Unsupervised Domain Adaptation for Gesture Identification Against Electrode Shift
Surface electromyogram (sEMG)-based hand gesture recognition, which interprets commands given by humans through sEMG signals, performs well in many studies. However, its recognition accuracy drops dramatically due to electrode shift since the distributions of motion classes are changed. Although cal...
Saved in:
Published in | IEEE transactions on human-machine systems Vol. 52; no. 6; pp. 1271 - 1280 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2291 2168-2305 |
DOI | 10.1109/THMS.2022.3179956 |
Cover
Loading…
Abstract | Surface electromyogram (sEMG)-based hand gesture recognition, which interprets commands given by humans through sEMG signals, performs well in many studies. However, its recognition accuracy drops dramatically due to electrode shift since the distributions of motion classes are changed. Although calibrating the system with newly collected samples after electrode shift maintains the accuracy, collecting labeled samples is inconvenient and time-consuming since the procedure is rigid. However, the calibration may not work properly without label, especially when the change is significant. This study proposes a user friendly and convenient calibration method for hand gesture recognition by an unsupervised domain adaptation method, which only obtains the unlabeled samples of preselected benchmark classes from users in calibration. The change of benchmark classes is captured by unlabeled samples by a clustering method. The other classes are estimated based on the benchmark classes by regression models. As a result, the information of all classes is used to calibrate the system. Linear discriminant analysis is used to demonstrate our model. A dataset with ten subjects is collected to verify the performance empirically. Experimental results confirm that our method utilizes the unlabeled benchmark class samples in calibration and achieves 75.55% average accuracy. Our method is more robust to electrode shift and improves around 8.5% accuracy consistently on all subjects compared with the methods without calibration or label information in calibration. Although the accuracy of our method is slightly less than the ones using label calibration samples, our calibration data collection is more convenient and less complicated. |
---|---|
AbstractList | Surface electromyogram (sEMG)-based hand gesture recognition, which interprets commands given by humans through sEMG signals, performs well in many studies. However, its recognition accuracy drops dramatically due to electrode shift since the distributions of motion classes are changed. Although calibrating the system with newly collected samples after electrode shift maintains the accuracy, collecting labeled samples is inconvenient and time-consuming since the procedure is rigid. However, the calibration may not work properly without label, especially when the change is significant. This study proposes a user friendly and convenient calibration method for hand gesture recognition by an unsupervised domain adaptation method, which only obtains the unlabeled samples of preselected benchmark classes from users in calibration. The change of benchmark classes is captured by unlabeled samples by a clustering method. The other classes are estimated based on the benchmark classes by regression models. As a result, the information of all classes is used to calibrate the system. Linear discriminant analysis is used to demonstrate our model. A dataset with ten subjects is collected to verify the performance empirically. Experimental results confirm that our method utilizes the unlabeled benchmark class samples in calibration and achieves 75.55% average accuracy. Our method is more robust to electrode shift and improves around 8.5% accuracy consistently on all subjects compared with the methods without calibration or label information in calibration. Although the accuracy of our method is slightly less than the ones using label calibration samples, our calibration data collection is more convenient and less complicated. |
Author | Yeung, Daniel S. Chan, Patrick P. K. Li, Qiuxia Liu, Honghai Fang, Yinfeng Xu, Linyi Li, Kairu |
Author_xml | – sequence: 1 givenname: Patrick P. K. orcidid: 0000-0001-7774-580X surname: Chan fullname: Chan, Patrick P. K. email: patrickchan@ieee.org organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Qiuxia orcidid: 0000-0002-9828-3218 surname: Li fullname: Li, Qiuxia email: liqiuxia.scut@outlook.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Yinfeng orcidid: 0000-0001-5794-8925 surname: Fang fullname: Fang, Yinfeng email: yinfeng.fang@hdu.edu.cn organization: School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China – sequence: 4 givenname: Linyi orcidid: 0000-0001-5840-5367 surname: Xu fullname: Xu, Linyi email: czzerone@qq.com organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 5 givenname: Kairu orcidid: 0000-0001-5646-7492 surname: Li fullname: Li, Kairu email: kairu.li@sut.edu.cn organization: School of Electrical Engineering, Shenyang University of Technology, Shenyang, Liaoning, China – sequence: 6 givenname: Honghai surname: Liu fullname: Liu, Honghai email: honghai.liu@icloud.com organization: School of Computing, University of Portsmouth, Portsmouth, U.K – sequence: 7 givenname: Daniel S. orcidid: 0000-0001-9397-8865 surname: Yeung fullname: Yeung, Daniel S. email: danyeung@ieee.org organization: IEEE Systems, Man, and Cybernetics Society, Hong Kong, China |
BookMark | eNp9kE1LAzEQhoNUsNb-APGy4Lk1H_uRHEutbaEi0vYcssmsprS7a5IV_PfustWDB-cyA_M-8_Feo0FZlYDQLcFTQrB42K2et1OKKZ0ykgmRpBdoSEnKJ5ThZPBTU0Gu0Nj7A26D0yRJ-BC97kvf1OA-rQcTPVYnZctoZlQdVLBVGRWVi5bgQ-MgWhsogy2s7luzt1brQ7Q4gg6uMhBt320RbtBloY4exuc8QvunxW6-mmxeluv5bDPRlLIw0XlmwBRg0oKkKleUEp0nhHKDtSryLKeGZ6BjrDAXMc-FZhkII0CzNNF5zEbovp9bu-qjaU-Uh6pxZbtS0oylnKeUdqqsV2lXee-gkNr2rwWn7FESLDsLZWeh7CyUZwtbkvwha2dPyn39y9z1jAWAX73gOItjwb4B75R_9w |
CODEN | ITHSA6 |
CitedBy_id | crossref_primary_10_3390_s22155507 crossref_primary_10_1109_TNSRE_2023_3293334 crossref_primary_10_1016_j_engappai_2024_108952 crossref_primary_10_1007_s40846_023_00837_5 crossref_primary_10_1109_TCDS_2023_3314351 crossref_primary_10_1109_LRA_2023_3317680 crossref_primary_10_1007_s44258_024_00043_1 crossref_primary_10_3389_fnbot_2024_1462023 |
Cites_doi | 10.1109/TNSRE.2016.2644264 10.1109/TCYB.2019.2931142 10.1109/TII.2020.3041618 10.1016/j.jelekin.2011.12.012 10.1007/978-3-642-40852-6_41 10.1142/S0219843615500115 10.1109/BIOCAS.2017.8325201 10.1109/JBHI.2020.3012698 10.1109/JBHI.2014.2380454 10.1109/TNSRE.2015.2492619 10.1016/j.bspc.2020.101981 10.1109/EMBC.2016.7590838 10.1109/TNSRE.2015.2420654 10.1109/TNSRE.2016.2562180 10.1109/ACCESS.2020.3027497 10.1109/EMBC.2018.8513525 10.1109/TNSRE.2019.2911316 10.1109/TNSRE.2014.2305111 10.1145/3077981.3078031 10.1109/TBME.2017.2719400 10.1109/ACCESS.2019.2906584 10.1186/1743-0003-10-44 10.1109/TNSRE.2014.2366752 10.1109/TCDS.2018.2884942 10.1126/scirobotics.aat3630 10.1109/TBME.2019.2962499 10.1109/TBME.2019.2952890 10.1186/s12859-018-2264-5 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/THMS.2022.3179956 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2305 |
EndPage | 1280 |
ExternalDocumentID | 10_1109_THMS_2022_3179956 9807449 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province, China grantid: 2018A030313203 – fundername: Fundamental Research Funds for the Central Universities grantid: 2018ZD32 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c223t-cb7dedfed6f16aba221cb5128d0cafb7b2d87ec40a08948b9c37e9d9ec365cb43 |
IEDL.DBID | RIE |
ISSN | 2168-2291 |
IngestDate | Mon Jun 30 04:49:21 EDT 2025 Tue Jul 01 03:00:59 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Wed Aug 27 02:18:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c223t-cb7dedfed6f16aba221cb5128d0cafb7b2d87ec40a08948b9c37e9d9ec365cb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5646-7492 0000-0001-9397-8865 0000-0001-5840-5367 0000-0002-9828-3218 0000-0001-5794-8925 0000-0001-7774-580X |
PQID | 2736886224 |
PQPubID | 85416 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_THMS_2022_3179956 crossref_primary_10_1109_THMS_2022_3179956 ieee_primary_9807449 proquest_journals_2736886224 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Dec. 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on human-machine systems |
PublicationTitleAbbrev | THMS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref16 ref19 ref18 liaw (ref29) 2002; 2 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 liu (ref17) 0 |
References_xml | – ident: ref12 doi: 10.1109/TNSRE.2016.2644264 – ident: ref3 doi: 10.1109/TCYB.2019.2931142 – ident: ref25 doi: 10.1109/TII.2020.3041618 – ident: ref13 doi: 10.1016/j.jelekin.2011.12.012 – ident: ref27 doi: 10.1007/978-3-642-40852-6_41 – ident: ref26 doi: 10.1142/S0219843615500115 – ident: ref11 doi: 10.1109/BIOCAS.2017.8325201 – ident: ref5 doi: 10.1109/JBHI.2020.3012698 – ident: ref18 doi: 10.1109/JBHI.2014.2380454 – ident: ref19 doi: 10.1109/TNSRE.2015.2492619 – ident: ref4 doi: 10.1016/j.bspc.2020.101981 – ident: ref9 doi: 10.1109/EMBC.2016.7590838 – ident: ref23 doi: 10.1109/TNSRE.2015.2420654 – ident: ref20 doi: 10.1109/TNSRE.2016.2562180 – ident: ref22 doi: 10.1109/ACCESS.2020.3027497 – ident: ref15 doi: 10.1109/EMBC.2018.8513525 – ident: ref6 doi: 10.1109/TNSRE.2019.2911316 – ident: ref7 doi: 10.1109/TNSRE.2014.2305111 – ident: ref28 doi: 10.1145/3077981.3078031 – ident: ref8 doi: 10.1109/TBME.2017.2719400 – ident: ref2 doi: 10.1109/ACCESS.2019.2906584 – ident: ref21 doi: 10.1186/1743-0003-10-44 – ident: ref14 doi: 10.1109/TNSRE.2014.2366752 – start-page: 14 year: 0 ident: ref17 article-title: Boosting training for myoelectric pattern recognition using mixed-LDA publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc – ident: ref24 doi: 10.1109/TCDS.2018.2884942 – volume: 2 start-page: 18 year: 2002 ident: ref29 article-title: Classification and regression by randomforest publication-title: R News – ident: ref10 doi: 10.1126/scirobotics.aat3630 – ident: ref1 doi: 10.1109/TBME.2019.2962499 – ident: ref16 doi: 10.1109/TBME.2019.2952890 – ident: ref30 doi: 10.1186/s12859-018-2264-5 |
SSID | ssj0000825558 |
Score | 2.4089894 |
Snippet | Surface electromyogram (sEMG)-based hand gesture recognition, which interprets commands given by humans through sEMG signals, performs well in many studies.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1271 |
SubjectTerms | Accuracy Adaptation Benchmark testing Benchmarks Calibration Clustering Data collection Discriminant analysis Domains electrode shift Electrodes Feature extraction gesture identification Gesture recognition Regression models unsupervised domain adaptation (UDA) Unsupervised learning |
Title | Unsupervised Domain Adaptation for Gesture Identification Against Electrode Shift |
URI | https://ieeexplore.ieee.org/document/9807449 https://www.proquest.com/docview/2736886224 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD0yItImTOPZYAaVCKhKCSt0iPy5QAWlFk4Vfj52kFS8htgy25fjO9n2-u-8ATmODMswy6um4cjNmgceF5F5iha20oOgzlyg8uGX9YXQzikdLcL7IhUHEKvgM2-6z8uWbiS7dU1lHOOaWSCzDslWzOldr8Z7ioE5cleOkAbPCpyJonJiBLzoP_cG9BYOUWozqKNDYl2uoqqvy4zCubpjeBgzmc6sDS57bZaHa-v0bbeN_J78J642pSbq1bmzBEubbsPaJgHAH7ob5rJy642KGhlxOXuU4J10jp7WDnliLllzbqZZvSOqU3qx54yPdR9t2VpCruo6OQXL_NM6KXRj2rh4u-l5TZMHT1jIoPK0SgyZDw7KASSUpDbSyVgA3vpaZShQ1PEEd-dLnIuJK6DBBYQTqkMVaReEerOSTHPeBhLFF5gKlg5CRpkJxZv-Y2-F1rJLItMCfr3mqGwZyVwjjJa2QiC9SJ6bUiSltxNSCs0WXaU2_8VfjHbfsi4bNirfgaC7YtNmgs9RabYxbNEejg997HcKqG7uOXDmCleKtxGNrfxTqpFK8D_Kq1_0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPRQOUEoRy6P1gVPVLInjOPZxxaNbYJEqdiVukR8TWAHZFZtc-PXYSXYFtKp6y2HsTPw59nwezwzAYWJRxXlOA5PUbsY8CoRUIkgd2NpIiiH3gcKDK94fsfOb5GYJfixiYRCxvnyGXf9Y-_LtxFT-qOxI-swtTC7DB7fvs6SJ1lqcqHiyk9QFOWnEHfxURq0bMwrl0bA_uHZ0kFLHUn0SNP5mI6orq_yxHNd7zNkGDObaNVdL7rtVqbvm-V3ixv9V_xOst8Ym6TWzYxOWsPgMa69SEG7B71Exq6Z-wZihJSeTRzUuSM-qaeOiJ86mJT-dqtUTkiaoN29P-Ujv1snOSnLaVNKxSK7vxnn5BUZnp8PjftCWWQiMsw3KwOjUos3R8jziSitKI6OdHSBsaFSuU02tSNGwUIVCMqGliVOUVqKJeWI0i7dhpZgUuAMkThw3l6g8iWSGSi24-2LhujeJTpntQDgf88y0Och9KYyHrOYiocw8TJmHKWth6sD3RZNpk4DjX8JbftgXgu2Id2B_DmzW_qKzzNltXDg-R9nu31t9g4_94eAyu_x1dbEHq_49zT2WfVgpnyo8cNZIqb_Wk_AFahDbSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Domain+Adaptation+for+Gesture+Identification+Against+Electrode+Shift&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Chan%2C+Patrick+P+K&rft.au=Li%2C+Qiuxia&rft.au=Fang%2C+Yinfeng&rft.au=Xu%2C+Linyi&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2291&rft.eissn=2168-2305&rft.volume=52&rft.issue=6&rft.spage=1271&rft_id=info:doi/10.1109%2FTHMS.2022.3179956&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon |