Subject-Independent Classification of P300 Event-Related Potentials Using a Small Number of Training Subjects

The intersubject variability present in electroencephalographic (EEG) signals can affect the performance of the brain-computer interface (BCI) systems. Despite the significant progress in the field, the variability in neural data remains one of the most critical challenges in constructing accurate p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 52; no. 5; pp. 843 - 854
Main Authors Abibullaev, Berdakh, Kunanbayev, Kassymzhomart, Zollanvari, Amin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intersubject variability present in electroencephalographic (EEG) signals can affect the performance of the brain-computer interface (BCI) systems. Despite the significant progress in the field, the variability in neural data remains one of the most critical challenges in constructing accurate predictive models of human intention. As a result, the majority of the previous studies have focused either on devising subject-specific signal processing and machine learning algorithms, used some data from a target user to update and calibrate a pretrained classifier, or have used data collected from a relatively large number of training subjects to construct generic classifiers for new subjects. In this work, we investigate the feasibility of using a relatively small number of training subjects to achieve subject-independent classification of event-related potentials (ERPs) in P300-based BCIs. To this end, we employ convolutional neural networks (CNNs) and propose a leave-one-subject-out cross-validation (LOSO-CV) for model selection; that is to say, for tuning CNN hyperparameters including number of layers, filters, kernel size, and epoch. The utility of the proposed model selection is warranted because LOSO-CV simulates the effect of subject-independent classification within the training data. The entire process of training (including model selection) is validated by applying another LOSO-CV external to the training process. Our empirical results obtained on four publicly available datasets confirm the capability of LOSO-CV model selection with CNN to capture intrinsic ERP features from a small group of subjects to classify observations collected from unseen subjects.
AbstractList The intersubject variability present in electroencephalographic (EEG) signals can affect the performance of the brain-computer interface (BCI) systems. Despite the significant progress in the field, the variability in neural data remains one of the most critical challenges in constructing accurate predictive models of human intention. As a result, the majority of the previous studies have focused either on devising subject-specific signal processing and machine learning algorithms, used some data from a target user to update and calibrate a pretrained classifier, or have used data collected from a relatively large number of training subjects to construct generic classifiers for new subjects. In this work, we investigate the feasibility of using a relatively small number of training subjects to achieve subject-independent classification of event-related potentials (ERPs) in P300-based BCIs. To this end, we employ convolutional neural networks (CNNs) and propose a leave-one-subject-out cross-validation (LOSO-CV) for model selection; that is to say, for tuning CNN hyperparameters including number of layers, filters, kernel size, and epoch. The utility of the proposed model selection is warranted because LOSO-CV simulates the effect of subject-independent classification within the training data. The entire process of training (including model selection) is validated by applying another LOSO-CV external to the training process. Our empirical results obtained on four publicly available datasets confirm the capability of LOSO-CV model selection with CNN to capture intrinsic ERP features from a small group of subjects to classify observations collected from unseen subjects.
Author Kunanbayev, Kassymzhomart
Zollanvari, Amin
Abibullaev, Berdakh
Author_xml – sequence: 1
  givenname: Berdakh
  orcidid: 0000-0002-8623-5526
  surname: Abibullaev
  fullname: Abibullaev, Berdakh
  email: berdakh.abibullaev@nu.edu.kz
  organization: Department of Robotics and Mechatronics, Nazarbayev University, Nur-Sultan, Kazakhstan
– sequence: 2
  givenname: Kassymzhomart
  orcidid: 0000-0002-9047-1599
  surname: Kunanbayev
  fullname: Kunanbayev, Kassymzhomart
  email: kassymzhomart.kunanbayev@nu.edu.kz
  organization: Department of Electrical and Computer Engineering, Nazarbayev University, Nur-Sultan, Kazakhstan
– sequence: 3
  givenname: Amin
  orcidid: 0000-0002-9172-8413
  surname: Zollanvari
  fullname: Zollanvari, Amin
  email: zollanvari@gmail.com
  organization: Department of Electrical and Computer Engineering, Nazarbayev University, Nur-Sultan, Kazakhstan
BookMark eNp9kEtPAjEUhRuDiYj8AOOmievBPqYznaUhKCSoRGA96XTumJJ5YFtM_Pd2BF24sIvbNud897bnEg3argWErimZUEqyu838aT1hhLEJpzITaXKGhowmMmKciMHPmWX0Ao2d25GwJBNCyCFq1odiB9pHi7aEPYTSejytlXOmMlp507W4q_CKE4JnH0GMXqFWHkq86ny4GlU7vHWmfcMKrxtV1_j50BRge2pjlWl76TTEXaHzKgAwPu0jtH2YbabzaPnyuJjeLyPNGPcRrRINlYgLIbMiJqIUSZGAEJTJCnRBeKgyLVlRZEQHSaaiUppxyFgQpeAjdHvsu7fd-wGcz3fdwbZhZM5SGmeCS9K70qNL2845C1Wujf_-sg8Pr3NK8j7evI837-PNT_EGkv4h99Y0yn7-y9wcGQMAv_5M8jSOCf8CIiiH3Q
CODEN ITHSA6
CitedBy_id crossref_primary_10_3390_app132413350
crossref_primary_10_1007_s11227_024_06627_3
crossref_primary_10_11834_jig_230031
crossref_primary_10_1109_TNSRE_2023_3259991
crossref_primary_10_1109_ACCESS_2023_3329678
crossref_primary_10_1016_j_patrec_2023_10_011
crossref_primary_10_3389_fnins_2023_1167125
crossref_primary_10_1109_TBME_2024_3361716
Cites_doi 10.1007/0-306-48610-5_3
10.1016/S1388-2457(02)00057-3
10.1088/1741-2552/ab260c
10.1109/TMRB.2019.2959559
10.1016/j.neulet.2009.06.045
10.1109/EMBC.2019.8856320
10.1113/jphysiol.2006.125633
10.1007/978-1-4614-5227-0_2
10.5772/14858
10.1109/TBME.2009.2038990
10.3389/fnins.2012.00039
10.7551/mitpress/9780262170055.001.0001
10.1016/0013-4694(88)90149-6
10.1002/hbm.23730
10.1109/TSMC.2017.2756673
10.1109/JPROC.2015.2404941
10.1109/JBHI.2018.2883458
10.1007/s40141-014-0051-4
10.1088/1741-2560/11/3/035005
10.1109/TKDE.2008.239
10.3389/fnhum.2013.00732
10.1016/c2009-0-19715-5
10.3389/fnins.2016.00430
10.1016/j.neunet.2018.07.011
10.1088/1741-2552/ab0ab5
10.1109/TSMC.2020.2964684
10.1088/1741-2560/11/3/035008
10.1109/ijcnn.2008.4634130
10.1016/j.neunet.2009.04.003
10.1109/TBME.2007.905490
10.1016/j.neucom.2017.08.039
10.1109/TNNLS.2019.2946869
10.1515/REVNEURO.2010.21.6.451
10.1109/TSMC.2021.3051136
10.1007/s10916-008-9231-z
10.1038/s41598-018-21717-y
10.1007/s10439-006-9170-0
10.1088/1741-2560/4/2/r01
10.1142/S0129065712500025
10.1016/j.neuroimage.2010.06.048
10.1016/bs.pbr.2016.04.019
10.1109/ner.2017.8008395
10.1088/1741-2552/aab2f2
10.1109/TPAMI.2010.125
10.1109/TNSRE.2018.2810332
10.1016/j.jneumeth.2007.03.005
10.1145/2110363.2110366
10.1080/00140139.2012.661084
10.1142/S0129065711002808
10.1109/IWW-BCI.2017.7858151
10.1155/2018/6058065
10.1109/TBME.2020.2965178
10.1016/j.neunet.2020.12.013
10.1007/s12021-012-9171-0
10.1007/978-3-642-33065-0_29
10.1038/nature11076
10.1088/1741-2552/abc902
10.1080/21646821.2015.1075181
10.1109/TNSRE.2019.2956488
10.1088/1741-2560/4/2/R03
10.1088/1741-2552/aace8c
10.1088/1741-2552/aadea0
10.1016/S0140-6736(10)61156-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/THMS.2022.3189576
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2305
EndPage 854
ExternalDocumentID 10_1109_THMS_2022_3189576
9837440
Genre orig-research
GrantInformation_xml – fundername: Nazarbayev University Faculty Development Competitive Research
  grantid: 021220FD1151; 021220FD2051
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c223t-1f6cef54b589b405d56b6e55128fecb03fec87d2bb90c6b6875fac23e92b03853
IEDL.DBID RIE
ISSN 2168-2291
IngestDate Mon Jun 30 05:21:13 EDT 2025
Tue Jul 01 03:00:59 EDT 2025
Thu Apr 24 23:07:12 EDT 2025
Wed Aug 27 02:15:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-1f6cef54b589b405d56b6e55128fecb03fec87d2bb90c6b6875fac23e92b03853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9047-1599
0000-0002-8623-5526
0000-0002-9172-8413
PQID 2714953805
PQPubID 85416
PageCount 12
ParticipantIDs crossref_primary_10_1109_THMS_2022_3189576
proquest_journals_2714953805
crossref_citationtrail_10_1109_THMS_2022_3189576
ieee_primary_9837440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Oct.
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on human-machine systems
PublicationTitleAbbrev THMS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref56
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
ref51
Goodfellow (ref65) 2016
ref50
ref46
Maddula (ref41) 2017
ref48
ref47
ref42
ref44
ref43
ref49
ref8
ref7
ref3
ref6
ref5
Talsma (ref58) 2005
ref40
Mller (ref12) 2004; 49
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
LeCun (ref60) 1989
ref1
ref39
ref38
Vallabhaneni (ref9) 2005
ref71
He (ref4) 2013
ref70
ref72
Adair (ref45) 2017
ref24
ref68
ref23
ref67
ref26
ref69
ref20
Srivastava (ref64) 2014; 15
ref63
Kingma (ref66) 2015
ref22
ref21
ref28
ref27
Guger (ref54) 2009; 462
Roijendijk (ref25) 2009
ref29
ref62
ref61
References_xml – start-page: 85
  volume-title: Neural Engineering
  year: 2005
  ident: ref9
  article-title: Braincomputer interface
  doi: 10.1007/0-306-48610-5_3
– start-page: 1
  volume-title: Proc. 3rd Int. Conf. Learn. Representations
  year: 2015
  ident: ref66
  article-title: Adam: A method for stochastic optimization
– ident: ref8
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref37
  doi: 10.1088/1741-2552/ab260c
– ident: ref43
  doi: 10.1109/TMRB.2019.2959559
– volume: 462
  start-page: 94
  issue: 1
  year: 2009
  ident: ref54
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.06.045
– ident: ref46
  doi: 10.1109/EMBC.2019.8856320
– ident: ref10
  doi: 10.1113/jphysiol.2006.125633
– start-page: 87
  volume-title: Neural Engineering
  year: 2013
  ident: ref4
  article-title: Braincomputer Interfaces
  doi: 10.1007/978-1-4614-5227-0_2
– ident: ref19
  doi: 10.5772/14858
– ident: ref29
  doi: 10.1109/TBME.2009.2038990
– ident: ref69
  doi: 10.3389/fnins.2012.00039
– ident: ref24
  doi: 10.7551/mitpress/9780262170055.001.0001
– volume: 49
  start-page: 11
  issue: 1
  year: 2004
  ident: ref12
  article-title: Machine learning techniques for brain-computer interfaces
  publication-title: Biomed. Technol.
– ident: ref22
  doi: 10.1016/0013-4694(88)90149-6
– ident: ref67
  doi: 10.1002/hbm.23730
– ident: ref14
  doi: 10.1109/TSMC.2017.2756673
– ident: ref71
  doi: 10.1109/JPROC.2015.2404941
– ident: ref20
  doi: 10.1109/JBHI.2018.2883458
– ident: ref2
  doi: 10.1007/s40141-014-0051-4
– ident: ref48
  doi: 10.1088/1741-2560/11/3/035005
– ident: ref62
  doi: 10.1109/TKDE.2008.239
– ident: ref56
  doi: 10.3389/fnhum.2013.00732
– ident: ref61
  doi: 10.1016/c2009-0-19715-5
– ident: ref49
  doi: 10.3389/fnins.2016.00430
– ident: ref63
  doi: 10.1016/j.neunet.2018.07.011
– ident: ref68
  doi: 10.1088/1741-2552/ab0ab5
– ident: ref17
  doi: 10.1109/TSMC.2020.2964684
– ident: ref52
  doi: 10.1088/1741-2560/11/3/035008
– ident: ref70
  doi: 10.1109/ijcnn.2008.4634130
– ident: ref28
  doi: 10.1016/j.neunet.2009.04.003
– ident: ref27
  doi: 10.1109/TBME.2007.905490
– volume-title: Deep Learning
  year: 2016
  ident: ref65
– year: 2009
  ident: ref25
  article-title: Variability and nonstationarity in brain computer interfaces
– ident: ref40
  doi: 10.1016/j.neucom.2017.08.039
– ident: ref50
  doi: 10.1109/TNNLS.2019.2946869
– ident: ref36
  doi: 10.1515/REVNEURO.2010.21.6.451
– volume-title: Event-Related Potentials A Methods Handbook
  year: 2005
  ident: ref58
  article-title: 6 methods for the estimation and removal of artifacts and overlap
– ident: ref21
  doi: 10.1109/TSMC.2021.3051136
– ident: ref32
  doi: 10.1007/s10916-008-9231-z
– start-page: 186
  volume-title: Proc. Int. Workshop Mach. Learn. Optim. Big Data
  year: 2017
  ident: ref45
  article-title: Evolving training sets for improved transfer learning in braincomputer interface
– ident: ref3
  doi: 10.1038/s41598-018-21717-y
– start-page: 1
  volume-title: Proc. Graz BCI Conf.
  year: 2017
  ident: ref41
  article-title: Deep recurrent convolutional neural networks for classifying P300 BCI signals
– ident: ref35
  doi: 10.1007/s10439-006-9170-0
– ident: ref34
  doi: 10.1088/1741-2560/4/2/r01
– ident: ref31
  doi: 10.1142/S0129065712500025
– ident: ref23
  doi: 10.1016/j.neuroimage.2010.06.048
– ident: ref7
  doi: 10.1016/bs.pbr.2016.04.019
– ident: ref44
  doi: 10.1109/ner.2017.8008395
– ident: ref18
  doi: 10.1088/1741-2552/aab2f2
– ident: ref38
  doi: 10.1109/TPAMI.2010.125
– ident: ref47
  doi: 10.1109/TNSRE.2018.2810332
– ident: ref57
  doi: 10.1016/j.jneumeth.2007.03.005
– issue: CRG-TR-89-4
  year: 1989
  ident: ref60
  article-title: Generalization and network design strategies
– ident: ref11
  doi: 10.1145/2110363.2110366
– ident: ref53
  doi: 10.1080/00140139.2012.661084
– ident: ref30
  doi: 10.1142/S0129065711002808
– ident: ref26
  doi: 10.1109/IWW-BCI.2017.7858151
– ident: ref39
  doi: 10.1155/2018/6058065
– ident: ref15
  doi: 10.1109/TBME.2020.2965178
– ident: ref51
  doi: 10.1016/j.neunet.2020.12.013
– ident: ref59
  doi: 10.1007/s12021-012-9171-0
– ident: ref33
  doi: 10.1007/978-3-642-33065-0_29
– ident: ref1
  doi: 10.1038/nature11076
– ident: ref72
  doi: 10.1088/1741-2552/abc902
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref64
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref6
  doi: 10.1080/21646821.2015.1075181
– ident: ref16
  doi: 10.1109/TNSRE.2019.2956488
– ident: ref13
  doi: 10.1088/1741-2560/4/2/R03
– ident: ref42
  doi: 10.1088/1741-2552/aace8c
– ident: ref55
  doi: 10.1088/1741-2552/aadea0
– ident: ref5
  doi: 10.1016/S0140-6736(10)61156-7
SSID ssj0000825558
Score 2.404314
Snippet The intersubject variability present in electroencephalographic (EEG) signals can affect the performance of the brain-computer interface (BCI) systems. Despite...
The intersubject variability present in electroencephalographic (EEG) signals can affect the performance of the brain–computer interface (BCI) systems. Despite...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 843
SubjectTerms Algorithms
Artificial neural networks
Brain modeling
Brain–computer interfaces
Classification
Classifiers
convolutional neural networks (CNNs)
Data models
deep learning
Electrodes
Electroencephalography
event-related potentials
Human-computer interface
Kernel
Machine learning
model selection
p300
Prediction models
Signal processing
subject-independent classification
Tensors
Training
Title Subject-Independent Classification of P300 Event-Related Potentials Using a Small Number of Training Subjects
URI https://ieeexplore.ieee.org/document/9837440
https://www.proquest.com/docview/2714953805
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJz34a4rTKTl4ErOlaZq2R5GNKWwMtsFupUnTi9sqrrv41_uSZmWoiJdSaNIGvtfkfXlf3kPonkoehhrYiWZZSMAoFEmBNRDtyVDxPOXChmJGYzGc89dFsGigx_osjNbais9019zaWH5WqK3ZKuvFwKY4B4J-AMStOqtV76cYqhPYcpzMEwA-iz0XxPRo3JsNR1Mgg4wBR43iwGQY2VuGbF2VH5OxXWEGJ2i0G1slLHnrbkvZVZ_f0jb-d_Cn6Ni5mvipso0z1NDrc3S0l4CwhVYwb5iNGPJSV8Mtsa2TaRREFjRc5HjiU4r7RhlJrHhOZ3hSlEZnBMaLreoAp3i6SpdLPLYlRkyvmas-gd1HNhdoPujPnofEFWAgCryGkni5UDoPuAyiWIJnlwVCCg0-FotyrST14RqFGZMypgoeAffJU8V8HTNpIo7-JWqui7W-QlhyaJ_mQF-8jOs0kr7xFjI_UzCBCF-0Ed3hkSiXndwUyVgmlqXQODEQJgbCxEHYRg91l_cqNcdfjVsGkrqhQ6ONOjvQE_fzbhIWWtVtRIPr33vdoEPz7krT10HN8mOrb8E3KeWdNcovBS7fdw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH4MPagHf01xOjUHT2Jnmqa_jiKTTrchuMFupUnTi3MV7S7-9b6kWREV8VIKTUjp95q8L-_LewAXVPAwVMhOFMtDB41COhmyBke5IpS8yHhgQjGjcZBM-f3Mn7XgqjkLo5Qy4jPV07cmlp-Xcqm3yq5jZFOcI0Ffx3Xfd-vTWs2OiiY7vinIydwA4Wexa8OYLo2vJ8noCekgY8hSo9jXOUa-LESmssqP6disMXc7MFq9XS0tee4tK9GTH98SN_739Xdh2zqb5Ka2jj1oqcU-bH1JQdiGF5w59FaMM2jq4VbEVMrUGiIDGykL8uhRSvpaG-kY-ZzKyWNZaaURmi8xugOSkaeXbD4nY1NkRPea2PoTxA7yfgDTu_7kNnFsCQZHot9QOW4RSFX4XPhRLNC3y_1ABAq_PYsKJQX18BqFORMiphIfIfspMsk8FTOhY47eIawtyoU6AiI4ts8KJDBuzlUWCU_7C7mXS5xCAi_oAF3hkUqbn1yXyZinhqfQONUQphrC1ELYgcumy2udnOOvxm0NSdPQotGB7gr01P6-7ykLje42ov7x773OYSOZjIbpcDB-OIFNPU6t8OvCWvW2VKfoqVTizBjoJ9X44sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Independent+Classification+of+P300+Event-Related+Potentials+Using+a+Small+Number+of+Training+Subjects&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Abibullaev%2C+Berdakh&rft.au=Kunanbayev%2C+Kassymzhomart&rft.au=Zollanvari%2C+Amin&rft.date=2022-10-01&rft.issn=2168-2291&rft.eissn=2168-2305&rft.volume=52&rft.issue=5&rft.spage=843&rft.epage=854&rft_id=info:doi/10.1109%2FTHMS.2022.3189576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_THMS_2022_3189576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon