YLS-SLAM: a real-time dynamic visual SLAM based on semantic segmentation

PurposeTraditional visual simultaneous localization and mapping (SLAM) systems are primarily based on the assumption that the environment is static, which makes them struggle with the interference caused by dynamic objects in complex industrial production environments. This paper aims to improve the...

Full description

Saved in:
Bibliographic Details
Published inIndustrial robot Vol. 52; no. 1; pp. 106 - 115
Main Authors Feng, Dan, Yin, Zhenyu, Wang, Xiaohui, Zhang, Feiqing, Wang, Zisong
Format Journal Article
LanguageEnglish
Published Bedford Emerald Group Publishing Limited 27.01.2025
Subjects
Online AccessGet full text
ISSN0143-991X
1758-5791
DOI10.1108/IR-04-2024-0160

Cover

Abstract PurposeTraditional visual simultaneous localization and mapping (SLAM) systems are primarily based on the assumption that the environment is static, which makes them struggle with the interference caused by dynamic objects in complex industrial production environments. This paper aims to improve the stability of visual SLAM in complex dynamic environments through semantic segmentation and its optimization.Design/methodology/approachThis paper proposes a real-time visual SLAM system for complex dynamic environments based on YOLOv5s semantic segmentation, named YLS-SLAM. The system combines semantic segmentation results and the boundary semantic enhancement algorithm. By recognizing and completing the semantic masks of dynamic objects from coarse to fine, it effectively eliminates the interference of dynamic feature points on the pose estimation and enhances the retention and extraction of prominent features in the background, thereby achieving stable operation of the system in complex dynamic environments.FindingsExperiments on the Technische Universität München and Bonn data sets show that, under monocular and Red, Green, Blue - Depth modes, the localization accuracy of YLS-SLAM is significantly better than existing advanced dynamic SLAM methods, effectively improving the robustness of visual SLAM. Additionally, the authors also conducted tests using a monocular camera in a real industrial production environment, successfully validating its effectiveness and application potential in complex dynamic environment.Originality/valueThis paper combines semantic segmentation algorithms with boundary semantic enhancement algorithms to effectively achieve precise removal of dynamic objects and their edges, while ensuring the system's real-time performance, offering significant application value.
AbstractList PurposeTraditional visual simultaneous localization and mapping (SLAM) systems are primarily based on the assumption that the environment is static, which makes them struggle with the interference caused by dynamic objects in complex industrial production environments. This paper aims to improve the stability of visual SLAM in complex dynamic environments through semantic segmentation and its optimization.Design/methodology/approachThis paper proposes a real-time visual SLAM system for complex dynamic environments based on YOLOv5s semantic segmentation, named YLS-SLAM. The system combines semantic segmentation results and the boundary semantic enhancement algorithm. By recognizing and completing the semantic masks of dynamic objects from coarse to fine, it effectively eliminates the interference of dynamic feature points on the pose estimation and enhances the retention and extraction of prominent features in the background, thereby achieving stable operation of the system in complex dynamic environments.FindingsExperiments on the Technische Universität München and Bonn data sets show that, under monocular and Red, Green, Blue - Depth modes, the localization accuracy of YLS-SLAM is significantly better than existing advanced dynamic SLAM methods, effectively improving the robustness of visual SLAM. Additionally, the authors also conducted tests using a monocular camera in a real industrial production environment, successfully validating its effectiveness and application potential in complex dynamic environment.Originality/valueThis paper combines semantic segmentation algorithms with boundary semantic enhancement algorithms to effectively achieve precise removal of dynamic objects and their edges, while ensuring the system's real-time performance, offering significant application value.
Author Wang, Zisong
Wang, Xiaohui
Yin, Zhenyu
Feng, Dan
Zhang, Feiqing
Author_xml – sequence: 1
  givenname: Dan
  surname: Feng
  fullname: Feng, Dan
– sequence: 2
  givenname: Zhenyu
  surname: Yin
  fullname: Yin, Zhenyu
– sequence: 3
  givenname: Xiaohui
  surname: Wang
  fullname: Wang, Xiaohui
– sequence: 4
  givenname: Feiqing
  surname: Zhang
  fullname: Zhang, Feiqing
– sequence: 5
  givenname: Zisong
  surname: Wang
  fullname: Wang, Zisong
BookMark eNotkMFLwzAYxYNMcE7PXgOe474vadrE2xjqBhVhU9BTyLqv0rGms-mE_fe2zNM7vB_vwe-ajUITiLE7hAdEMNPlSkAiJMhEAKZwwcaYaSN0ZnHExoCJEtbi5xW7jnEHADrFdMwWX_larPPZ6yP3vCW_F11VE9-egq-rgv9W8ej3fAD4xkfa8ibwSLUPXd9G-q4pdL6rmnDDLku_j3T7nxP28fz0Pl-I_O1lOZ_lopBSdYJA2rQ05UZZMGC3JklNZjDzmFCBJHWmNkikCrJFmtkeI50QZVoaX3it1ITdn3cPbfNzpNi5XXNsQ3_pFGpjDaDRPTU9U0XbxNhS6Q5tVfv25BDcoMstVw4SN-hygy71B_BwXL0
Cites_doi 10.1109/TRO.2021.3075644
10.1109/TRO.2017.2705103
10.1109/JSEN.2023.3270534
10.1109/TPAMI.2016.2644615
10.1109/LRA.2018.2860039
10.1109/ACCESS.2021.3050617
10.1007/s00521-021-06764-3
10.5281/zenodo.7347926
10.1145/358669.358692
10.1108/IR-07-2023-0162
10.1016/j.robot.2019.03.012
10.1109/TPAMI.2018.2844175
10.1108/IR-12-2020-0272
ContentType Journal Article
Copyright Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1108/IR-04-2024-0160
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
EISSN 1758-5791
EndPage 115
ExternalDocumentID 10_1108_IR_04_2024_0160
GroupedDBID -~X
.DC
0R~
29I
4.4
490
5VS
70U
7WY
85S
9E0
AAGBP
AAIKC
AAMCF
AAMNW
AATHL
AAUDR
AAYXX
ABIJV
ABJNI
ABKQV
ABSDC
ABYQI
ACGFO
ACGFS
ACGOD
ACIWK
ACZLT
ADFRT
ADOMW
AEBZA
AFNTC
AFYHH
AHMHQ
AJEBP
ALMA_UNASSIGNED_HOLDINGS
AODMV
ARAPS
ASMFL
AUCOK
BENPR
CITATION
CS3
EBS
ECCUG
F5P
FNNZZ
GEI
GEL
GQ.
H13
HCIFZ
HZ~
H~9
IJT
IPNFZ
J1Y
JI-
JL0
K6~
KBGRL
M2O
M42
O9-
P2P
RIG
SBBZN
TN5
U5U
WH7
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c223t-e0296f8fb390809d84687817a14ec1e2573b1ee3ce9c679b39e54ee7528aca533
IEDL.DBID GEI
ISSN 0143-991X
IngestDate Sat Aug 16 22:23:38 EDT 2025
Thu Jul 31 00:00:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-e0296f8fb390809d84687817a14ec1e2573b1ee3ce9c679b39e54ee7528aca533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3158980185
PQPubID 36873
PageCount 10
ParticipantIDs proquest_journals_3158980185
crossref_primary_10_1108_IR_04_2024_0160
PublicationCentury 2000
PublicationDate 2025-01-27
PublicationDateYYYYMMDD 2025-01-27
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-27
  day: 27
PublicationDecade 2020
PublicationPlace Bedford
PublicationPlace_xml – name: Bedford
PublicationTitle Industrial robot
PublicationYear 2025
Publisher Emerald Group Publishing Limited
Publisher_xml – name: Emerald Group Publishing Limited
References (key2025012405291734600_ref001) 2017; 39
(key2025012405291734600_ref017) 2018
(key2025012405291734600_ref002) 2018; 3
(key2025012405291734600_ref014) 2023; 35
(key2025012405291734600_ref018) 2024; 174
(key2025012405291734600_ref008) 2021; 9
(key2025012405291734600_ref004) 1981; 24
(key2025012405291734600_ref010) 2023; 50
(key2025012405291734600_ref016) 2019; 117
(key2025012405291734600_ref007) 2021; 48
(key2025012405291734600_ref003) 2021; 37
(key2025012405291734600_ref019) 2022
(key2025012405291734600_ref006) 2020; 42
(key2025012405291734600_ref013) 2022
(key2025012405291734600_ref012) 2012
(key2025012405291734600_ref009) 2017; 33
(key2025012405291734600_ref015) 2022; 34
(key2025012405291734600_ref005) 2023; 23
(key2025012405291734600_ref011) 2016
References_xml – volume: 37
  start-page: 1874
  issue: 6
  year: 2021
  ident: key2025012405291734600_ref003
  article-title: ORB-SLAM3: an accurate Open-Source library for visual, visual-inertial, and multimap SLAM
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2021.3075644
– volume: 33
  start-page: 1255
  issue: 5
  year: 2017
  ident: key2025012405291734600_ref009
  article-title: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2017.2705103
– volume: 23
  start-page: 13210
  issue: 12
  year: 2023
  ident: key2025012405291734600_ref005
  article-title: OVD-SLAM: an online visual SLAM for dynamic environments
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2023.3270534
– volume: 35
  start-page: 8707
  issue: 12
  year: 2023
  ident: key2025012405291734600_ref014
  article-title: Real-time motion removal based on point correlations for RGB-D SLAM in indoor dynamic environments
  publication-title: Neural Computing & Applications
– volume: 174
  year: 2024
  ident: key2025012405291734600_ref018
  article-title: DynaTM-SLAM: fast filtering of dynamic feature points and object-based localization in dynamic indoor environments
  publication-title: Robotics and Autonomous Systems
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: key2025012405291734600_ref001
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2644615
– volume: 3
  start-page: 4076
  issue: 4
  year: 2018
  ident: key2025012405291734600_ref002
  article-title: DynaSLAM: tracking, mapping, and inpainting in dynamic scenes
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2018.2860039
– volume: 9
  start-page: 23772
  year: 2021
  ident: key2025012405291734600_ref008
  article-title: RDS-SLAM: real-time dynamic SLAM using semantic segmentation methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3050617
– volume: 34
  start-page: 6011
  issue: 8
  year: 2022
  ident: key2025012405291734600_ref015
  article-title: YOLO-SLAM: a semantic SLAM system towards dynamic environment with geometric constraint
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06764-3
– year: 2022
  ident: key2025012405291734600_ref019
  article-title: Ultralytics/yolov5: v7.0 - YOLOv5 SOTA realtime instance segmentation
  doi: 10.5281/zenodo.7347926
– start-page: 4399
  volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
  year: 2022
  ident: key2025012405291734600_ref013
  article-title: CFP-SLAM A real-time visual SLAM based on coarse-to-fine probability in dynamic environments
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  ident: key2025012405291734600_ref004
  article-title: Random sample consensus
  publication-title: Communications of the ACM
  doi: 10.1145/358669.358692
– volume: 50
  start-page: 1000
  issue: 6
  year: 2023
  ident: key2025012405291734600_ref010
  article-title: A review of visual SLAM with dynamic objects
  publication-title: Industrial Robot: The International Journal of Robotics Research and Application
  doi: 10.1108/IR-07-2023-0162
– volume: 117
  start-page: 1
  year: 2019
  ident: key2025012405291734600_ref016
  article-title: Dynamic-SLAM: semantic monocular visual localization and mapping based on deep learning in dynamic environment
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2019.03.012
– volume: 42
  start-page: 386
  issue: 2
  year: 2020
  ident: key2025012405291734600_ref006
  article-title: Mask R-CNN
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2844175
– start-page: 573
  year: 2012
  ident: key2025012405291734600_ref012
  article-title: A benchmark for the evaluation of RGB-D SLAM systems
– volume-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  year: 2016
  ident: key2025012405291734600_ref011
  article-title: You only look once: unified, real-time object detection
– start-page: 1168
  volume-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid
  year: 2018
  ident: key2025012405291734600_ref017
  article-title: DS-SLAM A semantic visual SLAM towards dynamic
– volume: 48
  start-page: 726
  issue: 5
  year: 2021
  ident: key2025012405291734600_ref007
  article-title: GLO-SLAM a slam system optimally combining GPS and LiDAR odometry
  publication-title: Industrial Robot: The International Journal of Robotics Research and Application
  doi: 10.1108/IR-12-2020-0272
SSID ssj0005616
Score 2.3622482
Snippet PurposeTraditional visual simultaneous localization and mapping (SLAM) systems are primarily based on the assumption that the environment is static, which...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 106
SubjectTerms Accuracy
Algorithms
Deep learning
Design optimization
Energy consumption
Feature extraction
Localization
Neural networks
Pose estimation
Real time
Semantic segmentation
Semantics
Simultaneous localization and mapping
Title YLS-SLAM: a real-time dynamic visual SLAM based on semantic segmentation
URI https://www.proquest.com/docview/3158980185
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLZKJxYOAaJQkAcGllAndhybrUJULWoZWpDKFMVHoaJNEUkZ-PU850AqQkxsiexEyTs_P70DoQsNoID6Rno6kMZjnCSgc5TBLVwroUXAXO3w6J73H9ndNJw20KiuhSnSKstwTGGn52nmDqkdl7gNVvi74YCbXjMYu7A-nN5dHgUnHRew7rzky8UWCHrI68rfOt-DF3NQXT87D0DRtOrz88uLNl3UpoUu3E5vF6X1B5fZJq9X61xd6c8fvRz_7Y_20E4FUHG3lKh91LDpAeo_DSfeZNgdXeMEA8xceG4mPTblOHv8Mc_W8IzbgJ1bNHiV4swugWuwmtnnZVXhlB6ix97tw03fq2YwALcCmnuWBJLPxExRCdhSGoArIhJ-lPjMat-CwlPlW0u1lZpHErbZkFkbhYFIdAJY8gg101VqjxE2wueKUBMxoRmnkWAmIJqHShKiVShb6LIme_xWttqIiyMKEfFgHBMWO8LEjjAt1K7ZElc6l8XUD4UEhyvCk7-XT9F24Kb4Et8LojZq5u9rewbQIlfnhch8AVXDxvk
linkProvider Emerald
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YLS-SLAM%3A+a+real-time+dynamic+visual+SLAM+based+on+semantic+segmentation&rft.jtitle=Industrial+robot&rft.au=Feng%2C+Dan&rft.au=Yin%2C+Zhenyu&rft.au=Wang%2C+Xiaohui&rft.au=Zhang%2C+Feiqing&rft.date=2025-01-27&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=0143-991X&rft.eissn=1758-5791&rft.volume=52&rft.issue=1&rft.spage=106&rft.epage=115&rft_id=info:doi/10.1108%2FIR-04-2024-0160&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-991X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-991X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-991X&client=summon