: Relative perturbation bound for invariant subspaces of Hermitian matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(99)00198-6
– year: 1990
  ident: 10.1016/S0024-3795(02)00424-X_BIB7
– volume: 309
  start-page: 57
  year: 2000
  ident: 10.1016/S0024-3795(02)00424-X_BIB6
  article-title: Relative perturbation theory for hyperbolic eigenvalue problem
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(99)00126-3
– volume: 240
  start-page: 199
  year: 1996
  ident: 10.1016/S0024-3795(02)00424-X_BIB9
  article-title: A note on the existence of the hyperbolic singular value decomposition
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(94)00197-9
– volume: 311
  start-page: 45
  year: 2000
  ident: 10.1016/S0024-3795(02)00424-X_BIB4
  article-title: Relative perturbation theory: (iv) sin2Θ theorems
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(00)00077-X
– volume: 7
  start-page: 1
  year: 1970
  ident: 10.1016/S0024-3795(02)00424-X_BIB1
  article-title: The rotation of eigenvectors by a perturbation III
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0707001
– year: 1991
  ident: 10.1016/S0024-3795(02)00424-X_BIB3
SSID ssj0004702
Score 1.6547354
Snippet This paper gives double angle theorems that bound the change in an invariant subspace of an indefinite Hermitian matrix in the graded form H=D*AD subject to a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 263
SubjectTerms Invariant subspaces
Relative perturbation bounds
Title A sin2Θ theorem for graded indefinite Hermitian matrices
URI https://dx.doi.org/10.1016/S0024-3795(02)00424-X
Volume 359
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELaqssCA-BXlTx4YYHDrJHacjKWiSkHtRKVsluPaqBItVVtWnoOn4pk4O2kLEgKJMafcKfp8Pt8pd58RugqKlFnwDcJNJAgzsSYp55xwqiITB4prPy7WH8TZkN3nPK-hzmoWxrVVVrG_jOk-WleSVoVmazYeuxlfT6bHaej_3-Vugp0J5-vNt02bBxO0YgxnxL29meIpLXjhNQ1vvBGS_3w-fTlzuntot0oWcbv8nn1UM9MDtNNfM60uDlHaxlDthx_vuBxJnGDIQvHTXI3MCDsqRDt2WSXOXNOL28144kn5zeIIDbt3j52MVNchEA3n7JJYG6WcWSgjudAxTTQAy6wKRZFYqgTUEpGJQGqZEkoLDbkzjxMbKlYwHgkVHaP69GVqThAuFAvoSAcW7DGtdQIrUxSuWFQ6gAqngdgKBKkrrnB3ZcWz3DSFAXbSYSdpKD12Mm-g5lptVpJl_KWQrBCW31ZdQkD_XfX0_6pnaNu35NGABPwc1ZfzV3MBqcWyuPS-c4m22r2HbABPvfz2E4eKx8E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTgIxFL1BXKgL4zPiswsXuqh0Ztp5LJFIBgVWkMyu6ZTWkAgSwH_xq_wm284AmhhN3DZzbyannfvI3HMKcO3lCdXmbGCmgghTFUqcMMYwIyJQoSeYdHSxbi9MB_QxY1kFmksujB2rLGN_EdNdtC5X6iWa9eloZDm-TkyPEd_9v8s2YNNUA6EV0G9n92tyZERKyXCK7eNrGk_hwi3eEP_WecHZzwnqS9Jp7cFuWS2iRvFC-1BRkwPY6a6kVueHkDSQaff9j3dUcBLHyJSh6HkmhmqIrBaiHtmyEqV26sV-zmjsVPnV_AgGrYd-M8XlfQhYmkS7wFoHCaPa9JEskiGJpUGWauFHeayJiEwzEajArGoqIiEjaYpnFsbaFzSnLIhEcAzVyetEnQDKBfXIUHra-KNSythsTZ7bblFIz7Q4NaBLELgsxcLtnRUvfD0VZrDjFjtOfO6w41kN7lZm00It4y-DeIkw_7bt3ET0301P_296BVtpv9vhnXbv6Qy23Xwe8bDHzqG6mL2pC1NnLPJLd44-Ab-qyF0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sin2%CE%98+theorem+for+graded+indefinite+Hermitian+matrices&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Truhar%2C+Ninoslav&rft.au=Li%2C+Ren-Cang&rft.date=2003-01-15&rft.issn=0024-3795&rft.volume=359&rft.issue=1-3&rft.spage=263&rft.epage=276&rft_id=info:doi/10.1016%2FS0024-3795%2802%2900424-X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0024_3795_02_00424_X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon