Feature Selection by Hybrid Brain Storm Optimization Algorithm for COVID-19 Classification
A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set...
Saved in:
Published in | Journal of computational biology Vol. 29; no. 6; p. 515 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.06.2022
|
Subjects | |
Online Access | Get more information |
ISSN | 1557-8666 |
DOI | 10.1089/cmb.2021.0256 |
Cover
Abstract | A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set in order to reduce the noise in data and keep the relevant features. The optimal feature subset contains all useful and relevant features and excludes any irrelevant feature that allows machine learning models to understand better and differentiate efficiently the patterns in data sets. In this article, we propose a binary hybrid metaheuristic-based algorithm for selecting the optimal feature subset. Concretely, the brain storm optimization algorithm is hybridized by the firefly algorithm and adopted as a wrapper method for feature selection problems on classification data sets. The proposed algorithm is evaluated on 21 data sets and compared with 11 metaheuristic algorithms. In addition, the proposed method is adopted for the coronavirus disease data set. The obtained experimental results substantiate the robustness of the proposed hybrid algorithm. It efficiently reduces and selects the feature subset and at the same time results in higher classification accuracy than other methods in the literature. |
---|---|
AbstractList | A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set in order to reduce the noise in data and keep the relevant features. The optimal feature subset contains all useful and relevant features and excludes any irrelevant feature that allows machine learning models to understand better and differentiate efficiently the patterns in data sets. In this article, we propose a binary hybrid metaheuristic-based algorithm for selecting the optimal feature subset. Concretely, the brain storm optimization algorithm is hybridized by the firefly algorithm and adopted as a wrapper method for feature selection problems on classification data sets. The proposed algorithm is evaluated on 21 data sets and compared with 11 metaheuristic algorithms. In addition, the proposed method is adopted for the coronavirus disease data set. The obtained experimental results substantiate the robustness of the proposed hybrid algorithm. It efficiently reduces and selects the feature subset and at the same time results in higher classification accuracy than other methods in the literature. |
Author | Chhabra, Amit Bacanin, Nebojsa Suresh, Muthusamy Bezdan, Timea Zivkovic, Miodrag |
Author_xml | – sequence: 1 givenname: Timea orcidid: 0000-0001-6938-6974 surname: Bezdan fullname: Bezdan, Timea organization: Department of Informatics and Computing, Singidunum University, Belgrade, Serbia – sequence: 2 givenname: Miodrag surname: Zivkovic fullname: Zivkovic, Miodrag organization: Department of Informatics and Computing, Singidunum University, Belgrade, Serbia – sequence: 3 givenname: Nebojsa orcidid: 0000-0002-2062-924X surname: Bacanin fullname: Bacanin, Nebojsa organization: Department of Informatics and Computing, Singidunum University, Belgrade, Serbia – sequence: 4 givenname: Amit orcidid: 0000-0003-2056-6231 surname: Chhabra fullname: Chhabra, Amit organization: Department of Computer Engineering and Technology, Guru Nanak Dev University, Amritsar, India – sequence: 5 givenname: Muthusamy surname: Suresh fullname: Suresh, Muthusamy organization: Department of Electronics and Communication Engineering, Kongu Engineering College, Erode, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35446145$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j71OwzAYAC0Eoj8wsiK_QII_x3GSsYSWVqqUocDAUtnOZzCKk8hJh_D0SAWmW04n3YJctl2LhNwBi4HlxYPxOuaMQ8x4Ki_IHNI0i3Ip5YwshuGLMUgky67JLEmFkCDSOXnfoBpPAekBGzSj61qqJ7qddHA1fQzKtfQwdsHTqh-dd9_qrKyajy648dNT2wVaVm-7pwgKWjZqGJx15mzdkCurmgFv_7gkr5v1S7mN9tXzrlztI8N5MkZWasYFGiUtCtCotRKJBEgzjQAiz5UFYXghuFIZ2tygNhaymhusWYGcL8n9b7c_aY_1sQ_OqzAd_yf5DwNFVJA |
CitedBy_id | crossref_primary_10_1007_s12530_024_09585_6 crossref_primary_10_3390_math10132272 crossref_primary_10_1007_s40747_023_01118_z crossref_primary_10_1002_net_22235 crossref_primary_10_1007_s00354_024_00255_4 crossref_primary_10_1111_exsy_13293 crossref_primary_10_1093_jcde_qwad009 crossref_primary_10_3934_mbe_2023244 crossref_primary_10_1007_s42979_023_02487_5 crossref_primary_10_1145_3707702 crossref_primary_10_7717_peerj_cs_1795 crossref_primary_10_3233_HIS_230003 crossref_primary_10_3390_biomimetics9010009 crossref_primary_10_1007_s00521_023_08812_6 crossref_primary_10_1371_journal_pone_0305654 crossref_primary_10_3390_su15108187 crossref_primary_10_3390_a16030167 crossref_primary_10_1016_j_micpro_2023_104778 crossref_primary_10_1080_10255842_2024_2429012 crossref_primary_10_1093_jigpal_jzae051 crossref_primary_10_1007_s00521_024_10288_x crossref_primary_10_3390_a16040208 crossref_primary_10_1016_j_eswa_2023_122317 crossref_primary_10_1038_s41598_024_63328_w crossref_primary_10_1007_s11042_024_18295_9 crossref_primary_10_1016_j_eswa_2024_123362 crossref_primary_10_3390_math10101640 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1089/cmb.2021.0256 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1557-8666 |
ExternalDocumentID | 35446145 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 29K 34G 39C 4.4 53G 5GY ABBKN ABEFU ACGFO ADBBV AENEX AFOSN AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BNQNF CAG COF CS3 D-I DIK DU5 EBS EJD F5P IAO IER IGS IHR IM4 ITC MV1 NPM NQHIM O9- P2P R.V RIG RML RMSOB RNS TN5 TR2 UE5 VH1 |
ID | FETCH-LOGICAL-c223t-f6b024eca6fe41bebba4361157be11488af14c2942aa7ef8cebcf17d2ced09e22 |
IngestDate | Thu Apr 03 06:58:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | brain storm optimization algorithm feature selection and classification optimization swarm intelligence |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c223t-f6b024eca6fe41bebba4361157be11488af14c2942aa7ef8cebcf17d2ced09e22 |
ORCID | 0000-0003-2056-6231 0000-0001-6938-6974 0000-0002-2062-924X |
PMID | 35446145 |
ParticipantIDs | pubmed_primary_35446145 |
PublicationCentury | 2000 |
PublicationDate | 2022-Jun |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-Jun |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of computational biology |
PublicationTitleAlternate | J Comput Biol |
PublicationYear | 2022 |
SSID | ssj0013607 |
Score | 2.4832222 |
Snippet | A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 515 |
Title | Feature Selection by Hybrid Brain Storm Optimization Algorithm for COVID-19 Classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35446145 |
Volume | 29 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6FVq3ooQL6pKXaQ2_INLtev44IWqWVCAegQlzQ7nq2cVsnKLiVwh_o3-7sw04goD4uVuSVLcvft5OZ8cw3hLzVpcH9hxsQmEwjEXMWqVgpK4SccRlDkuS2wflgmA5OxKfT5LTX-7VQtfSjUTv66ta-kv9BFc8hrrZL9h-Q7W6KJ_A34otHRBiPf4Wx9d_sB4AjN8zGAonO5GBmm7AQNIz5rdb2tN4-RLtQh4bL7d3vXybTqhnVrsJw7_Dzx_2IFX46pq0bmkO17LNqNwOizR8GAacuooerMgw7rmrozP1Z9fPbBO2RL9KflNOQPnTpUwTWixgM0e59vZyXDY1GUk19zreumsXcBIa1XQ3VDgR7muCfYOoHq7QGN6Q4qiXrmfjOziWr3s-tKKquFcbz3Gqsei3yBYQvagdxnGB0y0Ty59UbItvt0gpZyTJr34c26dN-jEr7WZBnxSd5d-05VsnD9tobgYlzUI7XyOOAEt31NFknPRhvkAd-1uhsgzw66AR6L5-Qs0Ad2lGHqhn11KGOOtRRhy5Sh3bUoUgd2lKHXqfOU3Ly4f3x3iAKYzYijb5hE5lUoaMGWqYGBFOglBRxakWYFNhoOZe4nTUvBJcyA5NrUNqwrOQayn4BnD8j98aTMbwgNAO8ZSKYZEYIhbYeIC60FszkRhaGvyTP_Ss6v_BaKufty9u8c-UVWZ1T6zW5b3DzwhZ6go1643D6DXZoYBo |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+by+Hybrid+Brain+Storm+Optimization+Algorithm+for+COVID-19+Classification&rft.jtitle=Journal+of+computational+biology&rft.au=Bezdan%2C+Timea&rft.au=Zivkovic%2C+Miodrag&rft.au=Bacanin%2C+Nebojsa&rft.au=Chhabra%2C+Amit&rft.date=2022-06-01&rft.eissn=1557-8666&rft.volume=29&rft.issue=6&rft.spage=515&rft_id=info:doi/10.1089%2Fcmb.2021.0256&rft_id=info%3Apmid%2F35446145&rft_id=info%3Apmid%2F35446145&rft.externalDocID=35446145 |