Robust filling of extra-long gaps in eddy covariance CO2 flux measurements from a temperate deciduous forest using eXtreme Gradient Boosting

•Gaps in eddy covariance measurements need to be filled to calculate annual budgets.•XGB, a machine-learning algorithm, effectively filled gaps longer than 30 days.•XGB outperformed the standard MDS for different gap lengths and locations.•Vegetation indices provide critical information and improve...

Full description

Saved in:
Bibliographic Details
Published inAgricultural and forest meteorology Vol. 364; p. 110438
Main Authors Liu, Yujie, Lucas, Benjamin, Bergl, Darby D., Richardson, Andrew D.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2025
Subjects
Online AccessGet full text
ISSN0168-1923
DOI10.1016/j.agrformet.2025.110438

Cover

Loading…