Feature Selection by Hybrid Brain Storm Optimization Algorithm for COVID-19 Classification

A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational biology Vol. 29; no. 6; p. 515
Main Authors Bezdan, Timea, Zivkovic, Miodrag, Bacanin, Nebojsa, Chhabra, Amit, Suresh, Muthusamy
Format Journal Article
LanguageEnglish
Published United States 01.06.2022
Subjects
Online AccessGet more information
ISSN1557-8666
DOI10.1089/cmb.2021.0256

Cover

Abstract A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set in order to reduce the noise in data and keep the relevant features. The optimal feature subset contains all useful and relevant features and excludes any irrelevant feature that allows machine learning models to understand better and differentiate efficiently the patterns in data sets. In this article, we propose a binary hybrid metaheuristic-based algorithm for selecting the optimal feature subset. Concretely, the brain storm optimization algorithm is hybridized by the firefly algorithm and adopted as a wrapper method for feature selection problems on classification data sets. The proposed algorithm is evaluated on 21 data sets and compared with 11 metaheuristic algorithms. In addition, the proposed method is adopted for the coronavirus disease data set. The obtained experimental results substantiate the robustness of the proposed hybrid algorithm. It efficiently reduces and selects the feature subset and at the same time results in higher classification accuracy than other methods in the literature.
AbstractList A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of prediction, and reduces the computation time. Feature selection is the process of selecting the optimal set of input features from a given data set in order to reduce the noise in data and keep the relevant features. The optimal feature subset contains all useful and relevant features and excludes any irrelevant feature that allows machine learning models to understand better and differentiate efficiently the patterns in data sets. In this article, we propose a binary hybrid metaheuristic-based algorithm for selecting the optimal feature subset. Concretely, the brain storm optimization algorithm is hybridized by the firefly algorithm and adopted as a wrapper method for feature selection problems on classification data sets. The proposed algorithm is evaluated on 21 data sets and compared with 11 metaheuristic algorithms. In addition, the proposed method is adopted for the coronavirus disease data set. The obtained experimental results substantiate the robustness of the proposed hybrid algorithm. It efficiently reduces and selects the feature subset and at the same time results in higher classification accuracy than other methods in the literature.
Author Chhabra, Amit
Bacanin, Nebojsa
Suresh, Muthusamy
Bezdan, Timea
Zivkovic, Miodrag
Author_xml – sequence: 1
  givenname: Timea
  orcidid: 0000-0001-6938-6974
  surname: Bezdan
  fullname: Bezdan, Timea
  organization: Department of Informatics and Computing, Singidunum University, Belgrade, Serbia
– sequence: 2
  givenname: Miodrag
  surname: Zivkovic
  fullname: Zivkovic, Miodrag
  organization: Department of Informatics and Computing, Singidunum University, Belgrade, Serbia
– sequence: 3
  givenname: Nebojsa
  orcidid: 0000-0002-2062-924X
  surname: Bacanin
  fullname: Bacanin, Nebojsa
  organization: Department of Informatics and Computing, Singidunum University, Belgrade, Serbia
– sequence: 4
  givenname: Amit
  orcidid: 0000-0003-2056-6231
  surname: Chhabra
  fullname: Chhabra, Amit
  organization: Department of Computer Engineering and Technology, Guru Nanak Dev University, Amritsar, India
– sequence: 5
  givenname: Muthusamy
  surname: Suresh
  fullname: Suresh, Muthusamy
  organization: Department of Electronics and Communication Engineering, Kongu Engineering College, Erode, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35446145$$D View this record in MEDLINE/PubMed
BookMark eNo1j71OwzAYAC0Eoj8wsiK_QII_x3GSsYSWVqqUocDAUtnOZzCKk8hJh_D0SAWmW04n3YJctl2LhNwBi4HlxYPxOuaMQ8x4Ki_IHNI0i3Ip5YwshuGLMUgky67JLEmFkCDSOXnfoBpPAekBGzSj61qqJ7qddHA1fQzKtfQwdsHTqh-dd9_qrKyajy648dNT2wVaVm-7pwgKWjZqGJx15mzdkCurmgFv_7gkr5v1S7mN9tXzrlztI8N5MkZWasYFGiUtCtCotRKJBEgzjQAiz5UFYXghuFIZ2tygNhaymhusWYGcL8n9b7c_aY_1sQ_OqzAd_yf5DwNFVJA
CitedBy_id crossref_primary_10_1007_s12530_024_09585_6
crossref_primary_10_3390_math10132272
crossref_primary_10_1007_s40747_023_01118_z
crossref_primary_10_1002_net_22235
crossref_primary_10_1007_s00354_024_00255_4
crossref_primary_10_1111_exsy_13293
crossref_primary_10_1093_jcde_qwad009
crossref_primary_10_3934_mbe_2023244
crossref_primary_10_1007_s42979_023_02487_5
crossref_primary_10_1145_3707702
crossref_primary_10_7717_peerj_cs_1795
crossref_primary_10_3233_HIS_230003
crossref_primary_10_3390_biomimetics9010009
crossref_primary_10_1007_s00521_023_08812_6
crossref_primary_10_1371_journal_pone_0305654
crossref_primary_10_3390_su15108187
crossref_primary_10_3390_a16030167
crossref_primary_10_1016_j_micpro_2023_104778
crossref_primary_10_1080_10255842_2024_2429012
crossref_primary_10_1093_jigpal_jzae051
crossref_primary_10_1007_s00521_024_10288_x
crossref_primary_10_3390_a16040208
crossref_primary_10_1016_j_eswa_2023_122317
crossref_primary_10_1038_s41598_024_63328_w
crossref_primary_10_1007_s11042_024_18295_9
crossref_primary_10_1016_j_eswa_2024_123362
crossref_primary_10_3390_math10101640
ContentType Journal Article
DBID NPM
DOI 10.1089/cmb.2021.0256
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1557-8666
ExternalDocumentID 35446145
Genre Journal Article
GroupedDBID ---
0R~
29K
34G
39C
4.4
53G
5GY
ABBKN
ABEFU
ACGFO
ADBBV
AENEX
AFOSN
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BNQNF
CAG
COF
CS3
D-I
DIK
DU5
EBS
EJD
F5P
IAO
IER
IGS
IHR
IM4
ITC
MV1
NPM
NQHIM
O9-
P2P
R.V
RIG
RML
RMSOB
RNS
TN5
TR2
UE5
VH1
ID FETCH-LOGICAL-c223t-f6b024eca6fe41bebba4361157be11488af14c2942aa7ef8cebcf17d2ced09e22
IngestDate Thu Apr 03 06:58:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords brain storm optimization algorithm
feature selection and classification
optimization
swarm intelligence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c223t-f6b024eca6fe41bebba4361157be11488af14c2942aa7ef8cebcf17d2ced09e22
ORCID 0000-0003-2056-6231
0000-0001-6938-6974
0000-0002-2062-924X
PMID 35446145
ParticipantIDs pubmed_primary_35446145
PublicationCentury 2000
PublicationDate 2022-Jun
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-Jun
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational biology
PublicationTitleAlternate J Comput Biol
PublicationYear 2022
SSID ssj0013607
Score 2.4832222
Snippet A large number of features lead to very high-dimensional data. The feature selection method reduces the dimension of data, increases the performance of...
SourceID pubmed
SourceType Index Database
StartPage 515
Title Feature Selection by Hybrid Brain Storm Optimization Algorithm for COVID-19 Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/35446145
Volume 29
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6FVq3ooQL6pKXaQ2_INLtev44IWqWVCAegQlzQ7nq2cVsnKLiVwh_o3-7sw04goD4uVuSVLcvft5OZ8cw3hLzVpcH9hxsQmEwjEXMWqVgpK4SccRlDkuS2wflgmA5OxKfT5LTX-7VQtfSjUTv66ta-kv9BFc8hrrZL9h-Q7W6KJ_A34otHRBiPf4Wx9d_sB4AjN8zGAonO5GBmm7AQNIz5rdb2tN4-RLtQh4bL7d3vXybTqhnVrsJw7_Dzx_2IFX46pq0bmkO17LNqNwOizR8GAacuooerMgw7rmrozP1Z9fPbBO2RL9KflNOQPnTpUwTWixgM0e59vZyXDY1GUk19zreumsXcBIa1XQ3VDgR7muCfYOoHq7QGN6Q4qiXrmfjOziWr3s-tKKquFcbz3Gqsei3yBYQvagdxnGB0y0Ty59UbItvt0gpZyTJr34c26dN-jEr7WZBnxSd5d-05VsnD9tobgYlzUI7XyOOAEt31NFknPRhvkAd-1uhsgzw66AR6L5-Qs0Ad2lGHqhn11KGOOtRRhy5Sh3bUoUgd2lKHXqfOU3Ly4f3x3iAKYzYijb5hE5lUoaMGWqYGBFOglBRxakWYFNhoOZe4nTUvBJcyA5NrUNqwrOQayn4BnD8j98aTMbwgNAO8ZSKYZEYIhbYeIC60FszkRhaGvyTP_Ss6v_BaKufty9u8c-UVWZ1T6zW5b3DzwhZ6go1643D6DXZoYBo
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+by+Hybrid+Brain+Storm+Optimization+Algorithm+for+COVID-19+Classification&rft.jtitle=Journal+of+computational+biology&rft.au=Bezdan%2C+Timea&rft.au=Zivkovic%2C+Miodrag&rft.au=Bacanin%2C+Nebojsa&rft.au=Chhabra%2C+Amit&rft.date=2022-06-01&rft.eissn=1557-8666&rft.volume=29&rft.issue=6&rft.spage=515&rft_id=info:doi/10.1089%2Fcmb.2021.0256&rft_id=info%3Apmid%2F35446145&rft_id=info%3Apmid%2F35446145&rft.externalDocID=35446145