YLS-SLAM: a real-time dynamic visual SLAM based on semantic segmentation
PurposeTraditional visual simultaneous localization and mapping (SLAM) systems are primarily based on the assumption that the environment is static, which makes them struggle with the interference caused by dynamic objects in complex industrial production environments. This paper aims to improve the...
Saved in:
Published in | Industrial robot Vol. 52; no. 1; pp. 106 - 115 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bedford
Emerald Group Publishing Limited
27.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0143-991X 1758-5791 |
DOI | 10.1108/IR-04-2024-0160 |
Cover
Abstract | PurposeTraditional visual simultaneous localization and mapping (SLAM) systems are primarily based on the assumption that the environment is static, which makes them struggle with the interference caused by dynamic objects in complex industrial production environments. This paper aims to improve the stability of visual SLAM in complex dynamic environments through semantic segmentation and its optimization.Design/methodology/approachThis paper proposes a real-time visual SLAM system for complex dynamic environments based on YOLOv5s semantic segmentation, named YLS-SLAM. The system combines semantic segmentation results and the boundary semantic enhancement algorithm. By recognizing and completing the semantic masks of dynamic objects from coarse to fine, it effectively eliminates the interference of dynamic feature points on the pose estimation and enhances the retention and extraction of prominent features in the background, thereby achieving stable operation of the system in complex dynamic environments.FindingsExperiments on the Technische Universität München and Bonn data sets show that, under monocular and Red, Green, Blue - Depth modes, the localization accuracy of YLS-SLAM is significantly better than existing advanced dynamic SLAM methods, effectively improving the robustness of visual SLAM. Additionally, the authors also conducted tests using a monocular camera in a real industrial production environment, successfully validating its effectiveness and application potential in complex dynamic environment.Originality/valueThis paper combines semantic segmentation algorithms with boundary semantic enhancement algorithms to effectively achieve precise removal of dynamic objects and their edges, while ensuring the system's real-time performance, offering significant application value. |
---|---|
AbstractList | PurposeTraditional visual simultaneous localization and mapping (SLAM) systems are primarily based on the assumption that the environment is static, which makes them struggle with the interference caused by dynamic objects in complex industrial production environments. This paper aims to improve the stability of visual SLAM in complex dynamic environments through semantic segmentation and its optimization.Design/methodology/approachThis paper proposes a real-time visual SLAM system for complex dynamic environments based on YOLOv5s semantic segmentation, named YLS-SLAM. The system combines semantic segmentation results and the boundary semantic enhancement algorithm. By recognizing and completing the semantic masks of dynamic objects from coarse to fine, it effectively eliminates the interference of dynamic feature points on the pose estimation and enhances the retention and extraction of prominent features in the background, thereby achieving stable operation of the system in complex dynamic environments.FindingsExperiments on the Technische Universität München and Bonn data sets show that, under monocular and Red, Green, Blue - Depth modes, the localization accuracy of YLS-SLAM is significantly better than existing advanced dynamic SLAM methods, effectively improving the robustness of visual SLAM. Additionally, the authors also conducted tests using a monocular camera in a real industrial production environment, successfully validating its effectiveness and application potential in complex dynamic environment.Originality/valueThis paper combines semantic segmentation algorithms with boundary semantic enhancement algorithms to effectively achieve precise removal of dynamic objects and their edges, while ensuring the system's real-time performance, offering significant application value. |
Author | Wang, Zisong Wang, Xiaohui Yin, Zhenyu Feng, Dan Zhang, Feiqing |
Author_xml | – sequence: 1 givenname: Dan surname: Feng fullname: Feng, Dan – sequence: 2 givenname: Zhenyu surname: Yin fullname: Yin, Zhenyu – sequence: 3 givenname: Xiaohui surname: Wang fullname: Wang, Xiaohui – sequence: 4 givenname: Feiqing surname: Zhang fullname: Zhang, Feiqing – sequence: 5 givenname: Zisong surname: Wang fullname: Wang, Zisong |
BookMark | eNotkMFLwzAYxYNMcE7PXgOe474vadrE2xjqBhVhU9BTyLqv0rGms-mE_fe2zNM7vB_vwe-ajUITiLE7hAdEMNPlSkAiJMhEAKZwwcaYaSN0ZnHExoCJEtbi5xW7jnEHADrFdMwWX_larPPZ6yP3vCW_F11VE9-egq-rgv9W8ej3fAD4xkfa8ibwSLUPXd9G-q4pdL6rmnDDLku_j3T7nxP28fz0Pl-I_O1lOZ_lopBSdYJA2rQ05UZZMGC3JklNZjDzmFCBJHWmNkikCrJFmtkeI50QZVoaX3it1ITdn3cPbfNzpNi5XXNsQ3_pFGpjDaDRPTU9U0XbxNhS6Q5tVfv25BDcoMstVw4SN-hygy71B_BwXL0 |
Cites_doi | 10.1109/TRO.2021.3075644 10.1109/TRO.2017.2705103 10.1109/JSEN.2023.3270534 10.1109/TPAMI.2016.2644615 10.1109/LRA.2018.2860039 10.1109/ACCESS.2021.3050617 10.1007/s00521-021-06764-3 10.5281/zenodo.7347926 10.1145/358669.358692 10.1108/IR-07-2023-0162 10.1016/j.robot.2019.03.012 10.1109/TPAMI.2018.2844175 10.1108/IR-12-2020-0272 |
ContentType | Journal Article |
Copyright | Emerald Publishing Limited. |
Copyright_xml | – notice: Emerald Publishing Limited. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1108/IR-04-2024-0160 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1758-5791 |
EndPage | 115 |
ExternalDocumentID | 10_1108_IR_04_2024_0160 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 490 5VS 70U 7WY 85S 9E0 AAGBP AAIKC AAMCF AAMNW AATHL AAUDR AAYXX ABIJV ABJNI ABKQV ABSDC ABYQI ACGFO ACGFS ACGOD ACIWK ACZLT ADFRT ADOMW AEBZA AFNTC AFYHH AHMHQ AJEBP ALMA_UNASSIGNED_HOLDINGS AODMV ARAPS ASMFL AUCOK BENPR CITATION CS3 EBS ECCUG F5P FNNZZ GEI GEL GQ. H13 HCIFZ HZ~ H~9 IJT IPNFZ J1Y JI- JL0 K6~ KBGRL M2O M42 O9- P2P RIG SBBZN TN5 U5U WH7 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c223t-e0296f8fb390809d84687817a14ec1e2573b1ee3ce9c679b39e54ee7528aca533 |
IEDL.DBID | GEI |
ISSN | 0143-991X |
IngestDate | Sat Aug 16 22:23:38 EDT 2025 Thu Jul 31 00:00:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://www.emerald.com/insight/site-policies |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c223t-e0296f8fb390809d84687817a14ec1e2573b1ee3ce9c679b39e54ee7528aca533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3158980185 |
PQPubID | 36873 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3158980185 crossref_primary_10_1108_IR_04_2024_0160 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-27 |
PublicationDateYYYYMMDD | 2025-01-27 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Bedford |
PublicationPlace_xml | – name: Bedford |
PublicationTitle | Industrial robot |
PublicationYear | 2025 |
Publisher | Emerald Group Publishing Limited |
Publisher_xml | – name: Emerald Group Publishing Limited |
References | (key2025012405291734600_ref001) 2017; 39 (key2025012405291734600_ref017) 2018 (key2025012405291734600_ref002) 2018; 3 (key2025012405291734600_ref014) 2023; 35 (key2025012405291734600_ref018) 2024; 174 (key2025012405291734600_ref008) 2021; 9 (key2025012405291734600_ref004) 1981; 24 (key2025012405291734600_ref010) 2023; 50 (key2025012405291734600_ref016) 2019; 117 (key2025012405291734600_ref007) 2021; 48 (key2025012405291734600_ref003) 2021; 37 (key2025012405291734600_ref019) 2022 (key2025012405291734600_ref006) 2020; 42 (key2025012405291734600_ref013) 2022 (key2025012405291734600_ref012) 2012 (key2025012405291734600_ref009) 2017; 33 (key2025012405291734600_ref015) 2022; 34 (key2025012405291734600_ref005) 2023; 23 (key2025012405291734600_ref011) 2016 |
References_xml | – volume: 37 start-page: 1874 issue: 6 year: 2021 ident: key2025012405291734600_ref003 article-title: ORB-SLAM3: an accurate Open-Source library for visual, visual-inertial, and multimap SLAM publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2021.3075644 – volume: 33 start-page: 1255 issue: 5 year: 2017 ident: key2025012405291734600_ref009 article-title: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2017.2705103 – volume: 23 start-page: 13210 issue: 12 year: 2023 ident: key2025012405291734600_ref005 article-title: OVD-SLAM: an online visual SLAM for dynamic environments publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2023.3270534 – volume: 35 start-page: 8707 issue: 12 year: 2023 ident: key2025012405291734600_ref014 article-title: Real-time motion removal based on point correlations for RGB-D SLAM in indoor dynamic environments publication-title: Neural Computing & Applications – volume: 174 year: 2024 ident: key2025012405291734600_ref018 article-title: DynaTM-SLAM: fast filtering of dynamic feature points and object-based localization in dynamic indoor environments publication-title: Robotics and Autonomous Systems – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: key2025012405291734600_ref001 article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2644615 – volume: 3 start-page: 4076 issue: 4 year: 2018 ident: key2025012405291734600_ref002 article-title: DynaSLAM: tracking, mapping, and inpainting in dynamic scenes publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2018.2860039 – volume: 9 start-page: 23772 year: 2021 ident: key2025012405291734600_ref008 article-title: RDS-SLAM: real-time dynamic SLAM using semantic segmentation methods publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050617 – volume: 34 start-page: 6011 issue: 8 year: 2022 ident: key2025012405291734600_ref015 article-title: YOLO-SLAM: a semantic SLAM system towards dynamic environment with geometric constraint publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06764-3 – year: 2022 ident: key2025012405291734600_ref019 article-title: Ultralytics/yolov5: v7.0 - YOLOv5 SOTA realtime instance segmentation doi: 10.5281/zenodo.7347926 – start-page: 4399 volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) year: 2022 ident: key2025012405291734600_ref013 article-title: CFP-SLAM A real-time visual SLAM based on coarse-to-fine probability in dynamic environments – volume: 24 start-page: 381 issue: 6 year: 1981 ident: key2025012405291734600_ref004 article-title: Random sample consensus publication-title: Communications of the ACM doi: 10.1145/358669.358692 – volume: 50 start-page: 1000 issue: 6 year: 2023 ident: key2025012405291734600_ref010 article-title: A review of visual SLAM with dynamic objects publication-title: Industrial Robot: The International Journal of Robotics Research and Application doi: 10.1108/IR-07-2023-0162 – volume: 117 start-page: 1 year: 2019 ident: key2025012405291734600_ref016 article-title: Dynamic-SLAM: semantic monocular visual localization and mapping based on deep learning in dynamic environment publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2019.03.012 – volume: 42 start-page: 386 issue: 2 year: 2020 ident: key2025012405291734600_ref006 article-title: Mask R-CNN publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2018.2844175 – start-page: 573 year: 2012 ident: key2025012405291734600_ref012 article-title: A benchmark for the evaluation of RGB-D SLAM systems – volume-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). year: 2016 ident: key2025012405291734600_ref011 article-title: You only look once: unified, real-time object detection – start-page: 1168 volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid year: 2018 ident: key2025012405291734600_ref017 article-title: DS-SLAM A semantic visual SLAM towards dynamic – volume: 48 start-page: 726 issue: 5 year: 2021 ident: key2025012405291734600_ref007 article-title: GLO-SLAM a slam system optimally combining GPS and LiDAR odometry publication-title: Industrial Robot: The International Journal of Robotics Research and Application doi: 10.1108/IR-12-2020-0272 |
SSID | ssj0005616 |
Score | 2.3622482 |
Snippet | PurposeTraditional visual simultaneous localization and mapping (SLAM) systems are primarily based on the assumption that the environment is static, which... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 106 |
SubjectTerms | Accuracy Algorithms Deep learning Design optimization Energy consumption Feature extraction Localization Neural networks Pose estimation Real time Semantic segmentation Semantics Simultaneous localization and mapping |
Title | YLS-SLAM: a real-time dynamic visual SLAM based on semantic segmentation |
URI | https://www.proquest.com/docview/3158980185 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLZKJxYOAaJQkAcGllAndhybrUJULWoZWpDKFMVHoaJNEUkZ-PU850AqQkxsiexEyTs_P70DoQsNoID6Rno6kMZjnCSgc5TBLVwroUXAXO3w6J73H9ndNJw20KiuhSnSKstwTGGn52nmDqkdl7gNVvi74YCbXjMYu7A-nN5dHgUnHRew7rzky8UWCHrI68rfOt-DF3NQXT87D0DRtOrz88uLNl3UpoUu3E5vF6X1B5fZJq9X61xd6c8fvRz_7Y_20E4FUHG3lKh91LDpAeo_DSfeZNgdXeMEA8xceG4mPTblOHv8Mc_W8IzbgJ1bNHiV4swugWuwmtnnZVXhlB6ix97tw03fq2YwALcCmnuWBJLPxExRCdhSGoArIhJ-lPjMat-CwlPlW0u1lZpHErbZkFkbhYFIdAJY8gg101VqjxE2wueKUBMxoRmnkWAmIJqHShKiVShb6LIme_xWttqIiyMKEfFgHBMWO8LEjjAt1K7ZElc6l8XUD4UEhyvCk7-XT9F24Kb4Et8LojZq5u9rewbQIlfnhch8AVXDxvk |
linkProvider | Emerald |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YLS-SLAM%3A+a+real-time+dynamic+visual+SLAM+based+on+semantic+segmentation&rft.jtitle=Industrial+robot&rft.au=Feng%2C+Dan&rft.au=Yin%2C+Zhenyu&rft.au=Wang%2C+Xiaohui&rft.au=Zhang%2C+Feiqing&rft.date=2025-01-27&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=0143-991X&rft.eissn=1758-5791&rft.volume=52&rft.issue=1&rft.spage=106&rft.epage=115&rft_id=info:doi/10.1108%2FIR-04-2024-0160&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-991X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-991X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-991X&client=summon |