Performance evaluation of ROS-based SLAM algorithms for handheld indoor mapping and tracking systems

Simultaneous Localization and Mapping is an important field of work not only in robotics, but also in mobile platforms. This research work provides insight into how SLAM techniques are deployed in an indoor environment to aid first responders with their duties. Due to the hazardous nature of the env...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 1; p. 1
Main Authors Nguyen, Quang Huy, Johnson, Princy, Latham, David
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2022.3224224

Cover

Loading…
Abstract Simultaneous Localization and Mapping is an important field of work not only in robotics, but also in mobile platforms. This research work provides insight into how SLAM techniques are deployed in an indoor environment to aid first responders with their duties. Due to the hazardous nature of the environment and the need for sensitivity due to potential involvement of human subjects, autonomous robots cannot be used. So, the first responders must carry the scanning equipment and perform SLAM at the same time. As a result, unlike standard robot platforms, there will be no reliable odometry source, and SLAM will have to deal with the user's unpredictable movement. In this work, we compare and examine ROS-based SLAM approaches without using any odometry for their application in the above-mentioned circumstances. Gmapping, HectorSLAM, and Cartographer have been chosen as the candidates for this evaluation. We evaluated these approaches in two different environments: a lab office, and a long corridor. The research results show that Cartographer outperforms the other two techniques in our test setup in terms of map quality and trajectory tracking. The Cartographer's mapping error ranged from 0.017m to 0.3548m.
AbstractList Simultaneous Localization and Mapping is an important field of work not only in robotics, but also in mobile platforms. This research work provides insight into how SLAM techniques are deployed in an indoor environment to aid first responders with their duties. Due to the hazardous nature of the environment and the need for sensitivity due to potential involvement of human subjects, autonomous robots cannot be used. So, the first responders must carry the scanning equipment and perform SLAM at the same time. As a result, unlike standard robot platforms, there will be no reliable odometry source, and SLAM will have to deal with the user's unpredictable movement. In this work, we compare and examine ROS-based SLAM approaches without using any odometry for their application in the above-mentioned circumstances. Gmapping, HectorSLAM, and Cartographer have been chosen as the candidates for this evaluation. We evaluated these approaches in two different environments: a lab office, and a long corridor. The research results show that Cartographer outperforms the other two techniques in our test setup in terms of map quality and trajectory tracking. The Cartographer's mapping error ranged from 0.017m to 0.3548m.
Simultaneous localization and mapping (SLAM) is an important field of work not only in robotics, but also in mobile platforms. This research work provides insights into how SLAM techniques are deployed in an indoor environment to aid first responders with their duties. Due to the hazardous nature of the environment and the need for sensitivity due to the potential involvement of human subjects, autonomous robots cannot be used. So, the first responders must carry the scanning equipment and perform SLAM at the same time. As a result, unlike standard robot platforms, there will be no reliable odometry source, and SLAM will have to deal with the user’s unpredictable movement. In this work, we compare and examine robotic operating system (ROS)-based SLAM approaches without using any odometry for their application in the above-mentioned circumstances. Gmapping, HectorSLAM, and Cartographer have been chosen as the candidates for this evaluation. We evaluated these approaches in two different environments: a lab office and a long corridor. The research results show that Cartographer outperforms the other two techniques in our test setup in terms of map quality and trajectory tracking. The Cartographer’s mapping error ranged from 0.017 to 0.3548 m.
Author Johnson, Princy
Nguyen, Quang Huy
Latham, David
Author_xml – sequence: 1
  givenname: Quang Huy
  orcidid: 0000-0002-5997-3339
  surname: Nguyen
  fullname: Nguyen, Quang Huy
  organization: Liverpool John Moores University, Liverpool, UK
– sequence: 2
  givenname: Princy
  orcidid: 0000-0003-2379-9700
  surname: Johnson
  fullname: Johnson, Princy
  organization: School of Engineering, Liverpool John Moores University, Liveprool, UK
– sequence: 3
  givenname: David
  surname: Latham
  fullname: Latham, David
  organization: CAL International, Prescot, UK
BookMark eNp9kF1LwzAUhoMouE1_gHgT8LozH23TXI4xv5hOnIJ3JWnSLbNNatIJ-_e2bnjhheFA8h7Oc3LOOwTH1lkNwAVGY4wRv35Yzp7GBBEypoTEXRyBAU6SLMIszo77N0VRTNn7KRiGsEEIc5awAVDP2pfO18IWGuovUW1Fa5yFroQvi2UkRdAKLueTRyiqlfOmXdcBdgBcC6vWulLQWOU6XYumMXYFuzRsvSg-ehF2odV1OAMnpaiCPj_cI_B2M3ud3kXzxe39dDKPCkJoG3EkldIiFTGWtBSqSBhPhVSIpBRjlRWZiGWBeYJllnGFOaZpJpFEpRQaU0RH4Grft_Huc6tDm2_c1tvuy5ywhNOM0e6MANtXFd6F4HWZF6b92bqb21Q5Rnlvad5bmveW5gdLOxL_IRtvauF3_zKXe8ZorX_rOU8ZTwj9BrDjhL4
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3545452
crossref_primary_10_1109_JSEN_2023_3341832
crossref_primary_10_7746_jkros_2024_19_3_311
crossref_primary_10_3390_rs16162938
crossref_primary_10_59314_tujes_1347214
Cites_doi 10.1109/WSC.2016.7822338
10.1109/TITS.2021.3063477
10.1109/CONF-SPML54095.2021.00040
10.1109/ICRA.2016.7487258
10.1109/SSRR.2013.6719348
10.1109/LRA.2021.3092274
10.3390/electronics9040695
10.1145/1859995.1860016
10.1109/TRO.2006.889486
10.1109/MWC.2011.5751291
10.1109/TRO.2012.2200990
10.1109/LRA.2021.3060392
10.1109/TASE.2014.2376492
10.1109/IPIN.2013.6817921
10.1109/GECOST52368.2021.9538731
10.1109/JSEN.2022.3153900
10.1109/ROBIO.2015.7418763
10.1109/DDECS54261.2022.9770114
10.1109/JSEN.2021.3100882
10.1109/IROS.2010.5649043
10.1109/JSEN.2021.3101121
10.1109/JSEN.2021.3136929
10.1109/COMST.2018.2867935
10.1109/CRC52766.2021.9620122
10.1109/ROBOT.2008.4543181
10.1007/978-3-662-44468-9_58
10.1109/MRA.2006.1638022
10.1109/COMST.2016.2632427
10.1109/ICRAE53653.2021.9657761
10.1109/ICARCV.2010.5707402
10.1109/VETECF.2005.1557943
10.7551/mitpress/9481.003.0011
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3224224
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1
ExternalDocumentID 10_1109_JSEN_2022_3224224
9967952
Genre orig-research
GrantInformation_xml – fundername: Innovate UK
  grantid: KTP Project 1162
  funderid: 10.13039/501100006041
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
ZY4
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c223t-90bddea6a41b3fadc5796abd026311d8c8a4bc1951b889d191368b0b0fbae1303
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:08:40 EDT 2025
Tue Jul 01 04:27:00 EDT 2025
Thu Apr 24 23:08:49 EDT 2025
Wed Aug 27 02:29:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-90bddea6a41b3fadc5796abd026311d8c8a4bc1951b889d191368b0b0fbae1303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2379-9700
0000-0002-5997-3339
PQID 2759387333
PQPubID 75733
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2022_3224224
crossref_primary_10_1109_JSEN_2022_3224224
ieee_primary_9967952
proquest_journals_2759387333
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
(ref33) 2022
ref14
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
(ref34) 2022
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
(ref9) 2022
References_xml – ident: ref17
  doi: 10.1109/WSC.2016.7822338
– ident: ref18
  doi: 10.1109/TITS.2021.3063477
– ident: ref6
  doi: 10.1109/CONF-SPML54095.2021.00040
– ident: ref15
  doi: 10.1109/ICRA.2016.7487258
– ident: ref16
  doi: 10.1109/SSRR.2013.6719348
– ident: ref28
  doi: 10.1109/LRA.2021.3092274
– ident: ref22
  doi: 10.3390/electronics9040695
– ident: ref4
  doi: 10.1145/1859995.1860016
– ident: ref13
  doi: 10.1109/TRO.2006.889486
– ident: ref7
  doi: 10.1109/MWC.2011.5751291
– ident: ref26
  doi: 10.1109/TRO.2012.2200990
– ident: ref27
  doi: 10.1109/LRA.2021.3060392
– ident: ref10
  doi: 10.1109/TASE.2014.2376492
– ident: ref8
  doi: 10.1109/IPIN.2013.6817921
– ident: ref32
  doi: 10.1109/GECOST52368.2021.9538731
– ident: ref23
  doi: 10.1109/JSEN.2022.3153900
– ident: ref25
  doi: 10.1109/ROBIO.2015.7418763
– ident: ref11
  doi: 10.1109/DDECS54261.2022.9770114
– ident: ref24
  doi: 10.1109/JSEN.2021.3100882
– ident: ref19
  doi: 10.1109/IROS.2010.5649043
– volume-title: Jetson Xavier NX Developer Kit
  year: 2022
  ident: ref34
– ident: ref29
  doi: 10.1109/JSEN.2021.3101121
– ident: ref30
  doi: 10.1109/JSEN.2021.3136929
– ident: ref2
  doi: 10.1109/COMST.2018.2867935
– volume-title: RPLIDAR-A2 Laser Range Scanner
  year: 2022
  ident: ref33
– ident: ref31
  doi: 10.1109/CRC52766.2021.9620122
– ident: ref35
  doi: 10.1109/ROBOT.2008.4543181
– volume-title: Powering the World’s Robots
  year: 2022
  ident: ref9
– ident: ref14
  doi: 10.1007/978-3-662-44468-9_58
– ident: ref1
  doi: 10.1109/MRA.2006.1638022
– ident: ref5
  doi: 10.1109/COMST.2016.2632427
– ident: ref12
  doi: 10.1109/ICRAE53653.2021.9657761
– ident: ref20
  doi: 10.1109/ICARCV.2010.5707402
– ident: ref3
  doi: 10.1109/VETECF.2005.1557943
– ident: ref21
  doi: 10.7551/mitpress/9481.003.0011
SSID ssj0019757
Score 2.377739
Snippet Simultaneous Localization and Mapping is an important field of work not only in robotics, but also in mobile platforms. This research work provides insight...
Simultaneous localization and mapping (SLAM) is an important field of work not only in robotics, but also in mobile platforms. This research work provides...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Cartographer
Cartography
Emergency response
Gmapping
Hazardous areas
HectorSLAM
Indoor environments
Indoor mapping
LiDAR
Performance evaluation
Platforms
Robotics
Robots
ROS
Simultaneous localization and mapping
SLAM
Tracking systems
Title Performance evaluation of ROS-based SLAM algorithms for handheld indoor mapping and tracking systems
URI https://ieeexplore.ieee.org/document/9967952
https://www.proquest.com/docview/2759387333
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xXNg98EaUl3zgtFoXx3ab-IgQCCEKaAtSb5FfoYjSoDY9wK9nnKTlKcQtjmzJ0md75ht7vgHYN8yiI5AZirtQUqnalupYaBrEwnhsmLY8JDh3LtqnN_Ks1-rNwb9ZLoz3vnx85pvhs7zLd7mdhFDZAfrmsWrhgfsLiVuVqzW7MVBxqeqJG5hRKeJefYMZMXVw1j2-QCbIeRNXr-RcvrNBZVGVTydxaV5OlqAznVj1quS-OSlM0z5_0Gz86cyXYbH2M8lhtTBWYM4PV-HPG_XBVVioC6D3n9bAXb0mEJBXBXCSZ-T_ZZcGW-dI9_ywQ_TgNh_dFf2HMcEBJATe-37gCHL7HNsPOgg-3BL8TYqRtiESTyq56PE63JwcXx-d0roAA7XoNRRUMYOnn25rGRmRaWdD4qo2DnmbiCKX2ERLYyN00kySKIfUT7QTwwzLjPbBOG7A_DAf-k0gxovEhzpFSMWl4izRURZxZ6xgjjsbNYBNIUltrU4eimQM0pKlMJUGFNOAYlqj2IC_syGPlTTHd53XAiqzjjUgDdiZ4p7Wm3ec8rilRBILIba-HrUNv0PV-SoSswPzxWjid9E3KcxeuShfAE6F4EU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5V5VA48GhBDZTiAyeEU6_tZNfHCrUKJQmItFJuK7-2QaRZlGwO8OuZ2d2kFBDitl55JEufPS97vgF47YRHR6BwHE-h5tr0PbepspzIwmTqhPWSCpxH4_7gSl9Me9MdeLuthYkx1o_PYpc-67v8UPo1pcpO0DdPTQ8V7r0eFeM21VrbOwOT1ryeeIQF1yqdtneYiTAnF5OzMcaCUnZx_2op9R0rVLdV-UMX1wbm_BGMNktr3pV87a4r1_U_fmNt_N-1P4aHrafJTput8QR24mIfHvzCP7gPe20L9Nn3AwifbksI2C0HOCsL9vnjhJO1C2wyPB0xO78ul1-q2c2KoQCj1PsszgPD6L7E8Y0lyodrhr9ZtbSecvGsIYxePYWr87PLdwPetmDgHv2GihvhUP_ZvtWJU4UNnkpXrQsYuakkCZnPrHY-QTfNZZkJGPypfuaEE4WzkczjM9hdlIt4CMxFlUXqVITBuDZSZDYpEhmcVyLI4JMOiA0kuW_5yalNxjyv4xRhckIxJxTzFsUOvNmKfGvIOf41-YBQ2U5sAenA0Qb3vD2-q1ymPaOyVCn1_O9Sr2BvcDka5sP34w8v4D71oG_yMkewWy3X8SV6KpU7rjfoTyZK440
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Evaluation+of+ROS-Based+SLAM+Algorithms+for+Handheld+Indoor+Mapping+and+Tracking+Systems&rft.jtitle=IEEE+sensors+journal&rft.au=Nguyen%2C+Quang+Huy&rft.au=Johnson%2C+Princy&rft.au=Latham%2C+David&rft.date=2023-01-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=1&rft.spage=706&rft.epage=714&rft_id=info:doi/10.1109%2FJSEN.2022.3224224&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3224224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon