Similar Image Retrieval Technique based on Semantics through Automatic Labeling Extraction of Personalized Images
Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a di...
Saved in:
Published in | Journal of Information and Communication Convergence Engineering, 22(1) Vol. 22; no. 1; pp. 56 - 63 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
한국정보통신학회JICCE
2024
한국정보통신학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2234-8255 2234-8883 |
DOI | 10.56977/jicce.2024.22.1.56 |
Cover
Loading…
Abstract | Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-basedimage retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device. KCI Citation Count: 0 |
---|---|
AbstractList | Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features discerned by humans. Hence, image retrieval based on the association of semantic similarities recognized by humans with visual similarities is a difficult task for most image-retrieval systems. Our study endeavors to bridge this gap by refining image semantics, aligning them more closely with human perception. Deep learning techniques are used to semantically classify images and retrieve those that are semantically similar to personalized images. Moreover, we introduce a keyword-basedimage retrieval, enabling automatic labeling of images in mobile environments. The proposed approach can improve the performance of a mobile device with limited resources and bandwidth by performing retrieval based on the visual features and keywords of the image on the mobile device. KCI Citation Count: 0 |
Author | Jung-Hee Seo |
Author_xml | – sequence: 1 fullname: Jung-Hee Seo |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003063537$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNo1kEFLwzAcxYMoOOc-gZdcvAitado06XHMqYPhZJvnkqT_dHFt6tJW1E9vmfP0Ho8f78G7QueucYDQTURClmac379brSGkhCYhpWE0pGdoRGmcBEKI-PzfU8Yu0aRtrSIsjnnKSTJCh42tbSU9XtSyBLyGzlv4lBXegt45e-gBK9lCgRuHN1BL11nd4m7nm77c4WnfNbUcIryUCirrSjz_6rzUnR34xuBX8G3jZGV_horjRHuNLoysWpicdIzeHufb2XOwXD0tZtNloClN0iA1JAEOWcxJRhSTIIpI8EJoBqowCRVMqMikPBaCMDBCUZJQqVSkUqUM4fEY3f31Om_yvbZ5I-1Ryybf-3y63i7yiLBhKyMDfHuCe29rKKzMPwYj_Xf-snqYRxFPYjrc-AsAq3AB |
ContentType | Journal Article |
DBID | DBRKI TDB ACYCR |
DOI | 10.56977/jicce.2024.22.1.56 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals Korean Citation Index |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2234-8883 |
EndPage | 63 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10524690 NODE11743222 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB ACYCR |
ID | FETCH-LOGICAL-c2246-6f04e7e937090b5ae8d187d8c5ebdf42858b1f6738805ef8b2042abb1b6bbf073 |
ISSN | 2234-8255 |
IngestDate | Wed Jun 26 17:16:18 EDT 2024 Thu Feb 06 13:26:54 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CNN Image Retrieval Feature Detect etc Deep Learning CBIR |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2246-6f04e7e937090b5ae8d187d8c5ebdf42858b1f6738805ef8b2042abb1b6bbf073 |
Notes | http://www.jicce.org/ |
OpenAccessLink | https://www.jicce.org/journal/download_pdf.php?doi=10.56977/jicce.2024.22.1.56 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10524690 nurimedia_primary_NODE11743222 |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Information and Communication Convergence Engineering, 22(1) |
PublicationYear | 2024 |
Publisher | 한국정보통신학회JICCE 한국정보통신학회 |
Publisher_xml | – name: 한국정보통신학회JICCE – name: 한국정보통신학회 |
SSID | ssib053376704 ssib044744615 ssib025702295 ssib012146031 |
Score | 2.2431097 |
Snippet | Despite the rapid strides in content-based image retrieval, a notable disparity persists between the visual features of images and the semantic features... |
SourceID | nrf nurimedia |
SourceType | Open Website Publisher |
StartPage | 56 |
SubjectTerms | 전자/정보통신공학 |
Title | Similar Image Retrieval Technique based on Semantics through Automatic Labeling Extraction of Personalized Images |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11743222 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003063537 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Information and Communication Convergence Engineering, 2024, 22(1), , pp.56-63 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKOMAFgQAxGJMl8AmlJI6dOMe0DdoQGxJs0m5R7DqoTE1Zl05oB74iX4n3nDTNxkCDi-XatZP4_fT-2H7vEfLa8rDkABZPJ6HvYUpjrzBx4MVWxdqIpCwMnugeHEZ7x-L9iTwZDH72bi2taj00lzf6lfwPVaEN6Ipesv9A2W5SaIA60BdKoDCUt6Lx59l8hrdI9-d48-aTS451gQ73XWBWFFLTN44nzGENMSTzOjNPuqoXTbzWD4VuvNKz7_WyzR2OV-PWevolTOEecf4HVbb1aarXV5uveJ2gU-FF4-Np--EPkbicY5yo3m4Ey8ZMCZaMsZL6LJEsm7BkwtoQke3-BN_sTLp-6UakbCRZOukNHbFRyEYC_6Mi7MXpR9jbjkpcJWVqvOGIoMoID0za5hjc9tqUCntcWEY9ed7wz-uSQkaJO6z-OjMGo6VyMeR8GAzlDXG5r8nLK5G5T80s_7LIT5c52B_7OWirHDcc7pC7HOwWlBQHP7I1gwswi7q_OXbFDIJtOnX3W4gYrPONfgaqeBzFLgVm9-lN5Cz3-m9_f3nQkKolKFb3qhVmhwAW09OWjh6SBy02aNpg9hEZ2OoxOWvxSh2YaIdX2uGVOrzSRUU7vNIWr7TDK13jlW7wShcl7eO1ecT5E3L8Ljsa73ltyg_PYGRDLyp9YWMLOrOf-FoWVk0DFU-VkVZPSzCVpdJBiZlqlS9tqTQHoVNoHehI6xLE1VOyVS0q-4zQwIgghqKUBRTC6NBEJay28TV6Datt8gqWyhHwL4TcJrvdUubfmgAw-eHHSRagKQ_K9fNbTfOC3EcyNXt3O2SrXq7sS9Bma73rEPILKjaSvw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Similar+Image+Retrieval+Technique+based+on+Semantics+through+Automatic+Labeling+Extraction+of+Personalized+Images&rft.jtitle=Journal+of+Information+and+Communication+Convergence+Engineering%2C+22%281%29&rft.au=%EC%84%9C%EC%A0%95%ED%9D%AC&rft.date=2024&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%95%EB%B3%B4%ED%86%B5%EC%8B%A0%ED%95%99%ED%9A%8C&rft.issn=2234-8255&rft.eissn=2234-8883&rft.spage=56&rft.epage=63&rft_id=info:doi/10.56977%2Fjicce.2024.22.1.56&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10524690 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-8255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-8255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-8255&client=summon |