Similar Image Retrieval Technique based on Semantics through Automatic Labeling Extraction of Personalized Images

Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a di...

Full description

Saved in:
Bibliographic Details
Published inJournal of Information and Communication Convergence Engineering, 22(1) Vol. 22; no. 1; pp. 56 - 63
Main Author Jung-Hee Seo
Format Journal Article
LanguageEnglish
Published 한국정보통신학회JICCE 2024
한국정보통신학회
Subjects
Online AccessGet full text
ISSN2234-8255
2234-8883
DOI10.56977/jicce.2024.22.1.56

Cover

Loading…
Abstract Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-basedimage retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device. KCI Citation Count: 0
AbstractList Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-basedimage retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device. KCI Citation Count: 0
Author Jung-Hee Seo
Author_xml – sequence: 1
  fullname: Jung-Hee Seo
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003063537$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNo1kEFLwzAcxYMoOOc-gZdcvAitado06XHMqYPhZJvnkqT_dHFt6tJW1E9vmfP0Ho8f78G7QueucYDQTURClmac379brSGkhCYhpWE0pGdoRGmcBEKI-PzfU8Yu0aRtrSIsjnnKSTJCh42tbSU9XtSyBLyGzlv4lBXegt45e-gBK9lCgRuHN1BL11nd4m7nm77c4WnfNbUcIryUCirrSjz_6rzUnR34xuBX8G3jZGV_horjRHuNLoysWpicdIzeHufb2XOwXD0tZtNloClN0iA1JAEOWcxJRhSTIIpI8EJoBqowCRVMqMikPBaCMDBCUZJQqVSkUqUM4fEY3f31Om_yvbZ5I-1Ryybf-3y63i7yiLBhKyMDfHuCe29rKKzMPwYj_Xf-snqYRxFPYjrc-AsAq3AB
ContentType Journal Article
DBID DBRKI
TDB
ACYCR
DOI 10.56977/jicce.2024.22.1.56
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
Korean Citation Index
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2234-8883
EndPage 63
ExternalDocumentID oai_kci_go_kr_ARTI_10524690
NODE11743222
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
ACYCR
ID FETCH-LOGICAL-c2246-6f04e7e937090b5ae8d187d8c5ebdf42858b1f6738805ef8b2042abb1b6bbf073
ISSN 2234-8255
IngestDate Wed Jun 26 17:16:18 EDT 2024
Thu Feb 06 13:26:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CNN
Image Retrieval
Feature Detect
etc
Deep Learning
CBIR
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2246-6f04e7e937090b5ae8d187d8c5ebdf42858b1f6738805ef8b2042abb1b6bbf073
Notes http://www.jicce.org/
OpenAccessLink https://www.jicce.org/journal/download_pdf.php?doi=10.56977/jicce.2024.22.1.56
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10524690
nurimedia_primary_NODE11743222
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationTitle Journal of Information and Communication Convergence Engineering, 22(1)
PublicationYear 2024
Publisher 한국정보통신학회JICCE
한국정보통신학회
Publisher_xml – name: 한국정보통신학회JICCE
– name: 한국정보통신학회
SSID ssib053376704
ssib044744615
ssib025702295
ssib012146031
Score 2.2431097
Snippet Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features...
SourceID nrf
nurimedia
SourceType Open Website
Publisher
StartPage 56
SubjectTerms 전자/정보통신공학
Title Similar Image Retrieval Technique based on Semantics through Automatic Labeling Extraction of Personalized Images
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11743222
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003063537
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Information and Communication Convergence Engineering, 2024, 22(1), , pp.56-63
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKOMAFgQAxGJMl8AmlJI6dOMe0DdoQGxJs0m5R7DqoTE1Zl05oB74iX4n3nDTNxkCDi-XatZP4_fT-2H7vEfLa8rDkABZPJ6HvYUpjrzBx4MVWxdqIpCwMnugeHEZ7x-L9iTwZDH72bi2taj00lzf6lfwPVaEN6Ipesv9A2W5SaIA60BdKoDCUt6Lx59l8hrdI9-d48-aTS451gQ73XWBWFFLTN44nzGENMSTzOjNPuqoXTbzWD4VuvNKz7_WyzR2OV-PWevolTOEecf4HVbb1aarXV5uveJ2gU-FF4-Np--EPkbicY5yo3m4Ey8ZMCZaMsZL6LJEsm7BkwtoQke3-BN_sTLp-6UakbCRZOukNHbFRyEYC_6Mi7MXpR9jbjkpcJWVqvOGIoMoID0za5hjc9tqUCntcWEY9ed7wz-uSQkaJO6z-OjMGo6VyMeR8GAzlDXG5r8nLK5G5T80s_7LIT5c52B_7OWirHDcc7pC7HOwWlBQHP7I1gwswi7q_OXbFDIJtOnX3W4gYrPONfgaqeBzFLgVm9-lN5Cz3-m9_f3nQkKolKFb3qhVmhwAW09OWjh6SBy02aNpg9hEZ2OoxOWvxSh2YaIdX2uGVOrzSRUU7vNIWr7TDK13jlW7wShcl7eO1ecT5E3L8Ljsa73ltyg_PYGRDLyp9YWMLOrOf-FoWVk0DFU-VkVZPSzCVpdJBiZlqlS9tqTQHoVNoHehI6xLE1VOyVS0q-4zQwIgghqKUBRTC6NBEJay28TV6Datt8gqWyhHwL4TcJrvdUubfmgAw-eHHSRagKQ_K9fNbTfOC3EcyNXt3O2SrXq7sS9Bma73rEPILKjaSvw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Similar+Image+Retrieval+Technique+based+on+Semantics+through+Automatic+Labeling+Extraction+of+Personalized+Images&rft.jtitle=Journal+of+Information+and+Communication+Convergence+Engineering%2C+22%281%29&rft.au=%EC%84%9C%EC%A0%95%ED%9D%AC&rft.date=2024&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C&rft.issn=2234-8255&rft.eissn=2234-8883&rft.spage=56&rft.epage=63&rft_id=info:doi/10.56977%2Fjicce.2024.22.1.56&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10524690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-8255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-8255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-8255&client=summon