Interaction-Based Active Perception Method and Vibration-Audio-Visual Information Fusion for Asteroid Surface Material Identification

Asteroid exploration is challenging due to its unknown surface material and microgravity. This article proposes an interaction-based active perception (IBAP) framework and a vibration-audio-visual information fusion (VAVIF) method for asteroid surface material identification. First, a robotic sensor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 14
Main Authors Zhang, Jun, Xiao, Yi, Ding, Yizhuang, Chen, Liuchen, Song, Aiguo
Format Journal Article
LanguageEnglish
Published New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
DOI10.1109/TIM.2024.3351245

Cover

Loading…
Abstract Asteroid exploration is challenging due to its unknown surface material and microgravity. This article proposes an interaction-based active perception (IBAP) framework and a vibration-audio-visual information fusion (VAVIF) method for asteroid surface material identification. First, a robotic sensor node was designed to acquire vibration and audio signals when impacting the surface. With the help of the “interaction” between the node and surface material, a camera records visual images of the material splashing. Then, we proposed a SimpleCNN (SCNN) model to explore the rich features of the fusion images converted from the vibration signals for material identification. We also proposed a bidirectional RNN with attention mechanism (AB-RNN) model to fuse the high- and low-frequency vibration signals to improve the recognition performance. Results showed that SCNN and AB-RNN have better performance than the state-of-the-art models. In addition, state-of-the-art machine learning models are used to classify the visual images and audio signals for identification. Moreover, we utilized the output of multiple classifiers to construct a new dataset and employed ensemble learning (EL) for training and testing. The EL-based VAVIF obtained a recognition accuracy of 99.7%, higher than any individual learner. The results indicate that IBAP and VAVIF make material identification more accurate and robust, which can improve the success rate of an asteroid exploration mission.
AbstractList Asteroid exploration is challenging due to its unknown surface material and microgravity. This article proposes an interaction-based active perception (IBAP) framework and a vibration-audio-visual information fusion (VAVIF) method for asteroid surface material identification. First, a robotic sensor node was designed to acquire vibration and audio signals when impacting the surface. With the help of the “interaction” between the node and surface material, a camera records visual images of the material splashing. Then, we proposed a SimpleCNN (SCNN) model to explore the rich features of the fusion images converted from the vibration signals for material identification. We also proposed a bidirectional RNN with attention mechanism (AB-RNN) model to fuse the high- and low-frequency vibration signals to improve the recognition performance. Results showed that SCNN and AB-RNN have better performance than the state-of-the-art models. In addition, state-of-the-art machine learning models are used to classify the visual images and audio signals for identification. Moreover, we utilized the output of multiple classifiers to construct a new dataset and employed ensemble learning (EL) for training and testing. The EL-based VAVIF obtained a recognition accuracy of 99.7%, higher than any individual learner. The results indicate that IBAP and VAVIF make material identification more accurate and robust, which can improve the success rate of an asteroid exploration mission.
Author Song, Aiguo
Chen, Liuchen
Ding, Yizhuang
Zhang, Jun
Xiao, Yi
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-3074-2465
  surname: Zhang
  fullname: Zhang, Jun
  organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Yi
  orcidid: 0000-0002-8030-0868
  surname: Xiao
  fullname: Xiao, Yi
  organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Yizhuang
  orcidid: 0000-0001-8926-6654
  surname: Ding
  fullname: Ding, Yizhuang
  organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 4
  givenname: Liuchen
  orcidid: 0000-0002-8312-6703
  surname: Chen
  fullname: Chen, Liuchen
  organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
– sequence: 5
  givenname: Aiguo
  orcidid: 0000-0002-1982-6780
  surname: Song
  fullname: Song, Aiguo
  organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China
BookMark eNotkF9LwzAUxYNMcJu--xjwuTN_mqR9rMPpYEPBudeSNjeYsTUzaQU_gN_bdtvT4Z57zr3wm6BR4xtA6J6SGaUkf9ws1zNGWDrjXFCWiis0pkKoJJeSjdCYEJoleSrkDZrEuCOEKJmqMfpbNi0EXbfON8mTjmBw0Q8_gN8h1HAcfLyG9ssbrBuDt64K-hQuOuN8snWx03u8bKwPh9MCL7o4SG_gIvbHvTP4owtW14DXujfcUDDQtM66-tS5RddW7yPcXXSKPhfPm_lrsnp7Wc6LVVIzlraJ4prkIFQluSKcG5ZLZYnmBgykNk1BiqwSHCrF84xYKTmruaY2o5YrqDWfoofz3WPw3x3Ettz5LjT9y5LlVOWZYoz0KXJO1cHHGMCWx-AOOvyWlJQD7LKHXQ6wywts_g_8nXW4
Cites_doi 10.1109/TASE.2019.2910508
10.1016/j.icarus.2019.06.011
10.1126/science.aaa0440
10.1016/j.actaastro.2022.06.019
10.1126/science.289.5487.2097
10.1126/science.aav7432
10.1109/CVPR.2015.7298965
10.1109/TIE.2018.2878157
10.1038/s41561-019-0326-6
10.1016/j.actaastro.2018.01.030
10.1038/s41467-020-16528-7
10.1016/j.icarus.2008.06.010
10.1109/TPAMI.2018.2840991
10.1016/j.actaastro.2020.02.035
10.1016/j.cageo.2007.04.004
10.1109/ICSMD50554.2020.9261746
10.1007/978-3-030-01261-8_20
10.1016/j.paerosci.2021.100697
10.1117/12.451837
10.1016/j.asr.2018.02.009
10.1016/j.asr.2018.02.003
10.1109/TIE.2011.2146212
10.1109/CVPR.2016.90
10.1038/s41586-019-1033-6
10.1016/j.pss.2014.05.004
10.1126/science.1204062
10.1016/S0032-0633(00)00136-7
10.1109/5326.740671
10.48550/arXiv.1802.02611
10.1126/science.aaw8627
10.1007/BF01020064
10.1016/j.pss.2014.11.023
10.1126/science.aaa9816
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2017.660
10.1109/TRO.2012.2204513
10.1109/CCDC.2014.6852676
10.1126/science.1207776
10.1016/S0032-0633(97)00140-2
10.1038/s41561-019-0330-x
10.1016/S0262-8856(00)00111-6
10.1007/s11214-018-0521-6
10.1038/s41586-021-03816-5
10.1007/s42064-020-0075-8
10.1109/LRA.2022.3152975
10.1109/CVPR.2018.00474
10.1016/S0010-9452(66)80003-5
10.1016/j.ast.2013.10.003
10.1117/12.440105
10.1109/TEVC.2010.2046174
10.1109/LRA.2017.2662071
10.1016/j.spacepol.2018.04.005
10.1109/19.126638
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3351245
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 14
ExternalDocumentID 10_1109_TIM_2024_3351245
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
AAYOK
AAYXX
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TN5
TWZ
VH1
VJK
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c224t-73a09e57b637033d2967f0a3dede4f44e658b53eb73980f6632c3a1f81f37eca3
ISSN 0018-9456
IngestDate Mon Jun 30 08:34:24 EDT 2025
Tue Jul 01 03:07:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c224t-73a09e57b637033d2967f0a3dede4f44e658b53eb73980f6632c3a1f81f37eca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3074-2465
0000-0002-8030-0868
0000-0002-8312-6703
0000-0002-1982-6780
0000-0001-8926-6654
PQID 2917987220
PQPubID 85462
PageCount 14
ParticipantIDs proquest_journals_2917987220
crossref_primary_10_1109_TIM_2024_3351245
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationYear 2024
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Simonyan (ref43)
References_xml – ident: ref41
  doi: 10.1109/TASE.2019.2910508
– ident: ref54
  doi: 10.1016/j.icarus.2019.06.011
– ident: ref11
  doi: 10.1126/science.aaa0440
– ident: ref8
  doi: 10.1016/j.actaastro.2022.06.019
– ident: ref9
  doi: 10.1126/science.289.5487.2097
– ident: ref12
  doi: 10.1126/science.aav7432
– ident: ref50
  doi: 10.1109/CVPR.2015.7298965
– ident: ref40
  doi: 10.1109/TIE.2018.2878157
– ident: ref14
  doi: 10.1038/s41561-019-0326-6
– ident: ref3
  doi: 10.1016/j.actaastro.2018.01.030
– ident: ref16
  doi: 10.1038/s41467-020-16528-7
– ident: ref13
  doi: 10.1016/j.icarus.2008.06.010
– ident: ref34
  doi: 10.1109/TPAMI.2018.2840991
– ident: ref7
  doi: 10.1016/j.actaastro.2020.02.035
– ident: ref52
  doi: 10.1016/j.cageo.2007.04.004
– ident: ref42
  doi: 10.1109/ICSMD50554.2020.9261746
– ident: ref49
  doi: 10.1007/978-3-030-01261-8_20
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref43
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref5
  doi: 10.1016/j.paerosci.2021.100697
– ident: ref20
  doi: 10.1117/12.451837
– ident: ref28
  doi: 10.1016/j.asr.2018.02.009
– ident: ref6
  doi: 10.1016/j.asr.2018.02.003
– ident: ref35
  doi: 10.1109/TIE.2011.2146212
– ident: ref44
  doi: 10.1109/CVPR.2016.90
– ident: ref15
  doi: 10.1038/s41586-019-1033-6
– ident: ref26
  doi: 10.1016/j.pss.2014.05.004
– ident: ref10
  doi: 10.1126/science.1204062
– ident: ref23
  doi: 10.1016/S0032-0633(00)00136-7
– ident: ref32
  doi: 10.1109/5326.740671
– ident: ref46
  doi: 10.48550/arXiv.1802.02611
– ident: ref53
  doi: 10.1126/science.aaw8627
– ident: ref51
  doi: 10.1007/BF01020064
– ident: ref24
  doi: 10.1016/j.pss.2014.11.023
– ident: ref25
  doi: 10.1126/science.aaa9816
– ident: ref48
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref47
  doi: 10.1109/CVPR.2017.660
– ident: ref33
  doi: 10.1109/TRO.2012.2204513
– ident: ref21
  doi: 10.1109/CCDC.2014.6852676
– ident: ref2
  doi: 10.1126/science.1207776
– ident: ref22
  doi: 10.1016/S0032-0633(97)00140-2
– ident: ref18
  doi: 10.1038/s41561-019-0330-x
– ident: ref29
  doi: 10.1016/S0262-8856(00)00111-6
– ident: ref4
  doi: 10.1007/s11214-018-0521-6
– ident: ref17
  doi: 10.1038/s41586-021-03816-5
– ident: ref30
  doi: 10.1007/s42064-020-0075-8
– ident: ref39
  doi: 10.1109/LRA.2022.3152975
– ident: ref45
  doi: 10.1109/CVPR.2018.00474
– ident: ref31
  doi: 10.1016/S0010-9452(66)80003-5
– ident: ref27
  doi: 10.1016/j.ast.2013.10.003
– ident: ref19
  doi: 10.1117/12.440105
– ident: ref37
  doi: 10.1109/TEVC.2010.2046174
– ident: ref38
  doi: 10.1109/LRA.2017.2662071
– ident: ref1
  doi: 10.1016/j.spacepol.2018.04.005
– ident: ref36
  doi: 10.1109/19.126638
SSID ssj0007647
Score 2.4118512
Snippet Asteroid exploration is challenging due to its unknown surface material and microgravity. This article proposes an interaction-based active perception (IBAP)...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1
SubjectTerms Asteroid missions
Audio data
Audio signals
Data integration
Image classification
Machine learning
Microgravity
Recognition
Robot sensors
Space exploration
Vibration
Vibration perception
Title Interaction-Based Active Perception Method and Vibration-Audio-Visual Information Fusion for Asteroid Surface Material Identification
URI https://www.proquest.com/docview/2917987220
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKEBI7IBggBgP5wAVVKY7txMmxm5jGRDl1U3eKHMcWOaxFa3PZff_Q_kKefyRL1iExLlFrVa-J35f3np_f-4zQZ0FyqmVmImoqHXFOdFTmzEQcVhOKqsQQYZuTZz_TkzN-ukgWo9Ftr2qp2ZQTdf1gX8n_aBXGQK-2S_YRmu2EwgB8Bv3CFTQM13_SsUvn-c6E6BDcUTWeOvNl69pDucp45o6IdnsE53Zp7H48bap6FZ3X68ZRbXQdjOPjZt3WHk4thcKqhni0uTLSvv5y4x5q7Jt7Tcj29cNbu3S0p060R5C7vYjakdRehiYnX_x8eZea3EpdnzYdYBe1dKnci7oLuMMZLBf19a9GBrfryhO8_fxRNwDDZT-Z4bunW9Mcg-XlSeDFDtY4EZY-dGCuBevZ27jnuH0z6rZLcIyq8--zif3DCWMQ4ngGyyH79j2v2NUqulUSyQuQUFgJRZDwBD2lQsS57xnsvL9IuedpDY_Tbo2T_Ov9exiGQsNIwIU385foRViX4KkH2Ss00ss9tNtjq9xDz1y1sFq_RjdbwMMeePgOeNgDD4O28cPAwz3gYQ88DAO4BR4OwMMt8PAQeG_Q2fG3-dFJFM7ziBQEiptIMElynYgyZeBnWEXzVBgiWaUrzQ3nGqLhMmG6FCzPiIFYmComY5PFhgmtJHuLdparpX6HcCnLTFHwLRLm21IMqUTQMgNZKmVKkn30pZ3a4renbSn-psh9dNDOfRFe7nVBc8vkJygl7x8h6gN6br_6FN0B2oG3S3-EoHVTfnIo-QPozZrL
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction-Based+Active+Perception+Method+and+Vibration-Audio-Visual+Information+Fusion+for+Asteroid+Surface+Material+Identification&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Jun&rft.au=Xiao%2C+Yi&rft.au=Ding%2C+Yizhuang&rft.au=Chen%2C+Liuchen&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2024.3351245&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3351245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon