Performance evaluation of ROS-based SLAM algorithms for handheld indoor mapping and tracking systems
Simultaneous Localization and Mapping is an important field of work not only in robotics, but also in mobile platforms. This research work provides insight into how SLAM techniques are deployed in an indoor environment to aid first responders with their duties. Due to the hazardous nature of the env...
Saved in:
Published in | IEEE sensors journal Vol. 23; no. 1; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2022.3224224 |
Cover
Loading…
Abstract | Simultaneous Localization and Mapping is an important field of work not only in robotics, but also in mobile platforms. This research work provides insight into how SLAM techniques are deployed in an indoor environment to aid first responders with their duties. Due to the hazardous nature of the environment and the need for sensitivity due to potential involvement of human subjects, autonomous robots cannot be used. So, the first responders must carry the scanning equipment and perform SLAM at the same time. As a result, unlike standard robot platforms, there will be no reliable odometry source, and SLAM will have to deal with the user's unpredictable movement. In this work, we compare and examine ROS-based SLAM approaches without using any odometry for their application in the above-mentioned circumstances. Gmapping, HectorSLAM, and Cartographer have been chosen as the candidates for this evaluation. We evaluated these approaches in two different environments: a lab office, and a long corridor. The research results show that Cartographer outperforms the other two techniques in our test setup in terms of map quality and trajectory tracking. The Cartographer's mapping error ranged from 0.017m to 0.3548m. |
---|---|
AbstractList | Simultaneous Localization and Mapping is an important field of work not only in robotics, but also in mobile platforms. This research work provides insight into how SLAM techniques are deployed in an indoor environment to aid first responders with their duties. Due to the hazardous nature of the environment and the need for sensitivity due to potential involvement of human subjects, autonomous robots cannot be used. So, the first responders must carry the scanning equipment and perform SLAM at the same time. As a result, unlike standard robot platforms, there will be no reliable odometry source, and SLAM will have to deal with the user's unpredictable movement. In this work, we compare and examine ROS-based SLAM approaches without using any odometry for their application in the above-mentioned circumstances. Gmapping, HectorSLAM, and Cartographer have been chosen as the candidates for this evaluation. We evaluated these approaches in two different environments: a lab office, and a long corridor. The research results show that Cartographer outperforms the other two techniques in our test setup in terms of map quality and trajectory tracking. The Cartographer's mapping error ranged from 0.017m to 0.3548m. Simultaneous localization and mapping (SLAM) is an important field of work not only in robotics, but also in mobile platforms. This research work provides insights into how SLAM techniques are deployed in an indoor environment to aid first responders with their duties. Due to the hazardous nature of the environment and the need for sensitivity due to the potential involvement of human subjects, autonomous robots cannot be used. So, the first responders must carry the scanning equipment and perform SLAM at the same time. As a result, unlike standard robot platforms, there will be no reliable odometry source, and SLAM will have to deal with the user’s unpredictable movement. In this work, we compare and examine robotic operating system (ROS)-based SLAM approaches without using any odometry for their application in the above-mentioned circumstances. Gmapping, HectorSLAM, and Cartographer have been chosen as the candidates for this evaluation. We evaluated these approaches in two different environments: a lab office and a long corridor. The research results show that Cartographer outperforms the other two techniques in our test setup in terms of map quality and trajectory tracking. The Cartographer’s mapping error ranged from 0.017 to 0.3548 m. |
Author | Johnson, Princy Nguyen, Quang Huy Latham, David |
Author_xml | – sequence: 1 givenname: Quang Huy orcidid: 0000-0002-5997-3339 surname: Nguyen fullname: Nguyen, Quang Huy organization: Liverpool John Moores University, Liverpool, UK – sequence: 2 givenname: Princy orcidid: 0000-0003-2379-9700 surname: Johnson fullname: Johnson, Princy organization: School of Engineering, Liverpool John Moores University, Liveprool, UK – sequence: 3 givenname: David surname: Latham fullname: Latham, David organization: CAL International, Prescot, UK |
BookMark | eNp9kF1LwzAUhoMouE1_gHgT8LozH23TXI4xv5hOnIJ3JWnSLbNNatIJ-_e2bnjhheFA8h7Oc3LOOwTH1lkNwAVGY4wRv35Yzp7GBBEypoTEXRyBAU6SLMIszo77N0VRTNn7KRiGsEEIc5awAVDP2pfO18IWGuovUW1Fa5yFroQvi2UkRdAKLueTRyiqlfOmXdcBdgBcC6vWulLQWOU6XYumMXYFuzRsvSg-ehF2odV1OAMnpaiCPj_cI_B2M3ud3kXzxe39dDKPCkJoG3EkldIiFTGWtBSqSBhPhVSIpBRjlRWZiGWBeYJllnGFOaZpJpFEpRQaU0RH4Grft_Huc6tDm2_c1tvuy5ywhNOM0e6MANtXFd6F4HWZF6b92bqb21Q5Rnlvad5bmveW5gdLOxL_IRtvauF3_zKXe8ZorX_rOU8ZTwj9BrDjhL4 |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3545452 crossref_primary_10_1109_JSEN_2023_3341832 crossref_primary_10_7746_jkros_2024_19_3_311 crossref_primary_10_3390_rs16162938 crossref_primary_10_59314_tujes_1347214 |
Cites_doi | 10.1109/WSC.2016.7822338 10.1109/TITS.2021.3063477 10.1109/CONF-SPML54095.2021.00040 10.1109/ICRA.2016.7487258 10.1109/SSRR.2013.6719348 10.1109/LRA.2021.3092274 10.3390/electronics9040695 10.1145/1859995.1860016 10.1109/TRO.2006.889486 10.1109/MWC.2011.5751291 10.1109/TRO.2012.2200990 10.1109/LRA.2021.3060392 10.1109/TASE.2014.2376492 10.1109/IPIN.2013.6817921 10.1109/GECOST52368.2021.9538731 10.1109/JSEN.2022.3153900 10.1109/ROBIO.2015.7418763 10.1109/DDECS54261.2022.9770114 10.1109/JSEN.2021.3100882 10.1109/IROS.2010.5649043 10.1109/JSEN.2021.3101121 10.1109/JSEN.2021.3136929 10.1109/COMST.2018.2867935 10.1109/CRC52766.2021.9620122 10.1109/ROBOT.2008.4543181 10.1007/978-3-662-44468-9_58 10.1109/MRA.2006.1638022 10.1109/COMST.2016.2632427 10.1109/ICRAE53653.2021.9657761 10.1109/ICARCV.2010.5707402 10.1109/VETECF.2005.1557943 10.7551/mitpress/9481.003.0011 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2022.3224224 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1 |
ExternalDocumentID | 10_1109_JSEN_2022_3224224 9967952 |
Genre | orig-research |
GrantInformation_xml | – fundername: Innovate UK grantid: KTP Project 1162 funderid: 10.13039/501100006041 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ ZY4 AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c223t-90bddea6a41b3fadc5796abd026311d8c8a4bc1951b889d191368b0b0fbae1303 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:08:40 EDT 2025 Tue Jul 01 04:27:00 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Wed Aug 27 02:29:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c223t-90bddea6a41b3fadc5796abd026311d8c8a4bc1951b889d191368b0b0fbae1303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2379-9700 0000-0002-5997-3339 |
PQID | 2759387333 |
PQPubID | 75733 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2022_3224224 crossref_primary_10_1109_JSEN_2022_3224224 ieee_primary_9967952 proquest_journals_2759387333 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 (ref33) 2022 ref14 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 (ref34) 2022 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 (ref9) 2022 |
References_xml | – ident: ref17 doi: 10.1109/WSC.2016.7822338 – ident: ref18 doi: 10.1109/TITS.2021.3063477 – ident: ref6 doi: 10.1109/CONF-SPML54095.2021.00040 – ident: ref15 doi: 10.1109/ICRA.2016.7487258 – ident: ref16 doi: 10.1109/SSRR.2013.6719348 – ident: ref28 doi: 10.1109/LRA.2021.3092274 – ident: ref22 doi: 10.3390/electronics9040695 – ident: ref4 doi: 10.1145/1859995.1860016 – ident: ref13 doi: 10.1109/TRO.2006.889486 – ident: ref7 doi: 10.1109/MWC.2011.5751291 – ident: ref26 doi: 10.1109/TRO.2012.2200990 – ident: ref27 doi: 10.1109/LRA.2021.3060392 – ident: ref10 doi: 10.1109/TASE.2014.2376492 – ident: ref8 doi: 10.1109/IPIN.2013.6817921 – ident: ref32 doi: 10.1109/GECOST52368.2021.9538731 – ident: ref23 doi: 10.1109/JSEN.2022.3153900 – ident: ref25 doi: 10.1109/ROBIO.2015.7418763 – ident: ref11 doi: 10.1109/DDECS54261.2022.9770114 – ident: ref24 doi: 10.1109/JSEN.2021.3100882 – ident: ref19 doi: 10.1109/IROS.2010.5649043 – volume-title: Jetson Xavier NX Developer Kit year: 2022 ident: ref34 – ident: ref29 doi: 10.1109/JSEN.2021.3101121 – ident: ref30 doi: 10.1109/JSEN.2021.3136929 – ident: ref2 doi: 10.1109/COMST.2018.2867935 – volume-title: RPLIDAR-A2 Laser Range Scanner year: 2022 ident: ref33 – ident: ref31 doi: 10.1109/CRC52766.2021.9620122 – ident: ref35 doi: 10.1109/ROBOT.2008.4543181 – volume-title: Powering the World’s Robots year: 2022 ident: ref9 – ident: ref14 doi: 10.1007/978-3-662-44468-9_58 – ident: ref1 doi: 10.1109/MRA.2006.1638022 – ident: ref5 doi: 10.1109/COMST.2016.2632427 – ident: ref12 doi: 10.1109/ICRAE53653.2021.9657761 – ident: ref20 doi: 10.1109/ICARCV.2010.5707402 – ident: ref3 doi: 10.1109/VETECF.2005.1557943 – ident: ref21 doi: 10.7551/mitpress/9481.003.0011 |
SSID | ssj0019757 |
Score | 2.377739 |
Snippet | Simultaneous Localization and Mapping is an important field of work not only in robotics, but also in mobile platforms. This research work provides insight... Simultaneous localization and mapping (SLAM) is an important field of work not only in robotics, but also in mobile platforms. This research work provides... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Cartographer Cartography Emergency response Gmapping Hazardous areas HectorSLAM Indoor environments Indoor mapping LiDAR Performance evaluation Platforms Robotics Robots ROS Simultaneous localization and mapping SLAM Tracking systems |
Title | Performance evaluation of ROS-based SLAM algorithms for handheld indoor mapping and tracking systems |
URI | https://ieeexplore.ieee.org/document/9967952 https://www.proquest.com/docview/2759387333 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xXNg98EaUl3zgtFoXx3ab-IgQCCEKaAtSb5FfoYjSoDY9wK9nnKTlKcQtjmzJ0md75ht7vgHYN8yiI5AZirtQUqnalupYaBrEwnhsmLY8JDh3LtqnN_Ks1-rNwb9ZLoz3vnx85pvhs7zLd7mdhFDZAfrmsWrhgfsLiVuVqzW7MVBxqeqJG5hRKeJefYMZMXVw1j2-QCbIeRNXr-RcvrNBZVGVTydxaV5OlqAznVj1quS-OSlM0z5_0Gz86cyXYbH2M8lhtTBWYM4PV-HPG_XBVVioC6D3n9bAXb0mEJBXBXCSZ-T_ZZcGW-dI9_ywQ_TgNh_dFf2HMcEBJATe-37gCHL7HNsPOgg-3BL8TYqRtiESTyq56PE63JwcXx-d0roAA7XoNRRUMYOnn25rGRmRaWdD4qo2DnmbiCKX2ERLYyN00kySKIfUT7QTwwzLjPbBOG7A_DAf-k0gxovEhzpFSMWl4izRURZxZ6xgjjsbNYBNIUltrU4eimQM0pKlMJUGFNOAYlqj2IC_syGPlTTHd53XAiqzjjUgDdiZ4p7Wm3ec8rilRBILIba-HrUNv0PV-SoSswPzxWjid9E3KcxeuShfAE6F4EU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5V5VA48GhBDZTiAyeEU6_tZNfHCrUKJQmItFJuK7-2QaRZlGwO8OuZ2d2kFBDitl55JEufPS97vgF47YRHR6BwHE-h5tr0PbepspzIwmTqhPWSCpxH4_7gSl9Me9MdeLuthYkx1o_PYpc-67v8UPo1pcpO0DdPTQ8V7r0eFeM21VrbOwOT1ryeeIQF1yqdtneYiTAnF5OzMcaCUnZx_2op9R0rVLdV-UMX1wbm_BGMNktr3pV87a4r1_U_fmNt_N-1P4aHrafJTput8QR24mIfHvzCP7gPe20L9Nn3AwifbksI2C0HOCsL9vnjhJO1C2wyPB0xO78ul1-q2c2KoQCj1PsszgPD6L7E8Y0lyodrhr9ZtbSecvGsIYxePYWr87PLdwPetmDgHv2GihvhUP_ZvtWJU4UNnkpXrQsYuakkCZnPrHY-QTfNZZkJGPypfuaEE4WzkczjM9hdlIt4CMxFlUXqVITBuDZSZDYpEhmcVyLI4JMOiA0kuW_5yalNxjyv4xRhckIxJxTzFsUOvNmKfGvIOf41-YBQ2U5sAenA0Qb3vD2-q1ymPaOyVCn1_O9Sr2BvcDka5sP34w8v4D71oG_yMkewWy3X8SV6KpU7rjfoTyZK440 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Evaluation+of+ROS-Based+SLAM+Algorithms+for+Handheld+Indoor+Mapping+and+Tracking+Systems&rft.jtitle=IEEE+sensors+journal&rft.au=Nguyen%2C+Quang+Huy&rft.au=Johnson%2C+Princy&rft.au=Latham%2C+David&rft.date=2023-01-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=1&rft.spage=706&rft.epage=714&rft_id=info:doi/10.1109%2FJSEN.2022.3224224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3224224 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |