Current-adaptive docking station for building submarine recharging system of underwater robot

Aiming at developing underwater battery recharging system, we have been researching on automatic docking of an underwater robot using stereo-vision-based visual servoing and 3D marker. The docking function deems to be an important role not only for battery recharging but also for other advanced appl...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Japan Society of Naval Architects and Ocean Engineers Vol. 32; pp. 163 - 176
Main Authors Saito, Kazuhiro, Toda, Yuichiro, Hsu, Horng-Yi, Monden, Takuya, Minami, Mamoru, Yamashita, Kohei
Format Journal Article
LanguageJapanese
Published Tokyo The Japan Society of Naval Architects and Ocean Engineers 01.01.2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1880-3717
1881-1760
DOI10.2534/jjasnaoe.32.163

Cover

Abstract Aiming at developing underwater battery recharging system, we have been researching on automatic docking of an underwater robot using stereo-vision-based visual servoing and 3D marker. The docking function deems to be an important role not only for battery recharging but also for other advanced applications, such as information transmissions. The authors have proposed a optical docking system and conducted real sea experiments to verify the practicability of the proposed docking system composed of stereo-vision-based 3D pose (position and orientation) realtime measurement system. The docking experiments have forced laboratory members to endure heavy burdens of preparing, conducting, and dismantling the experimental devices at sea, which hinders the efficiency of experiments at real sea. To improve the efficacy, firstly, the authors report that permanent stage for underwater robot experiments has been constructed on a shallow sea. Secondly, we propose a docking station that can adapt and change its docking direction to the current direction, through which the burden of controlling the underwater robot’s heading can be reduced. Thirdly, the effectiveness of the docking station adaptive to the changing current direction has been proven by successful repeated docking experiments in the environment with fluctuating current and turbidity disturbances in real sea. This also has shown that the combined system of the stereo-vision based 3D pose estimation and the current-adaptive docking station can improve the adaptive abilities against current changing disturbances, having shown the practicality of the combined system has been enhanced.
AbstractList Aiming at developing underwater battery recharging system, we have been researching on automatic docking of an underwater robot using stereo-vision-based visual servoing and 3D marker. The docking function deems to be an important role not only for battery recharging but also for other advanced applications, such as information transmissions. The authors have proposed a optical docking system and conducted real sea experiments to verify the practicability of the proposed docking system composed of stereo-vision-based 3D pose (position and orientation) realtime measurement system. The docking experiments have forced laboratory members to endure heavy burdens of preparing, conducting, and dismantling the experimental devices at sea, which hinders the efficiency of experiments at real sea. To improve the efficacy, firstly, the authors report that permanent stage for underwater robot experiments has been constructed on a shallow sea. Secondly, we propose a docking station that can adapt and change its docking direction to the current direction, through which the burden of controlling the underwater robot’s heading can be reduced. Thirdly, the effectiveness of the docking station adaptive to the changing current direction has been proven by successful repeated docking experiments in the environment with fluctuating current and turbidity disturbances in real sea. This also has shown that the combined system of the stereo-vision based 3D pose estimation and the current-adaptive docking station can improve the adaptive abilities against current changing disturbances, having shown the practicality of the combined system has been enhanced.
Author Monden, Takuya
Minami, Mamoru
Toda, Yuichiro
Saito, Kazuhiro
Yamashita, Kohei
Hsu, Horng-Yi
Author_xml – sequence: 1
  fullname: Saito, Kazuhiro
– sequence: 1
  fullname: Toda, Yuichiro
– sequence: 1
  fullname: Hsu, Horng-Yi
– sequence: 1
  fullname: Monden, Takuya
– sequence: 1
  fullname: Minami, Mamoru
– sequence: 1
  fullname: Yamashita, Kohei
BookMark eNqFkU1PwzAMhiM0JLbBmWslzt2SOm3SI0x8SZO4wBFVaeuOli0ZSQravyf7YBIXONmyn9eWX4_IQBuNhFwyOklS4NOuU04rgxNIJiyDEzJkUrKYiYwOdjmNQTBxRkbOdZTy0JRD8jrrrUXtY1WrtW8_MapN9d7qReS88q3RUWNsVPbtst4V-3KlbKsxsli9KbvYFTfO4yoyTdTrGu2X8mgja0rjz8lpo5YOLw5xTF7ubp9nD_H86f5xdj2PqyThENdZlUieKwTORc5YhgJKmUMjUl6XDQNJhRKQ8RQqKKtaiRpFFi5rqJA0FTAmV_u5a2s-enS-6ExvdVhZJGkmgcJ2z58U5FKKVP5DUUlpILNATfdUZY1zFptibdtgzaZgdDuNFz__KCApwj-C4mav6IKzCzzyyvq2WuIvnh5Ex-bW6wI1fAMicpkC
Cites_doi 10.1109/IROS.2014.6942870
10.9746/sicetr.52.284
10.1016/j.robot.2019.103382
10.1109/Techno-Ocean.2016.7890709
10.1016/j.oceaneng.2008.10.001
10.1109/OCEANS.2018.8604527
10.1007/s10846-017-0703-6
10.1299/transjsme.15-00391
10.1007/s00773-018-0586-7
10.1109/OCEANS.2018.8604867
10.1109/JOE.2018.2871651
10.1299/jsmermd.2015._2A2-D06_1
10.1299/transjsme.16-00410
10.20965/jrm.2018.p0055
ContentType Journal Article
Copyright 2021 The Japan Society of Naval Architects and Ocean Engineers
Copyright Japan Science and Technology Agency 2021
Copyright 2021
Copyright Japan Science and Technology Agency 2020
Copyright_xml – notice: 2021 The Japan Society of Naval Architects and Ocean Engineers
– notice: Copyright Japan Science and Technology Agency 2021
– notice: Copyright 2021
– notice: Copyright Japan Science and Technology Agency 2020
DBID AAYXX
CITATION
7TB
7TN
8FD
F1W
FR3
KR7
C1K
H95
H96
H97
H98
H99
L.F
L.G
P64
DOI 10.2534/jjasnaoe.32.163
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Civil Engineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ASFA: Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Oceanic Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
EISSN 1881-1760
EndPage 176
ExternalDocumentID 10_2534_jjasnaoe_32_163
article_jjasnaoe_32_0_32_163_article_char_en
GroupedDBID 2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
AAYXX
CITATION
7TB
7TN
8FD
F1W
FR3
KR7
C1K
H95
H96
H97
H98
H99
L.F
L.G
P64
ID FETCH-LOGICAL-c2243-d6c2849ae34479116e73b893f754dbf13807a736453c3bcda7de76176f0780573
ISSN 1880-3717
IngestDate Mon Jun 30 09:56:39 EDT 2025
Mon Jun 30 12:02:04 EDT 2025
Mon Jun 30 08:31:24 EDT 2025
Tue Jul 01 02:11:21 EDT 2025
Wed Sep 03 06:31:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2243-d6c2849ae34479116e73b893f754dbf13807a736453c3bcda7de76176f0780573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jjasnaoe/32/0/32_163/_article/-char/en
PQID 2508003986
PQPubID 2028971
PageCount 14
ParticipantIDs proquest_journals_2568303224
proquest_journals_2539887584
proquest_journals_2508003986
crossref_primary_10_2534_jjasnaoe_32_163
jstage_primary_article_jjasnaoe_32_0_32_163_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of the Japan Society of Naval Architects and Ocean Engineers
PublicationTitleAlternate J.JASNAOE
PublicationYear 2021
Publisher The Japan Society of Naval Architects and Ocean Engineers
Japan Science and Technology Agency
Publisher_xml – name: The Japan Society of Naval Architects and Ocean Engineers
– name: Japan Science and Technology Agency
References 12) Myint, M., Lwin, K.N., Mukada, N., Yamada, D., Matsuno, T., Toda, Y., Kazuhiro, S. and Minami, M.: Experimental verification of turbidity tolerance of stereo-vision-based 3D pose estimation system. Journal of Marine Science and Technology, Vol. 24, pp. 756-779, 2019.
5) Yazdani, A. M., Sammut, K., Yakimenko, O., and Lammas, A.: A survey of underwater docking guidance systems. Robotics and Autonomous Systems, Vol. 124, pp. 1-21, 2020.
7) Yanou, A., Yonemori, K., Ishiyama, S., Minami, M. and Matsuno, T.: Control characteristics of visual-servo type underwater vehicle system using three-dimensional marker for air bubble disturbance, Transactions of the Society of Instrument and Control Engineers, Vol. 52, No. 5, pp.284-291, 2016 (in Japanese). 矢納陽, 米森健太, 石山新太郎, 見浪護, 松野隆幸: 3次元マーカーを用いたビジュアルサーボ型水中ロボットの気泡外乱に対する制御特性, 計測自動制御学会論文集, Vol. 52, No. 5 (2016), pp.284-291.
14) Lwin, K. N., Myint, M., Mukada, M., Yamada, D., Matsuno, T., Saitou, K., Godou, W., Sakamoto, and T., Minami, M.: Sea Docking by Dual-eye Pose Estimation with Optimized Genetic Algorithm Parameters, Journal of Intelligent & Robotic Systems, Vol.92, Issue 1, pp.159-186, 2018.
11) Lwin, K. N., Mukada, M., Myint, M., Yamada, D, Yanou, A., Matsuno, T., Saitou, T., Godou, W., Sakamoto, T., and Minami, M.: Visual Docking against Bubble Noise with Three-dimensional Perception Using Dual-eye Cameras, IEEE Journal of Oceanic Engineering, Vol. 45, No. 1, pp. 247-270, 2020.
2) Palomeras, N., Penalver, A., Massot-Campos, M., Vallicrosa, G., Negre, P.L., Fernandez, J.J., Ridao, P., Sanz, P.J., Oliver-Codina, G., and Palomer, A.: I-AUV docking and intervention in a subsea panel, Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2279.2285, 2014.
1) Park, J-Y., Jun, B-H., Lee, P-M., and Oh, J.: Experiments on vision guided docking of an autonomous underwater vehicle using one camera, Ocean Engineering, Vol. 36, No. 1, pp.48–61, 2009.
4) Maki, T., Sato, Y., Matsuda, T., Masuda, K., and Sakamaki, T.: Docking Metho d for Hovering-Type AUVs Based on Acoustic and Optical Landmarks, J. Robot. Mechatron., Vol.30, No.1, pp. 55-64, 2018.
3) Ishii, K., Sonoda, T., Nakanishi, R., Kawashima, S. and Hidaka, S.: Research on docking control of autonomous underwater vehicle, ROBOMECH2015 in Kyoto, 2A2-D06, 2015 (in Japanese). 石井和男, 園田隆, 中西亮汰, 河島晋, 日高翔太, 自律型水中ロボットのドッキング制御に関する研究, ロボティクス・メカトロニクス講演会2015(2015), 2A2-D06.
9) Lwin, K. N., Yonemori, K., Myint, M., Mukada, N., Minami, M., Yanou, A. and Matsuno, T.: Performance analyses and optimization of real-time multistep GA for visual-servoing based underwater vehicle, IEEE/OES/MTS Int. Conference Techno-Ocean 2016, pp.519–526, 2016.
6) Minami, M., Nishimura, K., Sunami, Y., Yanou, A., Cui, Y., Yamashita, M. and Ishiyama, S.: A proposal of decontamination robot using 3D hand-eye-dual-cameras solid recognition and accuracy validation, Transactions of the JSME, Vol. 81, No. 831, DOI:10.1299/transjsme.15-00391, 2015 (in Japanese). 見浪護, 西村健太, 須浪唯介, 矢納陽, 崔禹, 山下学, 石山新太郎: 3次元複眼立体認識を用いた除染ロボットの提案と精度検証実験, 日本機械学会論文集, Vol. 81, No. 831, DOI:10.1299/transjsme.15-00216, 2015.
13) Yamashita, K., Yi, H. H., Yamada, D., Mukada, N., Lwin, K. N., Myint, M., Matsuno, T., Toda, and Y., Minami, M.: Improvement of 3D Pose Estimation Abilities by Light-Emitting-3D Marker for AUV Docking, Proceedings of OCEANS 2018 MTS/IEEE Charleston, DOI: 10.1109/OCEANS.2018.8604867, 2018.
10) Yonemori, K., Yanou, A., Myo, M., Khin, N. L. and Minami, M.: Docking experiment of underwater vehicle by dual-eye visual servoing in sea, Transactions of the JSME, Vol. 83, No. 848, DOI:10.1299/transjsme.16- 00410, 2017 (in Japanese). 米森健太, 矢納陽, Myo MYINT, Khin Nwe LWIN, 見浪護: 複眼ビジュアルサーボによる水中ロボットの実海域嵌合実験, 日本機械学会論文集Vol. 83, No. 848, DOI:10.1299/transjsme.16- 00410, 2017.
15) Nakamura, S., Yamada, D., Mukada, N., Myint, M., Lwin, K. N., Matsuno, T., Toda, Y., and Minami: M., Development of Dual-eyes Docking System for AUV with Lighting 3D Marker, Proceedings of OCEANS 2018 MTS/IEEE Charleston, DOI: 10.1109/OCEANS.2018.8604527, 2018.
8) Myo, M., Kenta Y., Khin N. L., Akira Y. and Mamoru M.: Dual-eyes Vision-based Docking System for Autonomous Underwater Vehicle: an Approach and Experiments, Journal of Intelligent and Robotic Systems, DOI:10.1007/s10846-017-0703-6, 2017.
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
References_xml – reference: 12) Myint, M., Lwin, K.N., Mukada, N., Yamada, D., Matsuno, T., Toda, Y., Kazuhiro, S. and Minami, M.: Experimental verification of turbidity tolerance of stereo-vision-based 3D pose estimation system. Journal of Marine Science and Technology, Vol. 24, pp. 756-779, 2019.
– reference: 3) Ishii, K., Sonoda, T., Nakanishi, R., Kawashima, S. and Hidaka, S.: Research on docking control of autonomous underwater vehicle, ROBOMECH2015 in Kyoto, 2A2-D06, 2015 (in Japanese). 石井和男, 園田隆, 中西亮汰, 河島晋, 日高翔太, 自律型水中ロボットのドッキング制御に関する研究, ロボティクス・メカトロニクス講演会2015(2015), 2A2-D06.
– reference: 9) Lwin, K. N., Yonemori, K., Myint, M., Mukada, N., Minami, M., Yanou, A. and Matsuno, T.: Performance analyses and optimization of real-time multistep GA for visual-servoing based underwater vehicle, IEEE/OES/MTS Int. Conference Techno-Ocean 2016, pp.519–526, 2016.
– reference: 14) Lwin, K. N., Myint, M., Mukada, M., Yamada, D., Matsuno, T., Saitou, K., Godou, W., Sakamoto, and T., Minami, M.: Sea Docking by Dual-eye Pose Estimation with Optimized Genetic Algorithm Parameters, Journal of Intelligent & Robotic Systems, Vol.92, Issue 1, pp.159-186, 2018.
– reference: 11) Lwin, K. N., Mukada, M., Myint, M., Yamada, D, Yanou, A., Matsuno, T., Saitou, T., Godou, W., Sakamoto, T., and Minami, M.: Visual Docking against Bubble Noise with Three-dimensional Perception Using Dual-eye Cameras, IEEE Journal of Oceanic Engineering, Vol. 45, No. 1, pp. 247-270, 2020.
– reference: 15) Nakamura, S., Yamada, D., Mukada, N., Myint, M., Lwin, K. N., Matsuno, T., Toda, Y., and Minami: M., Development of Dual-eyes Docking System for AUV with Lighting 3D Marker, Proceedings of OCEANS 2018 MTS/IEEE Charleston, DOI: 10.1109/OCEANS.2018.8604527, 2018.
– reference: 5) Yazdani, A. M., Sammut, K., Yakimenko, O., and Lammas, A.: A survey of underwater docking guidance systems. Robotics and Autonomous Systems, Vol. 124, pp. 1-21, 2020.
– reference: 13) Yamashita, K., Yi, H. H., Yamada, D., Mukada, N., Lwin, K. N., Myint, M., Matsuno, T., Toda, and Y., Minami, M.: Improvement of 3D Pose Estimation Abilities by Light-Emitting-3D Marker for AUV Docking, Proceedings of OCEANS 2018 MTS/IEEE Charleston, DOI: 10.1109/OCEANS.2018.8604867, 2018.
– reference: 2) Palomeras, N., Penalver, A., Massot-Campos, M., Vallicrosa, G., Negre, P.L., Fernandez, J.J., Ridao, P., Sanz, P.J., Oliver-Codina, G., and Palomer, A.: I-AUV docking and intervention in a subsea panel, Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2279.2285, 2014.
– reference: 1) Park, J-Y., Jun, B-H., Lee, P-M., and Oh, J.: Experiments on vision guided docking of an autonomous underwater vehicle using one camera, Ocean Engineering, Vol. 36, No. 1, pp.48–61, 2009.
– reference: 7) Yanou, A., Yonemori, K., Ishiyama, S., Minami, M. and Matsuno, T.: Control characteristics of visual-servo type underwater vehicle system using three-dimensional marker for air bubble disturbance, Transactions of the Society of Instrument and Control Engineers, Vol. 52, No. 5, pp.284-291, 2016 (in Japanese). 矢納陽, 米森健太, 石山新太郎, 見浪護, 松野隆幸: 3次元マーカーを用いたビジュアルサーボ型水中ロボットの気泡外乱に対する制御特性, 計測自動制御学会論文集, Vol. 52, No. 5 (2016), pp.284-291.
– reference: 6) Minami, M., Nishimura, K., Sunami, Y., Yanou, A., Cui, Y., Yamashita, M. and Ishiyama, S.: A proposal of decontamination robot using 3D hand-eye-dual-cameras solid recognition and accuracy validation, Transactions of the JSME, Vol. 81, No. 831, DOI:10.1299/transjsme.15-00391, 2015 (in Japanese). 見浪護, 西村健太, 須浪唯介, 矢納陽, 崔禹, 山下学, 石山新太郎: 3次元複眼立体認識を用いた除染ロボットの提案と精度検証実験, 日本機械学会論文集, Vol. 81, No. 831, DOI:10.1299/transjsme.15-00216, 2015.
– reference: 4) Maki, T., Sato, Y., Matsuda, T., Masuda, K., and Sakamaki, T.: Docking Metho d for Hovering-Type AUVs Based on Acoustic and Optical Landmarks, J. Robot. Mechatron., Vol.30, No.1, pp. 55-64, 2018.
– reference: 8) Myo, M., Kenta Y., Khin N. L., Akira Y. and Mamoru M.: Dual-eyes Vision-based Docking System for Autonomous Underwater Vehicle: an Approach and Experiments, Journal of Intelligent and Robotic Systems, DOI:10.1007/s10846-017-0703-6, 2017.
– reference: 10) Yonemori, K., Yanou, A., Myo, M., Khin, N. L. and Minami, M.: Docking experiment of underwater vehicle by dual-eye visual servoing in sea, Transactions of the JSME, Vol. 83, No. 848, DOI:10.1299/transjsme.16- 00410, 2017 (in Japanese). 米森健太, 矢納陽, Myo MYINT, Khin Nwe LWIN, 見浪護: 複眼ビジュアルサーボによる水中ロボットの実海域嵌合実験, 日本機械学会論文集Vol. 83, No. 848, DOI:10.1299/transjsme.16- 00410, 2017.
– ident: 2
  doi: 10.1109/IROS.2014.6942870
– ident: 7
  doi: 10.9746/sicetr.52.284
– ident: 5
  doi: 10.1016/j.robot.2019.103382
– ident: 9
  doi: 10.1109/Techno-Ocean.2016.7890709
– ident: 1
  doi: 10.1016/j.oceaneng.2008.10.001
– ident: 15
  doi: 10.1109/OCEANS.2018.8604527
– ident: 8
  doi: 10.1007/s10846-017-0703-6
– ident: 6
  doi: 10.1299/transjsme.15-00391
– ident: 12
  doi: 10.1007/s00773-018-0586-7
– ident: 13
  doi: 10.1109/OCEANS.2018.8604867
– ident: 11
  doi: 10.1109/JOE.2018.2871651
– ident: 14
– ident: 3
  doi: 10.1299/jsmermd.2015._2A2-D06_1
– ident: 10
  doi: 10.1299/transjsme.16-00410
– ident: 4
  doi: 10.20965/jrm.2018.p0055
SSID ssj0048818
ssib025353319
ssib031741110
ssib023160803
ssib000936973
ssib020472916
ssib002484520
Score 2.1308548
Snippet Aiming at developing underwater battery recharging system, we have been researching on automatic docking of an underwater robot using stereo-vision-based...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 163
SubjectTerms Adaptive systems
Batteries
Current direction
Disturbances
Docking
Experimental devices
Experiments
Multinational space ventures
Offshore docking
Position measurement
Rechargeable batteries
Recharging
Robots
Submarines
Turbidity
Underwater
Underwater construction
Underwater robots
Underwater vehicles
Vision
Visual control
Title Current-adaptive docking station for building submarine recharging system of underwater robot
URI https://www.jstage.jst.go.jp/article/jjasnaoe/32/0/32_163/_article/-char/en
https://www.proquest.com/docview/2508003986
https://www.proquest.com/docview/2539887584
https://www.proquest.com/docview/2568303224
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Japan Society of Naval Architects and Ocean Engineers, 2021, Vol.32, pp.163-176
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKwoEL4qktLMgHFiFFKUmcxqk4rapdVdvdIqRW2j2gyImTNq1IqrQRKn-DP8z4kUcLi4BLFdluHjOTbz6P4xmE3lI_GTBucZM6LDJdnw9M5vS5SYAcEM9m3JUp868n3mjmXt70bzqdH62vlspt2Iu-_3Zfyf9oFdpAr2KX7D9otj4pNMAx6Bd-QcPw-1c61smVTMbZWn4CxAHddICg_oYw1IWvjQ24PiY2-xmAciJBkmyUmZwFZRS7yYpvTCRNLPIw34vZT9KFxJVszValMWbpLj8dDk991xjrgzlbrVgK_8zCMtssyiZ6zSU9vS3TaJEWeY0y7Kso46S46zhfxGmt-jzTWDiFi-1qtzHKi2xu3qbGSNVqqWIVjn0Qq7gE_9-AllgYaNYPjDO517QFxYAsAH9qZ2cvrtpskdLSauO3jo8qALYVXB46BqdPXOEYlmyTsTzuEaenR-6n4J58Ci5mV1fB9Pxmeg_ddyiVa__jzy3OKkog0jbH8d1-w7kdkX6zxbmBP3uW3yx1w50Aw25y6AF_c23JwRR9AECVQen68VU-KvEAHw5uf49KPViCac1_pRSSJ00fo0d6goPPlLU-QZ0le4qOr2Uy-GKH3-EJg1cAa_U8Q18OjRhrI8baiDEYMa6MGNdGjBsjxsqIcZ7gxoixNOLnaHZxPh2OTF3zw4yATBKTexEQpgGLRSZKcMReTEkInDqhfZeHiS3qIzAq1s5JRMKIM8pjCizcSyxRnYOSF-goy7P4GOGBxyIagcOKBeeHmb0X8SQOfTg_OHUr6aL3lfiCtUrtEsCUWEg6qCQdECcASXfRRyXeeqB-5_cGWnp03SnEADjVRSeVTgKNHhu4jJirkYHv3dENXT5M5t07uj0fyCeI7OWfT_4KPWxexBN0tC3K-DXQ6G34Rpr1T5GLxYQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current-adaptive+docking+station+for+building+submarine+recharging+system+of+underwater+robot&rft.jtitle=Nihon+Senpaku+Kaiyo%CC%84+Ko%CC%84gakkai+ronbunshu&rft.au=Toda%2C+Yuichiro&rft.au=Yamashita%2C+Kohei&rft.au=Monden%2C+Takuya&rft.au=Horng-Yi+Hsu&rft.date=2021-01-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1880-3717&rft.eissn=1881-1760&rft.volume=32&rft.spage=163&rft_id=info:doi/10.2534%2Fjjasnaoe.32.163&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1880-3717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1880-3717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1880-3717&client=summon