Subject-Independent Classification of P300 Event-Related Potentials Using a Small Number of Training Subjects
The intersubject variability present in electroencephalographic (EEG) signals can affect the performance of the brain-computer interface (BCI) systems. Despite the significant progress in the field, the variability in neural data remains one of the most critical challenges in constructing accurate p...
Saved in:
Published in | IEEE transactions on human-machine systems Vol. 52; no. 5; pp. 843 - 854 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The intersubject variability present in electroencephalographic (EEG) signals can affect the performance of the brain-computer interface (BCI) systems. Despite the significant progress in the field, the variability in neural data remains one of the most critical challenges in constructing accurate predictive models of human intention. As a result, the majority of the previous studies have focused either on devising subject-specific signal processing and machine learning algorithms, used some data from a target user to update and calibrate a pretrained classifier, or have used data collected from a relatively large number of training subjects to construct generic classifiers for new subjects. In this work, we investigate the feasibility of using a relatively small number of training subjects to achieve subject-independent classification of event-related potentials (ERPs) in P300-based BCIs. To this end, we employ convolutional neural networks (CNNs) and propose a leave-one-subject-out cross-validation (LOSO-CV) for model selection; that is to say, for tuning CNN hyperparameters including number of layers, filters, kernel size, and epoch. The utility of the proposed model selection is warranted because LOSO-CV simulates the effect of subject-independent classification within the training data. The entire process of training (including model selection) is validated by applying another LOSO-CV external to the training process. Our empirical results obtained on four publicly available datasets confirm the capability of LOSO-CV model selection with CNN to capture intrinsic ERP features from a small group of subjects to classify observations collected from unseen subjects. |
---|---|
AbstractList | The intersubject variability present in electroencephalographic (EEG) signals can affect the performance of the brain-computer interface (BCI) systems. Despite the significant progress in the field, the variability in neural data remains one of the most critical challenges in constructing accurate predictive models of human intention. As a result, the majority of the previous studies have focused either on devising subject-specific signal processing and machine learning algorithms, used some data from a target user to update and calibrate a pretrained classifier, or have used data collected from a relatively large number of training subjects to construct generic classifiers for new subjects. In this work, we investigate the feasibility of using a relatively small number of training subjects to achieve subject-independent classification of event-related potentials (ERPs) in P300-based BCIs. To this end, we employ convolutional neural networks (CNNs) and propose a leave-one-subject-out cross-validation (LOSO-CV) for model selection; that is to say, for tuning CNN hyperparameters including number of layers, filters, kernel size, and epoch. The utility of the proposed model selection is warranted because LOSO-CV simulates the effect of subject-independent classification within the training data. The entire process of training (including model selection) is validated by applying another LOSO-CV external to the training process. Our empirical results obtained on four publicly available datasets confirm the capability of LOSO-CV model selection with CNN to capture intrinsic ERP features from a small group of subjects to classify observations collected from unseen subjects. |
Author | Kunanbayev, Kassymzhomart Zollanvari, Amin Abibullaev, Berdakh |
Author_xml | – sequence: 1 givenname: Berdakh orcidid: 0000-0002-8623-5526 surname: Abibullaev fullname: Abibullaev, Berdakh email: berdakh.abibullaev@nu.edu.kz organization: Department of Robotics and Mechatronics, Nazarbayev University, Nur-Sultan, Kazakhstan – sequence: 2 givenname: Kassymzhomart orcidid: 0000-0002-9047-1599 surname: Kunanbayev fullname: Kunanbayev, Kassymzhomart email: kassymzhomart.kunanbayev@nu.edu.kz organization: Department of Electrical and Computer Engineering, Nazarbayev University, Nur-Sultan, Kazakhstan – sequence: 3 givenname: Amin orcidid: 0000-0002-9172-8413 surname: Zollanvari fullname: Zollanvari, Amin email: zollanvari@gmail.com organization: Department of Electrical and Computer Engineering, Nazarbayev University, Nur-Sultan, Kazakhstan |
BookMark | eNp9kEtPAjEUhRuDiYj8AOOmievBPqYznaUhKCSoRGA96XTumJJ5YFtM_Pd2BF24sIvbNud897bnEg3argWErimZUEqyu838aT1hhLEJpzITaXKGhowmMmKciMHPmWX0Ao2d25GwJBNCyCFq1odiB9pHi7aEPYTSejytlXOmMlp507W4q_CKE4JnH0GMXqFWHkq86ny4GlU7vHWmfcMKrxtV1_j50BRge2pjlWl76TTEXaHzKgAwPu0jtH2YbabzaPnyuJjeLyPNGPcRrRINlYgLIbMiJqIUSZGAEJTJCnRBeKgyLVlRZEQHSaaiUppxyFgQpeAjdHvsu7fd-wGcz3fdwbZhZM5SGmeCS9K70qNL2845C1Wujf_-sg8Pr3NK8j7evI837-PNT_EGkv4h99Y0yn7-y9wcGQMAv_5M8jSOCf8CIiiH3Q |
CODEN | ITHSA6 |
CitedBy_id | crossref_primary_10_3390_app132413350 crossref_primary_10_1007_s11227_024_06627_3 crossref_primary_10_11834_jig_230031 crossref_primary_10_1109_TNSRE_2023_3259991 crossref_primary_10_1109_ACCESS_2023_3329678 crossref_primary_10_1016_j_patrec_2023_10_011 crossref_primary_10_3389_fnins_2023_1167125 crossref_primary_10_1109_TBME_2024_3361716 |
Cites_doi | 10.1007/0-306-48610-5_3 10.1016/S1388-2457(02)00057-3 10.1088/1741-2552/ab260c 10.1109/TMRB.2019.2959559 10.1016/j.neulet.2009.06.045 10.1109/EMBC.2019.8856320 10.1113/jphysiol.2006.125633 10.1007/978-1-4614-5227-0_2 10.5772/14858 10.1109/TBME.2009.2038990 10.3389/fnins.2012.00039 10.7551/mitpress/9780262170055.001.0001 10.1016/0013-4694(88)90149-6 10.1002/hbm.23730 10.1109/TSMC.2017.2756673 10.1109/JPROC.2015.2404941 10.1109/JBHI.2018.2883458 10.1007/s40141-014-0051-4 10.1088/1741-2560/11/3/035005 10.1109/TKDE.2008.239 10.3389/fnhum.2013.00732 10.1016/c2009-0-19715-5 10.3389/fnins.2016.00430 10.1016/j.neunet.2018.07.011 10.1088/1741-2552/ab0ab5 10.1109/TSMC.2020.2964684 10.1088/1741-2560/11/3/035008 10.1109/ijcnn.2008.4634130 10.1016/j.neunet.2009.04.003 10.1109/TBME.2007.905490 10.1016/j.neucom.2017.08.039 10.1109/TNNLS.2019.2946869 10.1515/REVNEURO.2010.21.6.451 10.1109/TSMC.2021.3051136 10.1007/s10916-008-9231-z 10.1038/s41598-018-21717-y 10.1007/s10439-006-9170-0 10.1088/1741-2560/4/2/r01 10.1142/S0129065712500025 10.1016/j.neuroimage.2010.06.048 10.1016/bs.pbr.2016.04.019 10.1109/ner.2017.8008395 10.1088/1741-2552/aab2f2 10.1109/TPAMI.2010.125 10.1109/TNSRE.2018.2810332 10.1016/j.jneumeth.2007.03.005 10.1145/2110363.2110366 10.1080/00140139.2012.661084 10.1142/S0129065711002808 10.1109/IWW-BCI.2017.7858151 10.1155/2018/6058065 10.1109/TBME.2020.2965178 10.1016/j.neunet.2020.12.013 10.1007/s12021-012-9171-0 10.1007/978-3-642-33065-0_29 10.1038/nature11076 10.1088/1741-2552/abc902 10.1080/21646821.2015.1075181 10.1109/TNSRE.2019.2956488 10.1088/1741-2560/4/2/R03 10.1088/1741-2552/aace8c 10.1088/1741-2552/aadea0 10.1016/S0140-6736(10)61156-7 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/THMS.2022.3189576 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2305 |
EndPage | 854 |
ExternalDocumentID | 10_1109_THMS_2022_3189576 9837440 |
Genre | orig-research |
GrantInformation_xml | – fundername: Nazarbayev University Faculty Development Competitive Research grantid: 021220FD1151; 021220FD2051 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c223t-1f6cef54b589b405d56b6e55128fecb03fec87d2bb90c6b6875fac23e92b03853 |
IEDL.DBID | RIE |
ISSN | 2168-2291 |
IngestDate | Mon Jun 30 05:21:13 EDT 2025 Tue Jul 01 03:00:59 EDT 2025 Thu Apr 24 23:07:12 EDT 2025 Wed Aug 27 02:15:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c223t-1f6cef54b589b405d56b6e55128fecb03fec87d2bb90c6b6875fac23e92b03853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9047-1599 0000-0002-8623-5526 0000-0002-9172-8413 |
PQID | 2714953805 |
PQPubID | 85416 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_THMS_2022_3189576 proquest_journals_2714953805 crossref_citationtrail_10_1109_THMS_2022_3189576 ieee_primary_9837440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct. 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on human-machine systems |
PublicationTitleAbbrev | THMS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref56 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref17 ref16 ref19 ref18 ref51 Goodfellow (ref65) 2016 ref50 ref46 Maddula (ref41) 2017 ref48 ref47 ref42 ref44 ref43 ref49 ref8 ref7 ref3 ref6 ref5 Talsma (ref58) 2005 ref40 Mller (ref12) 2004; 49 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 LeCun (ref60) 1989 ref1 ref39 ref38 Vallabhaneni (ref9) 2005 ref71 He (ref4) 2013 ref70 ref72 Adair (ref45) 2017 ref24 ref68 ref23 ref67 ref26 ref69 ref20 Srivastava (ref64) 2014; 15 ref63 Kingma (ref66) 2015 ref22 ref21 ref28 ref27 Guger (ref54) 2009; 462 Roijendijk (ref25) 2009 ref29 ref62 ref61 |
References_xml | – start-page: 85 volume-title: Neural Engineering year: 2005 ident: ref9 article-title: Braincomputer interface doi: 10.1007/0-306-48610-5_3 – start-page: 1 volume-title: Proc. 3rd Int. Conf. Learn. Representations year: 2015 ident: ref66 article-title: Adam: A method for stochastic optimization – ident: ref8 doi: 10.1016/S1388-2457(02)00057-3 – ident: ref37 doi: 10.1088/1741-2552/ab260c – ident: ref43 doi: 10.1109/TMRB.2019.2959559 – volume: 462 start-page: 94 issue: 1 year: 2009 ident: ref54 publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.06.045 – ident: ref46 doi: 10.1109/EMBC.2019.8856320 – ident: ref10 doi: 10.1113/jphysiol.2006.125633 – start-page: 87 volume-title: Neural Engineering year: 2013 ident: ref4 article-title: Braincomputer Interfaces doi: 10.1007/978-1-4614-5227-0_2 – ident: ref19 doi: 10.5772/14858 – ident: ref29 doi: 10.1109/TBME.2009.2038990 – ident: ref69 doi: 10.3389/fnins.2012.00039 – ident: ref24 doi: 10.7551/mitpress/9780262170055.001.0001 – volume: 49 start-page: 11 issue: 1 year: 2004 ident: ref12 article-title: Machine learning techniques for brain-computer interfaces publication-title: Biomed. Technol. – ident: ref22 doi: 10.1016/0013-4694(88)90149-6 – ident: ref67 doi: 10.1002/hbm.23730 – ident: ref14 doi: 10.1109/TSMC.2017.2756673 – ident: ref71 doi: 10.1109/JPROC.2015.2404941 – ident: ref20 doi: 10.1109/JBHI.2018.2883458 – ident: ref2 doi: 10.1007/s40141-014-0051-4 – ident: ref48 doi: 10.1088/1741-2560/11/3/035005 – ident: ref62 doi: 10.1109/TKDE.2008.239 – ident: ref56 doi: 10.3389/fnhum.2013.00732 – ident: ref61 doi: 10.1016/c2009-0-19715-5 – ident: ref49 doi: 10.3389/fnins.2016.00430 – ident: ref63 doi: 10.1016/j.neunet.2018.07.011 – ident: ref68 doi: 10.1088/1741-2552/ab0ab5 – ident: ref17 doi: 10.1109/TSMC.2020.2964684 – ident: ref52 doi: 10.1088/1741-2560/11/3/035008 – ident: ref70 doi: 10.1109/ijcnn.2008.4634130 – ident: ref28 doi: 10.1016/j.neunet.2009.04.003 – ident: ref27 doi: 10.1109/TBME.2007.905490 – volume-title: Deep Learning year: 2016 ident: ref65 – year: 2009 ident: ref25 article-title: Variability and nonstationarity in brain computer interfaces – ident: ref40 doi: 10.1016/j.neucom.2017.08.039 – ident: ref50 doi: 10.1109/TNNLS.2019.2946869 – ident: ref36 doi: 10.1515/REVNEURO.2010.21.6.451 – volume-title: Event-Related Potentials A Methods Handbook year: 2005 ident: ref58 article-title: 6 methods for the estimation and removal of artifacts and overlap – ident: ref21 doi: 10.1109/TSMC.2021.3051136 – ident: ref32 doi: 10.1007/s10916-008-9231-z – start-page: 186 volume-title: Proc. Int. Workshop Mach. Learn. Optim. Big Data year: 2017 ident: ref45 article-title: Evolving training sets for improved transfer learning in braincomputer interface – ident: ref3 doi: 10.1038/s41598-018-21717-y – start-page: 1 volume-title: Proc. Graz BCI Conf. year: 2017 ident: ref41 article-title: Deep recurrent convolutional neural networks for classifying P300 BCI signals – ident: ref35 doi: 10.1007/s10439-006-9170-0 – ident: ref34 doi: 10.1088/1741-2560/4/2/r01 – ident: ref31 doi: 10.1142/S0129065712500025 – ident: ref23 doi: 10.1016/j.neuroimage.2010.06.048 – ident: ref7 doi: 10.1016/bs.pbr.2016.04.019 – ident: ref44 doi: 10.1109/ner.2017.8008395 – ident: ref18 doi: 10.1088/1741-2552/aab2f2 – ident: ref38 doi: 10.1109/TPAMI.2010.125 – ident: ref47 doi: 10.1109/TNSRE.2018.2810332 – ident: ref57 doi: 10.1016/j.jneumeth.2007.03.005 – issue: CRG-TR-89-4 year: 1989 ident: ref60 article-title: Generalization and network design strategies – ident: ref11 doi: 10.1145/2110363.2110366 – ident: ref53 doi: 10.1080/00140139.2012.661084 – ident: ref30 doi: 10.1142/S0129065711002808 – ident: ref26 doi: 10.1109/IWW-BCI.2017.7858151 – ident: ref39 doi: 10.1155/2018/6058065 – ident: ref15 doi: 10.1109/TBME.2020.2965178 – ident: ref51 doi: 10.1016/j.neunet.2020.12.013 – ident: ref59 doi: 10.1007/s12021-012-9171-0 – ident: ref33 doi: 10.1007/978-3-642-33065-0_29 – ident: ref1 doi: 10.1038/nature11076 – ident: ref72 doi: 10.1088/1741-2552/abc902 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref64 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref6 doi: 10.1080/21646821.2015.1075181 – ident: ref16 doi: 10.1109/TNSRE.2019.2956488 – ident: ref13 doi: 10.1088/1741-2560/4/2/R03 – ident: ref42 doi: 10.1088/1741-2552/aace8c – ident: ref55 doi: 10.1088/1741-2552/aadea0 – ident: ref5 doi: 10.1016/S0140-6736(10)61156-7 |
SSID | ssj0000825558 |
Score | 2.404314 |
Snippet | The intersubject variability present in electroencephalographic (EEG) signals can affect the performance of the brain-computer interface (BCI) systems. Despite... The intersubject variability present in electroencephalographic (EEG) signals can affect the performance of the brain–computer interface (BCI) systems. Despite... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 843 |
SubjectTerms | Algorithms Artificial neural networks Brain modeling Brain–computer interfaces Classification Classifiers convolutional neural networks (CNNs) Data models deep learning Electrodes Electroencephalography event-related potentials Human-computer interface Kernel Machine learning model selection p300 Prediction models Signal processing subject-independent classification Tensors Training |
Title | Subject-Independent Classification of P300 Event-Related Potentials Using a Small Number of Training Subjects |
URI | https://ieeexplore.ieee.org/document/9837440 https://www.proquest.com/docview/2714953805 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJz34a4rTKTl4ErOlaZq2R5GNKWwMtsFupUnTi9sqrrv41_uSZmWoiJdSaNIGvtfkfXlf3kPonkoehhrYiWZZSMAoFEmBNRDtyVDxPOXChmJGYzGc89dFsGigx_osjNbais9019zaWH5WqK3ZKuvFwKY4B4J-AMStOqtV76cYqhPYcpzMEwA-iz0XxPRo3JsNR1Mgg4wBR43iwGQY2VuGbF2VH5OxXWEGJ2i0G1slLHnrbkvZVZ_f0jb-d_Cn6Ni5mvipso0z1NDrc3S0l4CwhVYwb5iNGPJSV8Mtsa2TaRREFjRc5HjiU4r7RhlJrHhOZ3hSlEZnBMaLreoAp3i6SpdLPLYlRkyvmas-gd1HNhdoPujPnofEFWAgCryGkni5UDoPuAyiWIJnlwVCCg0-FotyrST14RqFGZMypgoeAffJU8V8HTNpIo7-JWqui7W-QlhyaJ_mQF-8jOs0kr7xFjI_UzCBCF-0Ed3hkSiXndwUyVgmlqXQODEQJgbCxEHYRg91l_cqNcdfjVsGkrqhQ6ONOjvQE_fzbhIWWtVtRIPr33vdoEPz7krT10HN8mOrb8E3KeWdNcovBS7fdw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH4MPagHf01xOjUHT2Jnmqa_jiKTTrchuMFupUnTi3MV7S7-9b6kWREV8VIKTUjp95q8L-_LewAXVPAwVMhOFMtDB41COhmyBke5IpS8yHhgQjGjcZBM-f3Mn7XgqjkLo5Qy4jPV07cmlp-Xcqm3yq5jZFOcI0Ffx3Xfd-vTWs2OiiY7vinIydwA4Wexa8OYLo2vJ8noCekgY8hSo9jXOUa-LESmssqP6disMXc7MFq9XS0tee4tK9GTH98SN_739Xdh2zqb5Ka2jj1oqcU-bH1JQdiGF5w59FaMM2jq4VbEVMrUGiIDGykL8uhRSvpaG-kY-ZzKyWNZaaURmi8xugOSkaeXbD4nY1NkRPea2PoTxA7yfgDTu_7kNnFsCQZHot9QOW4RSFX4XPhRLNC3y_1ABAq_PYsKJQX18BqFORMiphIfIfspMsk8FTOhY47eIawtyoU6AiI4ts8KJDBuzlUWCU_7C7mXS5xCAi_oAF3hkUqbn1yXyZinhqfQONUQphrC1ELYgcumy2udnOOvxm0NSdPQotGB7gr01P6-7ykLje42ov7x773OYSOZjIbpcDB-OIFNPU6t8OvCWvW2VKfoqVTizBjoJ9X44sA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Independent+Classification+of+P300+Event-Related+Potentials+Using+a+Small+Number+of+Training+Subjects&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Abibullaev%2C+Berdakh&rft.au=Kunanbayev%2C+Kassymzhomart&rft.au=Zollanvari%2C+Amin&rft.date=2022-10-01&rft.issn=2168-2291&rft.eissn=2168-2305&rft.volume=52&rft.issue=5&rft.spage=843&rft.epage=854&rft_id=info:doi/10.1109%2FTHMS.2022.3189576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_THMS_2022_3189576 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon |