Resnet-1DCNN-REA bearing fault diagnosis method based on multi-source and multi-modal information fusion

In order to address the issue of multi-information fusion, this paper proposed a method for bearing fault diagnosis based on multisource and multimodal information fusion. Existing bearing fault diagnosis methods mainly rely on single sensor information. Nevertheless, mechanical faults in bearings a...

Full description

Saved in:
Bibliographic Details
Published inElectronic research archive Vol. 32; no. 11; pp. 6276 - 6300
Main Authors Chen, Xu, Chang, Wenbing, Li, Yongxiang, He, Zhao, Ma, Xiang, Zhou, Shenghan
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to address the issue of multi-information fusion, this paper proposed a method for bearing fault diagnosis based on multisource and multimodal information fusion. Existing bearing fault diagnosis methods mainly rely on single sensor information. Nevertheless, mechanical faults in bearings are intricate and subject to countless excitation disturbances, which poses a great challenge for accurate identification if only relying on feature extraction from single sensor input. In this paper, a multisource information fusion model based on auto-encoder was first established to achieve the fusion of multi-sensor signals. Based on the fused signals, multimodal feature extraction was realized by integrating image features and time-frequency statistical information. The one-dimensional vibration signals were converted into two-dimensional time-frequency images by continuous wavelet transform (CWT), and then they were fed into the Resnet network for fault diagnosis. At the same time, the time-frequency statistical features of the fused 1D signal were extracted from the integrated perspective of time and frequency domains and inputted into the improved 1D convolutional neural network model based on the residual block and attention mechanism (1DCNN-REA) model to realize fault diagnosis. Finally, the tree-structured parzen estimator (TPE) algorithm was utilized to realize the integration of two models in order to improve the diagnostic effect of a single model and obtain the final bearing fault diagnosis results. The proposed model was validated using real experimental data, and the results of the comparison and ablation experiments showed that compared with other models, the proposed model can precisely diagnosis the fault type with an accuracy rate of 98.93%.
AbstractList In order to address the issue of multi-information fusion, this paper proposed a method for bearing fault diagnosis based on multisource and multimodal information fusion. Existing bearing fault diagnosis methods mainly rely on single sensor information. Nevertheless, mechanical faults in bearings are intricate and subject to countless excitation disturbances, which poses a great challenge for accurate identification if only relying on feature extraction from single sensor input. In this paper, a multisource information fusion model based on auto-encoder was first established to achieve the fusion of multi-sensor signals. Based on the fused signals, multimodal feature extraction was realized by integrating image features and time-frequency statistical information. The one-dimensional vibration signals were converted into two-dimensional time-frequency images by continuous wavelet transform (CWT), and then they were fed into the Resnet network for fault diagnosis. At the same time, the time-frequency statistical features of the fused 1D signal were extracted from the integrated perspective of time and frequency domains and inputted into the improved 1D convolutional neural network model based on the residual block and attention mechanism (1DCNN-REA) model to realize fault diagnosis. Finally, the tree-structured parzen estimator (TPE) algorithm was utilized to realize the integration of two models in order to improve the diagnostic effect of a single model and obtain the final bearing fault diagnosis results. The proposed model was validated using real experimental data, and the results of the comparison and ablation experiments showed that compared with other models, the proposed model can precisely diagnosis the fault type with an accuracy rate of 98.93%.
Author Li, Yongxiang
He, Zhao
Zhou, Shenghan
Chang, Wenbing
Ma, Xiang
Chen, Xu
Author_xml – sequence: 1
  givenname: Xu
  surname: Chen
  fullname: Chen, Xu
  organization: School of Economics and Management, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Wenbing
  surname: Chang
  fullname: Chang, Wenbing
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Yongxiang
  surname: Li
  fullname: Li, Yongxiang
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 4
  givenname: Zhao
  surname: He
  fullname: He, Zhao
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
– sequence: 5
  givenname: Xiang
  surname: Ma
  fullname: Ma, Xiang
  organization: Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
– sequence: 6
  givenname: Shenghan
  surname: Zhou
  fullname: Zhou, Shenghan
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
BookMark eNpNkEtLAzEUhYNUsNau_APZy9S8Js0sS61aKBWKroebx7QpMxNJpgv_vdEWcXUu5x6-ezm3aNSH3iF0T8mMV1w8uggzRphgFbtCYyaVKmhZidG_-QZNUzoSQpiihAg5RoedS70bCvq03G6L3WqBtYPo-z1u4NQO2HrY9yH5hDs3HILFGpKzOPS4y2tfpHCKxmHo7cXogoUW-74JsYPB52BzSlnu0HUDbXLTi07Qx_PqfflabN5e1svFpjCMifwHsNJSZyxTSjVUQykdl6Q0CoBwbkAZkJpbJjQrmbGVaOba6Jx2pippxSdofebaAMf6M_oO4lcdwNe_Roj7GuLgTetqLY2lklLFpRPCVspYU-X7c6lAaWsy6-HMMjGkFF3zx6Ok_um8zp3Xl875N7cmdyY
Cites_doi 10.1109/TIM.2019.2915404
10.1109/TIM.2019.2925247
10.1016/j.measurement.2020.108774
10.3390/s19091960
10.1016/j.ymssp.2021.108216
10.1088/1361-6501/abe667
10.3390/s19092018
10.3390/app10113723
10.1109/ACCESS.2020.3012053
10.1016/j.egyr.2021.09.179
10.1109/TIM.2022.3165276
10.1109/TIM.2022.3170973
10.1109/TIE.2019.2912763
10.1016/j.neucom.2022.06.066
10.1007/s00521-019-04097-w
10.1016/j.measurement.2020.108502
10.1016/j.cja.2019.07.011
10.1088/1361-6501/acabdb
10.1371/journal.pone.0274613
10.1016/j.engappai.2023.105872
10.1016/j.inffus.2023.02.012
10.1016/j.aei.2023.101877
10.1007/s40435-023-01324-0
10.1109/TCSI.2021.3076282
10.1109/ACCESS.2023.3292247
10.1109/TII.2020.3011441
10.1109/TIM.2019.2901514
10.1016/j.measurement.2021.109088
10.3390/pr11102969
10.1016/j.envsoft.2021.105250
10.1016/j.knosys.2021.106796
10.1109/JSEN.2023.3264870
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/era.2024292
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2688-1594
EndPage 6300
ExternalDocumentID oai_doaj_org_article_b6cd1611836e44d98cdc9a25768a8bdc
10_3934_era_2024292
GroupedDBID AAYXX
ABDBF
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
GROUPED_DOAJ
IAO
ICD
ITC
RAN
TUS
ID FETCH-LOGICAL-c224t-1a25d1ecd2888f1ba56e3605c8aa033ca8ca6b3d24b252cd94f7bcb288ec95193
IEDL.DBID DOA
ISSN 2688-1594
IngestDate Wed Aug 27 01:26:38 EDT 2025
Tue Jul 01 00:42:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c224t-1a25d1ecd2888f1ba56e3605c8aa033ca8ca6b3d24b252cd94f7bcb288ec95193
OpenAccessLink https://doaj.org/article/b6cd1611836e44d98cdc9a25768a8bdc
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_b6cd1611836e44d98cdc9a25768a8bdc
crossref_primary_10_3934_era_2024292
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Electronic research archive
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/era.2024292-2
key-10.3934/era.2024292-1
key-10.3934/era.2024292-8
key-10.3934/era.2024292-7
key-10.3934/era.2024292-29
key-10.3934/era.2024292-28
key-10.3934/era.2024292-9
key-10.3934/era.2024292-27
key-10.3934/era.2024292-4
key-10.3934/era.2024292-3
key-10.3934/era.2024292-6
key-10.3934/era.2024292-5
key-10.3934/era.2024292-22
key-10.3934/era.2024292-21
key-10.3934/era.2024292-20
key-10.3934/era.2024292-26
key-10.3934/era.2024292-25
key-10.3934/era.2024292-24
key-10.3934/era.2024292-23
key-10.3934/era.2024292-19
key-10.3934/era.2024292-18
key-10.3934/era.2024292-17
key-10.3934/era.2024292-16
key-10.3934/era.2024292-11
key-10.3934/era.2024292-33
key-10.3934/era.2024292-10
key-10.3934/era.2024292-32
key-10.3934/era.2024292-31
key-10.3934/era.2024292-30
key-10.3934/era.2024292-15
key-10.3934/era.2024292-14
key-10.3934/era.2024292-13
key-10.3934/era.2024292-12
References_xml – ident: key-10.3934/era.2024292-28
  doi: 10.1109/TIM.2019.2915404
– ident: key-10.3934/era.2024292-8
  doi: 10.1109/TIM.2019.2925247
– ident: key-10.3934/era.2024292-20
  doi: 10.1016/j.measurement.2020.108774
– ident: key-10.3934/era.2024292-21
– ident: key-10.3934/era.2024292-27
  doi: 10.3390/s19091960
– ident: key-10.3934/era.2024292-2
  doi: 10.1016/j.ymssp.2021.108216
– ident: key-10.3934/era.2024292-33
  doi: 10.1088/1361-6501/abe667
– ident: key-10.3934/era.2024292-31
  doi: 10.3390/s19092018
– ident: key-10.3934/era.2024292-29
  doi: 10.3390/app10113723
– ident: key-10.3934/era.2024292-7
  doi: 10.1109/ACCESS.2020.3012053
– ident: key-10.3934/era.2024292-23
  doi: 10.1016/j.egyr.2021.09.179
– ident: key-10.3934/era.2024292-30
  doi: 10.1109/TIM.2022.3165276
– ident: key-10.3934/era.2024292-10
  doi: 10.1109/TIM.2022.3170973
– ident: key-10.3934/era.2024292-16
  doi: 10.1109/TIE.2019.2912763
– ident: key-10.3934/era.2024292-24
  doi: 10.1016/j.neucom.2022.06.066
– ident: key-10.3934/era.2024292-4
  doi: 10.1007/s00521-019-04097-w
– ident: key-10.3934/era.2024292-26
  doi: 10.1016/j.measurement.2020.108502
– ident: key-10.3934/era.2024292-19
  doi: 10.1016/j.cja.2019.07.011
– ident: key-10.3934/era.2024292-6
  doi: 10.1088/1361-6501/acabdb
– ident: key-10.3934/era.2024292-9
  doi: 10.1371/journal.pone.0274613
– ident: key-10.3934/era.2024292-15
  doi: 10.1016/j.engappai.2023.105872
– ident: key-10.3934/era.2024292-5
  doi: 10.1016/j.inffus.2023.02.012
– ident: key-10.3934/era.2024292-17
  doi: 10.1016/j.aei.2023.101877
– ident: key-10.3934/era.2024292-11
  doi: 10.1007/s40435-023-01324-0
– ident: key-10.3934/era.2024292-3
  doi: 10.1109/TCSI.2021.3076282
– ident: key-10.3934/era.2024292-12
  doi: 10.1109/ACCESS.2023.3292247
– ident: key-10.3934/era.2024292-22
  doi: 10.1109/TII.2020.3011441
– ident: key-10.3934/era.2024292-1
  doi: 10.1109/TIM.2019.2901514
– ident: key-10.3934/era.2024292-14
  doi: 10.1016/j.measurement.2021.109088
– ident: key-10.3934/era.2024292-13
  doi: 10.3390/pr11102969
– ident: key-10.3934/era.2024292-32
  doi: 10.1016/j.envsoft.2021.105250
– ident: key-10.3934/era.2024292-25
  doi: 10.1016/j.knosys.2021.106796
– ident: key-10.3934/era.2024292-18
  doi: 10.1109/JSEN.2023.3264870
SSID ssj0002810046
Score 2.2428417
Snippet In order to address the issue of multi-information fusion, this paper proposed a method for bearing fault diagnosis based on multisource and multimodal...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 6276
SubjectTerms attention mechanism
bearing fault
cnn
fault diagnosis
residual block
resnet
Title Resnet-1DCNN-REA bearing fault diagnosis method based on multi-source and multi-modal information fusion
URI https://doaj.org/article/b6cd1611836e44d98cdc9a25768a8bdc
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIT1G-5IHVaho7aTKW0qpCaoeKSt0i-84RIEhRm_5_7uKoKhMLq2XF1jsn7-5yfifEI_R9xrJoykVJpIyPUFlLrzv2gNkEShvzBefpLJ0szMsyWe61-uKasCAPHIDruhSQvBI6eak3BvMMEHLbuMk2cwj89SXO2wumPpqUESuhpeFCns616fo1qwzF3J3pFwXtKfU3lDI-FSetLygHYQ9n4sBX5-J4uhNS3VyIt7nfVL5WvefhbKbmo4F0dDSJbmRpt5-1xFAp976RoRW0ZFZCuapkUymoQm5e2grbga8V0pKtXCobRZZbTphdisV49DqcqLY5ggJiXVqXMMCeB4wphi17ziap1xSbQGZtpDXYDGzqNMbGxUkMmJuy78DRbA85u21X4rBaVf5ayBJdBCwkn4A2GGlbJqaPpeZfmJnTaYdM2uJVfAcNjIJiB4a1IFiLFtaOeGIsd1NYuLoZIHMWrTmLv8x58x8PuRVHvKeQKbkTh_V66-_Jd6jdQ3NMfgD-0MPx
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resnet-1DCNN-REA+bearing+fault+diagnosis+method+based+on+multi-source+and+multi-modal+information+fusion&rft.jtitle=Electronic+research+archive&rft.au=Xu+Chen&rft.au=Wenbing+Chang&rft.au=Yongxiang+Li&rft.au=Zhao+He&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2688-1594&rft.volume=32&rft.issue=11&rft.spage=6276&rft.epage=6300&rft_id=info:doi/10.3934%2Fera.2024292&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b6cd1611836e44d98cdc9a25768a8bdc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-1594&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-1594&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-1594&client=summon