Unsupervised Domain Adaptation for Gesture Identification Against Electrode Shift

Surface electromyogram (sEMG)-based hand gesture recognition, which interprets commands given by humans through sEMG signals, performs well in many studies. However, its recognition accuracy drops dramatically due to electrode shift since the distributions of motion classes are changed. Although cal...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 52; no. 6; pp. 1271 - 1280
Main Authors Chan, Patrick P. K., Li, Qiuxia, Fang, Yinfeng, Xu, Linyi, Li, Kairu, Liu, Honghai, Yeung, Daniel S.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2291
2168-2305
DOI10.1109/THMS.2022.3179956

Cover

Loading…
Abstract Surface electromyogram (sEMG)-based hand gesture recognition, which interprets commands given by humans through sEMG signals, performs well in many studies. However, its recognition accuracy drops dramatically due to electrode shift since the distributions of motion classes are changed. Although calibrating the system with newly collected samples after electrode shift maintains the accuracy, collecting labeled samples is inconvenient and time-consuming since the procedure is rigid. However, the calibration may not work properly without label, especially when the change is significant. This study proposes a user friendly and convenient calibration method for hand gesture recognition by an unsupervised domain adaptation method, which only obtains the unlabeled samples of preselected benchmark classes from users in calibration. The change of benchmark classes is captured by unlabeled samples by a clustering method. The other classes are estimated based on the benchmark classes by regression models. As a result, the information of all classes is used to calibrate the system. Linear discriminant analysis is used to demonstrate our model. A dataset with ten subjects is collected to verify the performance empirically. Experimental results confirm that our method utilizes the unlabeled benchmark class samples in calibration and achieves 75.55% average accuracy. Our method is more robust to electrode shift and improves around 8.5% accuracy consistently on all subjects compared with the methods without calibration or label information in calibration. Although the accuracy of our method is slightly less than the ones using label calibration samples, our calibration data collection is more convenient and less complicated.
AbstractList Surface electromyogram (sEMG)-based hand gesture recognition, which interprets commands given by humans through sEMG signals, performs well in many studies. However, its recognition accuracy drops dramatically due to electrode shift since the distributions of motion classes are changed. Although calibrating the system with newly collected samples after electrode shift maintains the accuracy, collecting labeled samples is inconvenient and time-consuming since the procedure is rigid. However, the calibration may not work properly without label, especially when the change is significant. This study proposes a user friendly and convenient calibration method for hand gesture recognition by an unsupervised domain adaptation method, which only obtains the unlabeled samples of preselected benchmark classes from users in calibration. The change of benchmark classes is captured by unlabeled samples by a clustering method. The other classes are estimated based on the benchmark classes by regression models. As a result, the information of all classes is used to calibrate the system. Linear discriminant analysis is used to demonstrate our model. A dataset with ten subjects is collected to verify the performance empirically. Experimental results confirm that our method utilizes the unlabeled benchmark class samples in calibration and achieves 75.55% average accuracy. Our method is more robust to electrode shift and improves around 8.5% accuracy consistently on all subjects compared with the methods without calibration or label information in calibration. Although the accuracy of our method is slightly less than the ones using label calibration samples, our calibration data collection is more convenient and less complicated.
Author Yeung, Daniel S.
Chan, Patrick P. K.
Li, Qiuxia
Liu, Honghai
Fang, Yinfeng
Xu, Linyi
Li, Kairu
Author_xml – sequence: 1
  givenname: Patrick P. K.
  orcidid: 0000-0001-7774-580X
  surname: Chan
  fullname: Chan, Patrick P. K.
  email: patrickchan@ieee.org
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Qiuxia
  orcidid: 0000-0002-9828-3218
  surname: Li
  fullname: Li, Qiuxia
  email: liqiuxia.scut@outlook.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Yinfeng
  orcidid: 0000-0001-5794-8925
  surname: Fang
  fullname: Fang, Yinfeng
  email: yinfeng.fang@hdu.edu.cn
  organization: School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China
– sequence: 4
  givenname: Linyi
  orcidid: 0000-0001-5840-5367
  surname: Xu
  fullname: Xu, Linyi
  email: czzerone@qq.com
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 5
  givenname: Kairu
  orcidid: 0000-0001-5646-7492
  surname: Li
  fullname: Li, Kairu
  email: kairu.li@sut.edu.cn
  organization: School of Electrical Engineering, Shenyang University of Technology, Shenyang, Liaoning, China
– sequence: 6
  givenname: Honghai
  surname: Liu
  fullname: Liu, Honghai
  email: honghai.liu@icloud.com
  organization: School of Computing, University of Portsmouth, Portsmouth, U.K
– sequence: 7
  givenname: Daniel S.
  orcidid: 0000-0001-9397-8865
  surname: Yeung
  fullname: Yeung, Daniel S.
  email: danyeung@ieee.org
  organization: IEEE Systems, Man, and Cybernetics Society, Hong Kong, China
BookMark eNp9kE1LAzEQhoNUsNb-APGy4Lk1H_uRHEutbaEi0vYcssmsprS7a5IV_PfustWDB-cyA_M-8_Feo0FZlYDQLcFTQrB42K2et1OKKZ0ykgmRpBdoSEnKJ5ThZPBTU0Gu0Nj7A26D0yRJ-BC97kvf1OA-rQcTPVYnZctoZlQdVLBVGRWVi5bgQ-MgWhsogy2s7luzt1brQ7Q4gg6uMhBt320RbtBloY4exuc8QvunxW6-mmxeluv5bDPRlLIw0XlmwBRg0oKkKleUEp0nhHKDtSryLKeGZ6BjrDAXMc-FZhkII0CzNNF5zEbovp9bu-qjaU-Uh6pxZbtS0oylnKeUdqqsV2lXee-gkNr2rwWn7FESLDsLZWeh7CyUZwtbkvwha2dPyn39y9z1jAWAX73gOItjwb4B75R_9w
CODEN ITHSA6
CitedBy_id crossref_primary_10_3390_s22155507
crossref_primary_10_1109_TNSRE_2023_3293334
crossref_primary_10_1016_j_engappai_2024_108952
crossref_primary_10_1007_s40846_023_00837_5
crossref_primary_10_1109_TCDS_2023_3314351
crossref_primary_10_1109_LRA_2023_3317680
crossref_primary_10_1007_s44258_024_00043_1
crossref_primary_10_3389_fnbot_2024_1462023
Cites_doi 10.1109/TNSRE.2016.2644264
10.1109/TCYB.2019.2931142
10.1109/TII.2020.3041618
10.1016/j.jelekin.2011.12.012
10.1007/978-3-642-40852-6_41
10.1142/S0219843615500115
10.1109/BIOCAS.2017.8325201
10.1109/JBHI.2020.3012698
10.1109/JBHI.2014.2380454
10.1109/TNSRE.2015.2492619
10.1016/j.bspc.2020.101981
10.1109/EMBC.2016.7590838
10.1109/TNSRE.2015.2420654
10.1109/TNSRE.2016.2562180
10.1109/ACCESS.2020.3027497
10.1109/EMBC.2018.8513525
10.1109/TNSRE.2019.2911316
10.1109/TNSRE.2014.2305111
10.1145/3077981.3078031
10.1109/TBME.2017.2719400
10.1109/ACCESS.2019.2906584
10.1186/1743-0003-10-44
10.1109/TNSRE.2014.2366752
10.1109/TCDS.2018.2884942
10.1126/scirobotics.aat3630
10.1109/TBME.2019.2962499
10.1109/TBME.2019.2952890
10.1186/s12859-018-2264-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/THMS.2022.3179956
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2305
EndPage 1280
ExternalDocumentID 10_1109_THMS_2022_3179956
9807449
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province, China
  grantid: 2018A030313203
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2018ZD32
  funderid: 10.13039/501100012226
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c223t-cb7dedfed6f16aba221cb5128d0cafb7b2d87ec40a08948b9c37e9d9ec365cb43
IEDL.DBID RIE
ISSN 2168-2291
IngestDate Mon Jun 30 04:49:21 EDT 2025
Tue Jul 01 03:00:59 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Wed Aug 27 02:18:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-cb7dedfed6f16aba221cb5128d0cafb7b2d87ec40a08948b9c37e9d9ec365cb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5646-7492
0000-0001-9397-8865
0000-0001-5840-5367
0000-0002-9828-3218
0000-0001-5794-8925
0000-0001-7774-580X
PQID 2736886224
PQPubID 85416
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_THMS_2022_3179956
crossref_primary_10_1109_THMS_2022_3179956
ieee_primary_9807449
proquest_journals_2736886224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Dec.
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on human-machine systems
PublicationTitleAbbrev THMS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref16
ref19
ref18
liaw (ref29) 2002; 2
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
liu (ref17) 0
References_xml – ident: ref12
  doi: 10.1109/TNSRE.2016.2644264
– ident: ref3
  doi: 10.1109/TCYB.2019.2931142
– ident: ref25
  doi: 10.1109/TII.2020.3041618
– ident: ref13
  doi: 10.1016/j.jelekin.2011.12.012
– ident: ref27
  doi: 10.1007/978-3-642-40852-6_41
– ident: ref26
  doi: 10.1142/S0219843615500115
– ident: ref11
  doi: 10.1109/BIOCAS.2017.8325201
– ident: ref5
  doi: 10.1109/JBHI.2020.3012698
– ident: ref18
  doi: 10.1109/JBHI.2014.2380454
– ident: ref19
  doi: 10.1109/TNSRE.2015.2492619
– ident: ref4
  doi: 10.1016/j.bspc.2020.101981
– ident: ref9
  doi: 10.1109/EMBC.2016.7590838
– ident: ref23
  doi: 10.1109/TNSRE.2015.2420654
– ident: ref20
  doi: 10.1109/TNSRE.2016.2562180
– ident: ref22
  doi: 10.1109/ACCESS.2020.3027497
– ident: ref15
  doi: 10.1109/EMBC.2018.8513525
– ident: ref6
  doi: 10.1109/TNSRE.2019.2911316
– ident: ref7
  doi: 10.1109/TNSRE.2014.2305111
– ident: ref28
  doi: 10.1145/3077981.3078031
– ident: ref8
  doi: 10.1109/TBME.2017.2719400
– ident: ref2
  doi: 10.1109/ACCESS.2019.2906584
– ident: ref21
  doi: 10.1186/1743-0003-10-44
– ident: ref14
  doi: 10.1109/TNSRE.2014.2366752
– start-page: 14
  year: 0
  ident: ref17
  article-title: Boosting training for myoelectric pattern recognition using mixed-LDA
  publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref24
  doi: 10.1109/TCDS.2018.2884942
– volume: 2
  start-page: 18
  year: 2002
  ident: ref29
  article-title: Classification and regression by randomforest
  publication-title: R News
– ident: ref10
  doi: 10.1126/scirobotics.aat3630
– ident: ref1
  doi: 10.1109/TBME.2019.2962499
– ident: ref16
  doi: 10.1109/TBME.2019.2952890
– ident: ref30
  doi: 10.1186/s12859-018-2264-5
SSID ssj0000825558
Score 2.4089894
Snippet Surface electromyogram (sEMG)-based hand gesture recognition, which interprets commands given by humans through sEMG signals, performs well in many studies....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1271
SubjectTerms Accuracy
Adaptation
Benchmark testing
Benchmarks
Calibration
Clustering
Data collection
Discriminant analysis
Domains
electrode shift
Electrodes
Feature extraction
gesture identification
Gesture recognition
Regression models
unsupervised domain adaptation (UDA)
Unsupervised learning
Title Unsupervised Domain Adaptation for Gesture Identification Against Electrode Shift
URI https://ieeexplore.ieee.org/document/9807449
https://www.proquest.com/docview/2736886224
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD0yItImTOPZYAaVCKhKCSt0iPy5QAWlFk4Vfj52kFS8htgy25fjO9n2-u-8ATmODMswy6um4cjNmgceF5F5iha20oOgzlyg8uGX9YXQzikdLcL7IhUHEKvgM2-6z8uWbiS7dU1lHOOaWSCzDslWzOldr8Z7ioE5cleOkAbPCpyJonJiBLzoP_cG9BYOUWozqKNDYl2uoqqvy4zCubpjeBgzmc6sDS57bZaHa-v0bbeN_J78J642pSbq1bmzBEubbsPaJgHAH7ob5rJy642KGhlxOXuU4J10jp7WDnliLllzbqZZvSOqU3qx54yPdR9t2VpCruo6OQXL_NM6KXRj2rh4u-l5TZMHT1jIoPK0SgyZDw7KASSUpDbSyVgA3vpaZShQ1PEEd-dLnIuJK6DBBYQTqkMVaReEerOSTHPeBhLFF5gKlg5CRpkJxZv-Y2-F1rJLItMCfr3mqGwZyVwjjJa2QiC9SJ6bUiSltxNSCs0WXaU2_8VfjHbfsi4bNirfgaC7YtNmgs9RabYxbNEejg997HcKqG7uOXDmCleKtxGNrfxTqpFK8D_Kq1_0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPRQOUEoRy6P1gVPVLInjOPZxxaNbYJEqdiVukR8TWAHZFZtc-PXYSXYFtKp6y2HsTPw59nwezwzAYWJRxXlOA5PUbsY8CoRUIkgd2NpIiiH3gcKDK94fsfOb5GYJfixiYRCxvnyGXf9Y-_LtxFT-qOxI-swtTC7DB7fvs6SJ1lqcqHiyk9QFOWnEHfxURq0bMwrl0bA_uHZ0kFLHUn0SNP5mI6orq_yxHNd7zNkGDObaNVdL7rtVqbvm-V3ixv9V_xOst8Ym6TWzYxOWsPgMa69SEG7B71Exq6Z-wZihJSeTRzUuSM-qaeOiJ86mJT-dqtUTkiaoN29P-Ujv1snOSnLaVNKxSK7vxnn5BUZnp8PjftCWWQiMsw3KwOjUos3R8jziSitKI6OdHSBsaFSuU02tSNGwUIVCMqGliVOUVqKJeWI0i7dhpZgUuAMkThw3l6g8iWSGSi24-2LhujeJTpntQDgf88y0Och9KYyHrOYiocw8TJmHKWth6sD3RZNpk4DjX8JbftgXgu2Id2B_DmzW_qKzzNltXDg-R9nu31t9g4_94eAyu_x1dbEHq_49zT2WfVgpnyo8cNZIqb_Wk_AFahDbSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Domain+Adaptation+for+Gesture+Identification+Against+Electrode+Shift&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Chan%2C+Patrick+P+K&rft.au=Li%2C+Qiuxia&rft.au=Fang%2C+Yinfeng&rft.au=Xu%2C+Linyi&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2291&rft.eissn=2168-2305&rft.volume=52&rft.issue=6&rft.spage=1271&rft_id=info:doi/10.1109%2FTHMS.2022.3179956&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon