Impedance Control of a Wrist Rehabilitation Robot Based on Autodidact Stiffness Learning
Dynamic control of an intrinsically compliant robot is paramount to ensuring safe and synergistic assistance to the patient. This paper presents an impedance controller for the rehabilitation of stroke patients with compromised wrist motor functions. The control design employs a Koopman operator-bas...
Saved in:
Published in | IEEE transactions on medical robotics and bionics Vol. 4; no. 3; pp. 796 - 806 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2576-3202 2576-3202 |
DOI | 10.1109/TMRB.2022.3194528 |
Cover
Loading…
Abstract | Dynamic control of an intrinsically compliant robot is paramount to ensuring safe and synergistic assistance to the patient. This paper presents an impedance controller for the rehabilitation of stroke patients with compromised wrist motor functions. The control design employs a Koopman operator-based autodidactic system identification model to predict the anatomical stiffness of the wrist joint during its various degrees of rotational motion. The proposed impedance controller, perceiving the level of the subjects' participation from their joint stiffness, can modify the applied force. The end-effector robot has a parallel structure that uses four biomimetic muscle actuators as parallel links between the end-effector and the base platform. The controller performance is corroborated by testing the end-effector robot with three healthy subjects. |
---|---|
AbstractList | Dynamic control of an intrinsically compliant robot is paramount to ensuring safe and synergistic assistance to the patient. This paper presents an impedance controller for the rehabilitation of stroke patients with compromised wrist motor functions. The control design employs a Koopman operator-based autodidactic system identification model to predict the anatomical stiffness of the wrist joint during its various degrees of rotational motion. The proposed impedance controller, perceiving the level of the subjects' participation from their joint stiffness, can modify the applied force. The end-effector robot has a parallel structure that uses four biomimetic muscle actuators as parallel links between the end-effector and the base platform. The controller performance is corroborated by testing the end-effector robot with three healthy subjects. |
Author | Jamwal, Prashant K. Martinez-Marroquin, Elisa Brown, Nicholas A. T. Hussain, Shahid Goyal, Tanishka |
Author_xml | – sequence: 1 givenname: Tanishka orcidid: 0000-0002-8607-6852 surname: Goyal fullname: Goyal, Tanishka email: tanishka.goyal@canberra.edu.au organization: School of Information Technology and Systems, University of Canberra, Bruce, ACT, Australia – sequence: 2 givenname: Shahid orcidid: 0000-0002-4352-0212 surname: Hussain fullname: Hussain, Shahid email: shahid.hussain@canberra.edu.au organization: School of Information Technology and Systems, University of Canberra, Bruce, ACT, Australia – sequence: 3 givenname: Elisa orcidid: 0000-0003-0867-7908 surname: Martinez-Marroquin fullname: Martinez-Marroquin, Elisa email: elisa.martinez-marroquin@canberra.edu.au organization: School of Information Technology and Systems, University of Canberra, Bruce, ACT, Australia – sequence: 4 givenname: Nicholas A. T. surname: Brown fullname: Brown, Nicholas A. T. email: nick.brown@canberra.edu.au organization: Faculty of Health, University of Canberra, Canberra, ACT, Australia – sequence: 5 givenname: Prashant K. orcidid: 0000-0002-1330-6186 surname: Jamwal fullname: Jamwal, Prashant K. email: prashant.jamwal@nu.edu.kz organization: School of Information Technology and Systems, University of Canberra, Bruce, ACT, Australia |
BookMark | eNp9kEtLQzEQhYNUsNb-AHETcN2a131k2RYfhYpQK7q7zM1NNOU2qUm68N97S4uIC1czczhnZvjOUc95pxG6pGRMKZE3q8fldMwIY2NOpchYeYL6LCvyEe_E3q_-DA1jXBNCGM1IwfM-eptvtroBpzSeeZeCb7E3GPBrsDHhpf6A2rY2QbLe4aWvfcJTiLrB3TjZJd_YBlTCz8ka43SMeKEhOOveL9CpgTbq4bEO0Mvd7Wr2MFo83c9nk8VIMcbTSImmIIZoZUDL7jFaCyZoDnVtAARXZQMMOJSiVp1CZMOoEZlRJm-yXObAB-j6sHcb_OdOx1St_S647mTFCsIpz5hknYseXCr4GIM21TbYDYSvipJqz7DaM6z2DKsjwy5T_MmoI4gUwLb_Jq8OSau1_rkkSyGokPwbfvOBag |
CitedBy_id | crossref_primary_10_1016_j_neucom_2025_129824 crossref_primary_10_1109_ACCESS_2023_3257109 crossref_primary_10_1007_s00521_024_09922_5 crossref_primary_10_1177_01423312241241835 crossref_primary_10_1109_TMRB_2025_3527695 crossref_primary_10_3390_robotics12050131 crossref_primary_10_1016_j_iot_2025_101525 crossref_primary_10_1016_j_mex_2023_102312 crossref_primary_10_1016_j_mechmachtheory_2025_105937 |
Cites_doi | 10.1109/TNSRE.2006.881553 10.1186/1743-0003-6-20 10.1109/ICORR.2007.4428491 10.1152/jn.01014.2011 10.1109/TNSRE.2005.848628 10.1109/TIE.2008.2003202 10.5860/choice.46-6226 10.1109/TMRB.2021.3064412 10.1017/S0263574702004587 10.1109/IROS.2006.281778 10.1016/j.mechatronics.2008.06.004 10.1115/1.2114890 10.1145/1128923.1129000 10.1109/IEMBS.1993.979131 10.1109/ICORR.2005.1501108 10.1016/j.jbiomech.2010.11.016 10.1152/jn.00428.2011 10.1109/HAPTIC.2006.1627127 10.1109/TBME.2011.2178240 10.1109/ICORR.2007.4428442 10.1201/b13733 10.1109/ROBOT.2009.5152280 10.1109/ICORR.2007.4428498 10.1115/1.4048135 10.1142/S0219878910002130 10.1109/TRO.2020.3038693 10.1016/S1474-6670(17)49354-2 10.1109/TMECH.2006.875558 10.1109/TNSRE.2004.843173 10.23919/ACC.1984.4788393 10.1177/0278364907084261 10.1109/IROS.2003.1249179 10.1109/ROBOT.2006.1642181 10.1109/TRO.2021.3073836 10.1109/TMRB.2021.3054462 10.1109/ICORR.2009.5209595 10.1109/TRO.2020.3034017 10.1682/JRRD.2005.03.0056 10.1682/jrrd.2005.06.0103 10.1109/CDC.2016.7799269 10.1109/THMS.2020.2976905 10.1007/s00332-015-9258-5 10.1109/TNSRE.2007.903899 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD K9. L7M |
DOI | 10.1109/TMRB.2022.3194528 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-3202 |
EndPage | 806 |
ExternalDocumentID | 10_1109_TMRB_2022_3194528 9844149 |
Genre | orig-research |
GrantInformation_xml | – fundername: Faculty Development Competitive Research Grants Program 2021 of Nazarbayev University grantid: 021220FD0251 funderid: 10.13039/501100012632 |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION 7SP 8FD K9. L7M |
ID | FETCH-LOGICAL-c223t-c4d70f0ecfae90001b42416abbfaa43c8da2a3a84bcbfa09d21f45fcf6d5696a3 |
IEDL.DBID | RIE |
ISSN | 2576-3202 |
IngestDate | Sun Jun 29 15:04:20 EDT 2025 Thu Apr 24 23:02:13 EDT 2025 Tue Jul 01 02:51:46 EDT 2025 Wed Aug 27 02:23:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c223t-c4d70f0ecfae90001b42416abbfaa43c8da2a3a84bcbfa09d21f45fcf6d5696a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4352-0212 0000-0003-0867-7908 0000-0002-1330-6186 0000-0002-8607-6852 |
PQID | 2703135292 |
PQPubID | 4437212 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TMRB_2022_3194528 proquest_journals_2703135292 crossref_citationtrail_10_1109_TMRB_2022_3194528 ieee_primary_9844149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on medical robotics and bionics |
PublicationTitleAbbrev | TMRB |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Li (ref40) 2006; 19 Krebs (ref14) 2000; 37 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref4 doi: 10.1109/TNSRE.2006.881553 – ident: ref2 doi: 10.1186/1743-0003-6-20 – ident: ref5 doi: 10.1109/ICORR.2007.4428491 – ident: ref10 doi: 10.1152/jn.01014.2011 – ident: ref27 doi: 10.1109/TNSRE.2005.848628 – ident: ref41 doi: 10.1109/TIE.2008.2003202 – ident: ref8 doi: 10.5860/choice.46-6226 – ident: ref12 doi: 10.1109/TMRB.2021.3064412 – ident: ref26 doi: 10.1017/S0263574702004587 – ident: ref18 doi: 10.1109/IROS.2006.281778 – ident: ref42 doi: 10.1016/j.mechatronics.2008.06.004 – ident: ref33 doi: 10.1115/1.2114890 – ident: ref17 doi: 10.1145/1128923.1129000 – ident: ref25 doi: 10.1109/IEMBS.1993.979131 – ident: ref28 doi: 10.1109/ICORR.2005.1501108 – volume: 19 start-page: 95 year: 2006 ident: ref40 article-title: Modelling and assessment of pneumatic artificial muscle publication-title: Int. J. Eng. Model. – ident: ref9 doi: 10.1016/j.jbiomech.2010.11.016 – ident: ref45 doi: 10.1152/jn.00428.2011 – ident: ref22 doi: 10.1109/HAPTIC.2006.1627127 – ident: ref11 doi: 10.1109/TBME.2011.2178240 – ident: ref16 doi: 10.1109/ICORR.2007.4428442 – ident: ref36 doi: 10.1201/b13733 – ident: ref38 doi: 10.1109/ROBOT.2009.5152280 – ident: ref19 doi: 10.1109/ICORR.2007.4428498 – ident: ref37 doi: 10.1115/1.4048135 – ident: ref39 doi: 10.1142/S0219878910002130 – ident: ref32 doi: 10.1109/TRO.2020.3038693 – ident: ref35 doi: 10.1016/S1474-6670(17)49354-2 – ident: ref23 doi: 10.1109/TMECH.2006.875558 – ident: ref3 doi: 10.1109/TNSRE.2004.843173 – ident: ref7 doi: 10.23919/ACC.1984.4788393 – ident: ref21 doi: 10.1177/0278364907084261 – ident: ref34 doi: 10.1109/IROS.2003.1249179 – volume: 37 start-page: 639 year: 2000 ident: ref14 article-title: Increasing productivity and quality of care: Robot-aided neuro-rehabilitation publication-title: J. Rehabil. Res. Develop. – ident: ref20 doi: 10.1109/ROBOT.2006.1642181 – ident: ref30 doi: 10.1109/TRO.2021.3073836 – ident: ref13 doi: 10.1109/TMRB.2021.3054462 – ident: ref29 doi: 10.1109/ICORR.2009.5209595 – ident: ref31 doi: 10.1109/TRO.2020.3034017 – ident: ref1 doi: 10.1682/JRRD.2005.03.0056 – ident: ref6 doi: 10.1682/jrrd.2005.06.0103 – ident: ref44 doi: 10.1109/CDC.2016.7799269 – ident: ref24 doi: 10.1109/THMS.2020.2976905 – ident: ref43 doi: 10.1007/s00332-015-9258-5 – ident: ref15 doi: 10.1109/TNSRE.2007.903899 |
SSID | ssj0002150736 |
Score | 2.2580853 |
Snippet | Dynamic control of an intrinsically compliant robot is paramount to ensuring safe and synergistic assistance to the patient. This paper presents an impedance... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 796 |
SubjectTerms | Actuators Anatomical stiffness prediction biomimetic muscle actuators (BMA) Biomimetics Controllers Dynamic control End effectors Human motion Impedance impedance control Joints (anatomy) Koopman operator Medical treatment Muscles non-linear control Parallel robots Rehabilitation robots Robots Stiffness System identification Wrist wrist rehabilitation robot |
Title | Impedance Control of a Wrist Rehabilitation Robot Based on Autodidact Stiffness Learning |
URI | https://ieeexplore.ieee.org/document/9844149 https://www.proquest.com/docview/2703135292 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgjSgveWBCpE0cx43HUlEBUhkKiG6RnwiBGgTpwsBv55ykFS8hpjzkix2ffQ_7_B3AkbQRl9LFgXExD5iNbSAV6wWMJQIVvKTa-KWB0RU_v2WXk2TSgJPFWRhrbRl8Zjv-ttzLN7me-aWyrkhReTPRhCY6btVZrcV6CvWWTczrjcsoFN2b0fgUHUBK0S8VLPH51j-pnjKXyg8BXGqV4SqM5u2pgkkeO7NCdfTbN6jG_zZ4DVZq85L0q_GwDg073YDlT6CDmzC5QEvZeGaTQRWnTnJHJLnz052MvyB3k3Gu8oKcoqozBB_7syI3D0bqglwXD855OUlqiNb7Lbgdnt0MzoM6v0Kg0SgoAs1ML3Sh1U5anzs0Ugz1OZdKOSlZrFMjqYxlypTGN6EwNHIscdpxk3DBZbwNrWk-tTtAkNygaDA89QBh1KQhVqHxinxPYhW1IZx3fabrX_A5MJ6y0gkJRea5lXluZTW32nC8IHmukDf-Krzpe39RsO74NuzP-ZvVc_M1ox6yH-1OQXd_p9qDJf_tKsxvH1rFy8weoOlRqENojt7PDsuR9wEXPtg_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnBCpCSO48bHgkBlKYdSRG-RV4RADYL0wtczTtKKTYhTFtnyMrbfjD1-A3AgbcSldHFgXMwDZmMbSMVaAWOJQICXVBu_NdC94Z07djlIBlNwNLkLY60tnc9s07-WZ_km1yO_VXYsUgRvJqZhFnGfieq21mRHhXrdJub10WUUiuN-t3eCJiClaJkKlviI65_Ap4ym8mMJLnHlfAm64xpV7iRPzVGhmvr9G1njf6u8DIu1gkna1YhYgSk7XIWFT7SDazC4QF3ZeHGT08pTneSOSHLvJzzpfeHuJr1c5QU5QbAzBD_boyI3j0bqgtwWj875lZLUJK0P63B3ftY_7QR1hIVAo1pQBJqZVuhCq520PnpopBgiOpdKOSlZrFMjqYxlypTGP6EwNHIscdpxk3DBZbwBM8N8aDeBYHaDi4PhqacIoyYNsQiNT5R8EquoAeG46zNdN8FHwXjOSjMkFJmXVualldXSasDhJMtLxb3xV-I13_uThHXHN2BnLN-snp1vGfWk_ah5Crr1e659mOv0u9fZ9cXN1TbM-3Iqp78dmCleR3YXFZFC7ZXj7wN6sNpe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impedance+Control+of+a+Wrist+Rehabilitation+Robot+Based+on+Autodidact+Stiffness+Learning&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Goyal%2C+Tanishka&rft.au=Hussain%2C+Shahid&rft.au=Martinez-Marroquin%2C+Elisa&rft.au=Brown%2C+Nicholas+A.+T.&rft.date=2022-08-01&rft.issn=2576-3202&rft.eissn=2576-3202&rft.volume=4&rft.issue=3&rft.spage=796&rft.epage=806&rft_id=info:doi/10.1109%2FTMRB.2022.3194528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMRB_2022_3194528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon |