Impedance Control of a Wrist Rehabilitation Robot Based on Autodidact Stiffness Learning

Dynamic control of an intrinsically compliant robot is paramount to ensuring safe and synergistic assistance to the patient. This paper presents an impedance controller for the rehabilitation of stroke patients with compromised wrist motor functions. The control design employs a Koopman operator-bas...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical robotics and bionics Vol. 4; no. 3; pp. 796 - 806
Main Authors Goyal, Tanishka, Hussain, Shahid, Martinez-Marroquin, Elisa, Brown, Nicholas A. T., Jamwal, Prashant K.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2576-3202
2576-3202
DOI10.1109/TMRB.2022.3194528

Cover

Loading…
Abstract Dynamic control of an intrinsically compliant robot is paramount to ensuring safe and synergistic assistance to the patient. This paper presents an impedance controller for the rehabilitation of stroke patients with compromised wrist motor functions. The control design employs a Koopman operator-based autodidactic system identification model to predict the anatomical stiffness of the wrist joint during its various degrees of rotational motion. The proposed impedance controller, perceiving the level of the subjects' participation from their joint stiffness, can modify the applied force. The end-effector robot has a parallel structure that uses four biomimetic muscle actuators as parallel links between the end-effector and the base platform. The controller performance is corroborated by testing the end-effector robot with three healthy subjects.
AbstractList Dynamic control of an intrinsically compliant robot is paramount to ensuring safe and synergistic assistance to the patient. This paper presents an impedance controller for the rehabilitation of stroke patients with compromised wrist motor functions. The control design employs a Koopman operator-based autodidactic system identification model to predict the anatomical stiffness of the wrist joint during its various degrees of rotational motion. The proposed impedance controller, perceiving the level of the subjects' participation from their joint stiffness, can modify the applied force. The end-effector robot has a parallel structure that uses four biomimetic muscle actuators as parallel links between the end-effector and the base platform. The controller performance is corroborated by testing the end-effector robot with three healthy subjects.
Author Jamwal, Prashant K.
Martinez-Marroquin, Elisa
Brown, Nicholas A. T.
Hussain, Shahid
Goyal, Tanishka
Author_xml – sequence: 1
  givenname: Tanishka
  orcidid: 0000-0002-8607-6852
  surname: Goyal
  fullname: Goyal, Tanishka
  email: tanishka.goyal@canberra.edu.au
  organization: School of Information Technology and Systems, University of Canberra, Bruce, ACT, Australia
– sequence: 2
  givenname: Shahid
  orcidid: 0000-0002-4352-0212
  surname: Hussain
  fullname: Hussain, Shahid
  email: shahid.hussain@canberra.edu.au
  organization: School of Information Technology and Systems, University of Canberra, Bruce, ACT, Australia
– sequence: 3
  givenname: Elisa
  orcidid: 0000-0003-0867-7908
  surname: Martinez-Marroquin
  fullname: Martinez-Marroquin, Elisa
  email: elisa.martinez-marroquin@canberra.edu.au
  organization: School of Information Technology and Systems, University of Canberra, Bruce, ACT, Australia
– sequence: 4
  givenname: Nicholas A. T.
  surname: Brown
  fullname: Brown, Nicholas A. T.
  email: nick.brown@canberra.edu.au
  organization: Faculty of Health, University of Canberra, Canberra, ACT, Australia
– sequence: 5
  givenname: Prashant K.
  orcidid: 0000-0002-1330-6186
  surname: Jamwal
  fullname: Jamwal, Prashant K.
  email: prashant.jamwal@nu.edu.kz
  organization: School of Information Technology and Systems, University of Canberra, Bruce, ACT, Australia
BookMark eNp9kEtLQzEQhYNUsNb-AHETcN2a131k2RYfhYpQK7q7zM1NNOU2qUm68N97S4uIC1czczhnZvjOUc95pxG6pGRMKZE3q8fldMwIY2NOpchYeYL6LCvyEe_E3q_-DA1jXBNCGM1IwfM-eptvtroBpzSeeZeCb7E3GPBrsDHhpf6A2rY2QbLe4aWvfcJTiLrB3TjZJd_YBlTCz8ka43SMeKEhOOveL9CpgTbq4bEO0Mvd7Wr2MFo83c9nk8VIMcbTSImmIIZoZUDL7jFaCyZoDnVtAARXZQMMOJSiVp1CZMOoEZlRJm-yXObAB-j6sHcb_OdOx1St_S647mTFCsIpz5hknYseXCr4GIM21TbYDYSvipJqz7DaM6z2DKsjwy5T_MmoI4gUwLb_Jq8OSau1_rkkSyGokPwbfvOBag
CitedBy_id crossref_primary_10_1016_j_neucom_2025_129824
crossref_primary_10_1109_ACCESS_2023_3257109
crossref_primary_10_1007_s00521_024_09922_5
crossref_primary_10_1177_01423312241241835
crossref_primary_10_1109_TMRB_2025_3527695
crossref_primary_10_3390_robotics12050131
crossref_primary_10_1016_j_iot_2025_101525
crossref_primary_10_1016_j_mex_2023_102312
crossref_primary_10_1016_j_mechmachtheory_2025_105937
Cites_doi 10.1109/TNSRE.2006.881553
10.1186/1743-0003-6-20
10.1109/ICORR.2007.4428491
10.1152/jn.01014.2011
10.1109/TNSRE.2005.848628
10.1109/TIE.2008.2003202
10.5860/choice.46-6226
10.1109/TMRB.2021.3064412
10.1017/S0263574702004587
10.1109/IROS.2006.281778
10.1016/j.mechatronics.2008.06.004
10.1115/1.2114890
10.1145/1128923.1129000
10.1109/IEMBS.1993.979131
10.1109/ICORR.2005.1501108
10.1016/j.jbiomech.2010.11.016
10.1152/jn.00428.2011
10.1109/HAPTIC.2006.1627127
10.1109/TBME.2011.2178240
10.1109/ICORR.2007.4428442
10.1201/b13733
10.1109/ROBOT.2009.5152280
10.1109/ICORR.2007.4428498
10.1115/1.4048135
10.1142/S0219878910002130
10.1109/TRO.2020.3038693
10.1016/S1474-6670(17)49354-2
10.1109/TMECH.2006.875558
10.1109/TNSRE.2004.843173
10.23919/ACC.1984.4788393
10.1177/0278364907084261
10.1109/IROS.2003.1249179
10.1109/ROBOT.2006.1642181
10.1109/TRO.2021.3073836
10.1109/TMRB.2021.3054462
10.1109/ICORR.2009.5209595
10.1109/TRO.2020.3034017
10.1682/JRRD.2005.03.0056
10.1682/jrrd.2005.06.0103
10.1109/CDC.2016.7799269
10.1109/THMS.2020.2976905
10.1007/s00332-015-9258-5
10.1109/TNSRE.2007.903899
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
K9.
L7M
DOI 10.1109/TMRB.2022.3194528
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-3202
EndPage 806
ExternalDocumentID 10_1109_TMRB_2022_3194528
9844149
Genre orig-research
GrantInformation_xml – fundername: Faculty Development Competitive Research Grants Program 2021 of Nazarbayev University
  grantid: 021220FD0251
  funderid: 10.13039/501100012632
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
K9.
L7M
ID FETCH-LOGICAL-c223t-c4d70f0ecfae90001b42416abbfaa43c8da2a3a84bcbfa09d21f45fcf6d5696a3
IEDL.DBID RIE
ISSN 2576-3202
IngestDate Sun Jun 29 15:04:20 EDT 2025
Thu Apr 24 23:02:13 EDT 2025
Tue Jul 01 02:51:46 EDT 2025
Wed Aug 27 02:23:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-c4d70f0ecfae90001b42416abbfaa43c8da2a3a84bcbfa09d21f45fcf6d5696a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4352-0212
0000-0003-0867-7908
0000-0002-1330-6186
0000-0002-8607-6852
PQID 2703135292
PQPubID 4437212
PageCount 11
ParticipantIDs crossref_primary_10_1109_TMRB_2022_3194528
proquest_journals_2703135292
crossref_citationtrail_10_1109_TMRB_2022_3194528
ieee_primary_9844149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on medical robotics and bionics
PublicationTitleAbbrev TMRB
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Li (ref40) 2006; 19
Krebs (ref14) 2000; 37
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref4
  doi: 10.1109/TNSRE.2006.881553
– ident: ref2
  doi: 10.1186/1743-0003-6-20
– ident: ref5
  doi: 10.1109/ICORR.2007.4428491
– ident: ref10
  doi: 10.1152/jn.01014.2011
– ident: ref27
  doi: 10.1109/TNSRE.2005.848628
– ident: ref41
  doi: 10.1109/TIE.2008.2003202
– ident: ref8
  doi: 10.5860/choice.46-6226
– ident: ref12
  doi: 10.1109/TMRB.2021.3064412
– ident: ref26
  doi: 10.1017/S0263574702004587
– ident: ref18
  doi: 10.1109/IROS.2006.281778
– ident: ref42
  doi: 10.1016/j.mechatronics.2008.06.004
– ident: ref33
  doi: 10.1115/1.2114890
– ident: ref17
  doi: 10.1145/1128923.1129000
– ident: ref25
  doi: 10.1109/IEMBS.1993.979131
– ident: ref28
  doi: 10.1109/ICORR.2005.1501108
– volume: 19
  start-page: 95
  year: 2006
  ident: ref40
  article-title: Modelling and assessment of pneumatic artificial muscle
  publication-title: Int. J. Eng. Model.
– ident: ref9
  doi: 10.1016/j.jbiomech.2010.11.016
– ident: ref45
  doi: 10.1152/jn.00428.2011
– ident: ref22
  doi: 10.1109/HAPTIC.2006.1627127
– ident: ref11
  doi: 10.1109/TBME.2011.2178240
– ident: ref16
  doi: 10.1109/ICORR.2007.4428442
– ident: ref36
  doi: 10.1201/b13733
– ident: ref38
  doi: 10.1109/ROBOT.2009.5152280
– ident: ref19
  doi: 10.1109/ICORR.2007.4428498
– ident: ref37
  doi: 10.1115/1.4048135
– ident: ref39
  doi: 10.1142/S0219878910002130
– ident: ref32
  doi: 10.1109/TRO.2020.3038693
– ident: ref35
  doi: 10.1016/S1474-6670(17)49354-2
– ident: ref23
  doi: 10.1109/TMECH.2006.875558
– ident: ref3
  doi: 10.1109/TNSRE.2004.843173
– ident: ref7
  doi: 10.23919/ACC.1984.4788393
– ident: ref21
  doi: 10.1177/0278364907084261
– ident: ref34
  doi: 10.1109/IROS.2003.1249179
– volume: 37
  start-page: 639
  year: 2000
  ident: ref14
  article-title: Increasing productivity and quality of care: Robot-aided neuro-rehabilitation
  publication-title: J. Rehabil. Res. Develop.
– ident: ref20
  doi: 10.1109/ROBOT.2006.1642181
– ident: ref30
  doi: 10.1109/TRO.2021.3073836
– ident: ref13
  doi: 10.1109/TMRB.2021.3054462
– ident: ref29
  doi: 10.1109/ICORR.2009.5209595
– ident: ref31
  doi: 10.1109/TRO.2020.3034017
– ident: ref1
  doi: 10.1682/JRRD.2005.03.0056
– ident: ref6
  doi: 10.1682/jrrd.2005.06.0103
– ident: ref44
  doi: 10.1109/CDC.2016.7799269
– ident: ref24
  doi: 10.1109/THMS.2020.2976905
– ident: ref43
  doi: 10.1007/s00332-015-9258-5
– ident: ref15
  doi: 10.1109/TNSRE.2007.903899
SSID ssj0002150736
Score 2.2580853
Snippet Dynamic control of an intrinsically compliant robot is paramount to ensuring safe and synergistic assistance to the patient. This paper presents an impedance...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 796
SubjectTerms Actuators
Anatomical stiffness prediction
biomimetic muscle actuators (BMA)
Biomimetics
Controllers
Dynamic control
End effectors
Human motion
Impedance
impedance control
Joints (anatomy)
Koopman operator
Medical treatment
Muscles
non-linear control
Parallel robots
Rehabilitation robots
Robots
Stiffness
System identification
Wrist
wrist rehabilitation robot
Title Impedance Control of a Wrist Rehabilitation Robot Based on Autodidact Stiffness Learning
URI https://ieeexplore.ieee.org/document/9844149
https://www.proquest.com/docview/2703135292
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgjSgveWBCpE0cx43HUlEBUhkKiG6RnwiBGgTpwsBv55ykFS8hpjzkix2ffQ_7_B3AkbQRl9LFgXExD5iNbSAV6wWMJQIVvKTa-KWB0RU_v2WXk2TSgJPFWRhrbRl8Zjv-ttzLN7me-aWyrkhReTPRhCY6btVZrcV6CvWWTczrjcsoFN2b0fgUHUBK0S8VLPH51j-pnjKXyg8BXGqV4SqM5u2pgkkeO7NCdfTbN6jG_zZ4DVZq85L0q_GwDg073YDlT6CDmzC5QEvZeGaTQRWnTnJHJLnz052MvyB3k3Gu8oKcoqozBB_7syI3D0bqglwXD855OUlqiNb7Lbgdnt0MzoM6v0Kg0SgoAs1ML3Sh1U5anzs0Ugz1OZdKOSlZrFMjqYxlypTGN6EwNHIscdpxk3DBZbwNrWk-tTtAkNygaDA89QBh1KQhVqHxinxPYhW1IZx3fabrX_A5MJ6y0gkJRea5lXluZTW32nC8IHmukDf-Krzpe39RsO74NuzP-ZvVc_M1ox6yH-1OQXd_p9qDJf_tKsxvH1rFy8weoOlRqENojt7PDsuR9wEXPtg_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHIADO6KsPnBCpCSO48bHgkBlKYdSRG-RV4RADYL0wtczTtKKTYhTFtnyMrbfjD1-A3AgbcSldHFgXMwDZmMbSMVaAWOJQICXVBu_NdC94Z07djlIBlNwNLkLY60tnc9s07-WZ_km1yO_VXYsUgRvJqZhFnGfieq21mRHhXrdJub10WUUiuN-t3eCJiClaJkKlviI65_Ap4ym8mMJLnHlfAm64xpV7iRPzVGhmvr9G1njf6u8DIu1gkna1YhYgSk7XIWFT7SDazC4QF3ZeHGT08pTneSOSHLvJzzpfeHuJr1c5QU5QbAzBD_boyI3j0bqgtwWj875lZLUJK0P63B3ftY_7QR1hIVAo1pQBJqZVuhCq520PnpopBgiOpdKOSlZrFMjqYxlypTGP6EwNHIscdpxk3DBZbwBM8N8aDeBYHaDi4PhqacIoyYNsQiNT5R8EquoAeG46zNdN8FHwXjOSjMkFJmXVualldXSasDhJMtLxb3xV-I13_uThHXHN2BnLN-snp1vGfWk_ah5Crr1e659mOv0u9fZ9cXN1TbM-3Iqp78dmCleR3YXFZFC7ZXj7wN6sNpe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impedance+Control+of+a+Wrist+Rehabilitation+Robot+Based+on+Autodidact+Stiffness+Learning&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Goyal%2C+Tanishka&rft.au=Hussain%2C+Shahid&rft.au=Martinez-Marroquin%2C+Elisa&rft.au=Brown%2C+Nicholas+A.+T.&rft.date=2022-08-01&rft.issn=2576-3202&rft.eissn=2576-3202&rft.volume=4&rft.issue=3&rft.spage=796&rft.epage=806&rft_id=info:doi/10.1109%2FTMRB.2022.3194528&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMRB_2022_3194528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon