Interaction-Based Active Perception Method and Vibration-Audio-Visual Information Fusion for Asteroid Surface Material Identification
Asteroid exploration is challenging due to its unknown surface material and microgravity. This article proposes an interaction-based active perception (IBAP) framework and a vibration-audio-visual information fusion (VAVIF) method for asteroid surface material identification. First, a robotic sensor...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0018-9456 1557-9662 |
DOI | 10.1109/TIM.2024.3351245 |
Cover
Loading…
Abstract | Asteroid exploration is challenging due to its unknown surface material and microgravity. This article proposes an interaction-based active perception (IBAP) framework and a vibration-audio-visual information fusion (VAVIF) method for asteroid surface material identification. First, a robotic sensor node was designed to acquire vibration and audio signals when impacting the surface. With the help of the “interaction” between the node and surface material, a camera records visual images of the material splashing. Then, we proposed a SimpleCNN (SCNN) model to explore the rich features of the fusion images converted from the vibration signals for material identification. We also proposed a bidirectional RNN with attention mechanism (AB-RNN) model to fuse the high- and low-frequency vibration signals to improve the recognition performance. Results showed that SCNN and AB-RNN have better performance than the state-of-the-art models. In addition, state-of-the-art machine learning models are used to classify the visual images and audio signals for identification. Moreover, we utilized the output of multiple classifiers to construct a new dataset and employed ensemble learning (EL) for training and testing. The EL-based VAVIF obtained a recognition accuracy of 99.7%, higher than any individual learner. The results indicate that IBAP and VAVIF make material identification more accurate and robust, which can improve the success rate of an asteroid exploration mission. |
---|---|
AbstractList | Asteroid exploration is challenging due to its unknown surface material and microgravity. This article proposes an interaction-based active perception (IBAP) framework and a vibration-audio-visual information fusion (VAVIF) method for asteroid surface material identification. First, a robotic sensor node was designed to acquire vibration and audio signals when impacting the surface. With the help of the “interaction” between the node and surface material, a camera records visual images of the material splashing. Then, we proposed a SimpleCNN (SCNN) model to explore the rich features of the fusion images converted from the vibration signals for material identification. We also proposed a bidirectional RNN with attention mechanism (AB-RNN) model to fuse the high- and low-frequency vibration signals to improve the recognition performance. Results showed that SCNN and AB-RNN have better performance than the state-of-the-art models. In addition, state-of-the-art machine learning models are used to classify the visual images and audio signals for identification. Moreover, we utilized the output of multiple classifiers to construct a new dataset and employed ensemble learning (EL) for training and testing. The EL-based VAVIF obtained a recognition accuracy of 99.7%, higher than any individual learner. The results indicate that IBAP and VAVIF make material identification more accurate and robust, which can improve the success rate of an asteroid exploration mission. |
Author | Song, Aiguo Chen, Liuchen Ding, Yizhuang Zhang, Jun Xiao, Yi |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0002-3074-2465 surname: Zhang fullname: Zhang, Jun organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Yi orcidid: 0000-0002-8030-0868 surname: Xiao fullname: Xiao, Yi organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Yizhuang orcidid: 0000-0001-8926-6654 surname: Ding fullname: Ding, Yizhuang organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 4 givenname: Liuchen orcidid: 0000-0002-8312-6703 surname: Chen fullname: Chen, Liuchen organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China – sequence: 5 givenname: Aiguo orcidid: 0000-0002-1982-6780 surname: Song fullname: Song, Aiguo organization: State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, China |
BookMark | eNotkF9LwzAUxYNMcJu--xjwuTN_mqR9rMPpYEPBudeSNjeYsTUzaQU_gN_bdtvT4Z57zr3wm6BR4xtA6J6SGaUkf9ws1zNGWDrjXFCWiis0pkKoJJeSjdCYEJoleSrkDZrEuCOEKJmqMfpbNi0EXbfON8mTjmBw0Q8_gN8h1HAcfLyG9ssbrBuDt64K-hQuOuN8snWx03u8bKwPh9MCL7o4SG_gIvbHvTP4owtW14DXujfcUDDQtM66-tS5RddW7yPcXXSKPhfPm_lrsnp7Wc6LVVIzlraJ4prkIFQluSKcG5ZLZYnmBgykNk1BiqwSHCrF84xYKTmruaY2o5YrqDWfoofz3WPw3x3Ettz5LjT9y5LlVOWZYoz0KXJO1cHHGMCWx-AOOvyWlJQD7LKHXQ6wywts_g_8nXW4 |
Cites_doi | 10.1109/TASE.2019.2910508 10.1016/j.icarus.2019.06.011 10.1126/science.aaa0440 10.1016/j.actaastro.2022.06.019 10.1126/science.289.5487.2097 10.1126/science.aav7432 10.1109/CVPR.2015.7298965 10.1109/TIE.2018.2878157 10.1038/s41561-019-0326-6 10.1016/j.actaastro.2018.01.030 10.1038/s41467-020-16528-7 10.1016/j.icarus.2008.06.010 10.1109/TPAMI.2018.2840991 10.1016/j.actaastro.2020.02.035 10.1016/j.cageo.2007.04.004 10.1109/ICSMD50554.2020.9261746 10.1007/978-3-030-01261-8_20 10.1016/j.paerosci.2021.100697 10.1117/12.451837 10.1016/j.asr.2018.02.009 10.1016/j.asr.2018.02.003 10.1109/TIE.2011.2146212 10.1109/CVPR.2016.90 10.1038/s41586-019-1033-6 10.1016/j.pss.2014.05.004 10.1126/science.1204062 10.1016/S0032-0633(00)00136-7 10.1109/5326.740671 10.48550/arXiv.1802.02611 10.1126/science.aaw8627 10.1007/BF01020064 10.1016/j.pss.2014.11.023 10.1126/science.aaa9816 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2017.660 10.1109/TRO.2012.2204513 10.1109/CCDC.2014.6852676 10.1126/science.1207776 10.1016/S0032-0633(97)00140-2 10.1038/s41561-019-0330-x 10.1016/S0262-8856(00)00111-6 10.1007/s11214-018-0521-6 10.1038/s41586-021-03816-5 10.1007/s42064-020-0075-8 10.1109/LRA.2022.3152975 10.1109/CVPR.2018.00474 10.1016/S0010-9452(66)80003-5 10.1016/j.ast.2013.10.003 10.1117/12.440105 10.1109/TEVC.2010.2046174 10.1109/LRA.2017.2662071 10.1016/j.spacepol.2018.04.005 10.1109/19.126638 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2024.3351245 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 14 |
ExternalDocumentID | 10_1109_TIM_2024_3351245 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH AAYOK AAYXX ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TN5 TWZ VH1 VJK 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c224t-73a09e57b637033d2967f0a3dede4f44e658b53eb73980f6632c3a1f81f37eca3 |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 08:34:24 EDT 2025 Tue Jul 01 03:07:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c224t-73a09e57b637033d2967f0a3dede4f44e658b53eb73980f6632c3a1f81f37eca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3074-2465 0000-0002-8030-0868 0000-0002-8312-6703 0000-0002-1982-6780 0000-0001-8926-6654 |
PQID | 2917987220 |
PQPubID | 85462 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2917987220 crossref_primary_10_1109_TIM_2024_3351245 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationYear | 2024 |
Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Simonyan (ref43) |
References_xml | – ident: ref41 doi: 10.1109/TASE.2019.2910508 – ident: ref54 doi: 10.1016/j.icarus.2019.06.011 – ident: ref11 doi: 10.1126/science.aaa0440 – ident: ref8 doi: 10.1016/j.actaastro.2022.06.019 – ident: ref9 doi: 10.1126/science.289.5487.2097 – ident: ref12 doi: 10.1126/science.aav7432 – ident: ref50 doi: 10.1109/CVPR.2015.7298965 – ident: ref40 doi: 10.1109/TIE.2018.2878157 – ident: ref14 doi: 10.1038/s41561-019-0326-6 – ident: ref3 doi: 10.1016/j.actaastro.2018.01.030 – ident: ref16 doi: 10.1038/s41467-020-16528-7 – ident: ref13 doi: 10.1016/j.icarus.2008.06.010 – ident: ref34 doi: 10.1109/TPAMI.2018.2840991 – ident: ref7 doi: 10.1016/j.actaastro.2020.02.035 – ident: ref52 doi: 10.1016/j.cageo.2007.04.004 – ident: ref42 doi: 10.1109/ICSMD50554.2020.9261746 – ident: ref49 doi: 10.1007/978-3-030-01261-8_20 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref43 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref5 doi: 10.1016/j.paerosci.2021.100697 – ident: ref20 doi: 10.1117/12.451837 – ident: ref28 doi: 10.1016/j.asr.2018.02.009 – ident: ref6 doi: 10.1016/j.asr.2018.02.003 – ident: ref35 doi: 10.1109/TIE.2011.2146212 – ident: ref44 doi: 10.1109/CVPR.2016.90 – ident: ref15 doi: 10.1038/s41586-019-1033-6 – ident: ref26 doi: 10.1016/j.pss.2014.05.004 – ident: ref10 doi: 10.1126/science.1204062 – ident: ref23 doi: 10.1016/S0032-0633(00)00136-7 – ident: ref32 doi: 10.1109/5326.740671 – ident: ref46 doi: 10.48550/arXiv.1802.02611 – ident: ref53 doi: 10.1126/science.aaw8627 – ident: ref51 doi: 10.1007/BF01020064 – ident: ref24 doi: 10.1016/j.pss.2014.11.023 – ident: ref25 doi: 10.1126/science.aaa9816 – ident: ref48 doi: 10.1007/978-3-319-24574-4_28 – ident: ref47 doi: 10.1109/CVPR.2017.660 – ident: ref33 doi: 10.1109/TRO.2012.2204513 – ident: ref21 doi: 10.1109/CCDC.2014.6852676 – ident: ref2 doi: 10.1126/science.1207776 – ident: ref22 doi: 10.1016/S0032-0633(97)00140-2 – ident: ref18 doi: 10.1038/s41561-019-0330-x – ident: ref29 doi: 10.1016/S0262-8856(00)00111-6 – ident: ref4 doi: 10.1007/s11214-018-0521-6 – ident: ref17 doi: 10.1038/s41586-021-03816-5 – ident: ref30 doi: 10.1007/s42064-020-0075-8 – ident: ref39 doi: 10.1109/LRA.2022.3152975 – ident: ref45 doi: 10.1109/CVPR.2018.00474 – ident: ref31 doi: 10.1016/S0010-9452(66)80003-5 – ident: ref27 doi: 10.1016/j.ast.2013.10.003 – ident: ref19 doi: 10.1117/12.440105 – ident: ref37 doi: 10.1109/TEVC.2010.2046174 – ident: ref38 doi: 10.1109/LRA.2017.2662071 – ident: ref1 doi: 10.1016/j.spacepol.2018.04.005 – ident: ref36 doi: 10.1109/19.126638 |
SSID | ssj0007647 |
Score | 2.4118512 |
Snippet | Asteroid exploration is challenging due to its unknown surface material and microgravity. This article proposes an interaction-based active perception (IBAP)... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 1 |
SubjectTerms | Asteroid missions Audio data Audio signals Data integration Image classification Machine learning Microgravity Recognition Robot sensors Space exploration Vibration Vibration perception |
Title | Interaction-Based Active Perception Method and Vibration-Audio-Visual Information Fusion for Asteroid Surface Material Identification |
URI | https://www.proquest.com/docview/2917987220 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKEBI7IBggBgP5wAVVKY7txMmxm5jGRDl1U3eKHMcWOaxFa3PZff_Q_kKefyRL1iExLlFrVa-J35f3np_f-4zQZ0FyqmVmImoqHXFOdFTmzEQcVhOKqsQQYZuTZz_TkzN-ukgWo9Ftr2qp2ZQTdf1gX8n_aBXGQK-2S_YRmu2EwgB8Bv3CFTQM13_SsUvn-c6E6BDcUTWeOvNl69pDucp45o6IdnsE53Zp7H48bap6FZ3X68ZRbXQdjOPjZt3WHk4thcKqhni0uTLSvv5y4x5q7Jt7Tcj29cNbu3S0p060R5C7vYjakdRehiYnX_x8eZea3EpdnzYdYBe1dKnci7oLuMMZLBf19a9GBrfryhO8_fxRNwDDZT-Z4bunW9Mcg-XlSeDFDtY4EZY-dGCuBevZ27jnuH0z6rZLcIyq8--zif3DCWMQ4ngGyyH79j2v2NUqulUSyQuQUFgJRZDwBD2lQsS57xnsvL9IuedpDY_Tbo2T_Ov9exiGQsNIwIU385foRViX4KkH2Ss00ss9tNtjq9xDz1y1sFq_RjdbwMMeePgOeNgDD4O28cPAwz3gYQ88DAO4BR4OwMMt8PAQeG_Q2fG3-dFJFM7ziBQEiptIMElynYgyZeBnWEXzVBgiWaUrzQ3nGqLhMmG6FCzPiIFYmComY5PFhgmtJHuLdparpX6HcCnLTFHwLRLm21IMqUTQMgNZKmVKkn30pZ3a4renbSn-psh9dNDOfRFe7nVBc8vkJygl7x8h6gN6br_6FN0B2oG3S3-EoHVTfnIo-QPozZrL |
linkProvider | IEEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction-Based+Active+Perception+Method+and+Vibration-Audio-Visual+Information+Fusion+for+Asteroid+Surface+Material+Identification&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Zhang%2C+Jun&rft.au=Xiao%2C+Yi&rft.au=Ding%2C+Yizhuang&rft.au=Chen%2C+Liuchen&rft.date=2024&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=73&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTIM.2024.3351245&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3351245 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |