Design optimization and analysis of switched reluctance motor using genetic algorithm optimization technique
This paper presents efficiency optimization of switched reluctance motor based on genetic algorithm optimization technique. Switched reluctance motor (SRM) is considered for various applications due to its simple and robust construction. It is very essential to improve efficiency of switched relucta...
Saved in:
Published in | TESEA, transactions on energy systems and engineering applications Vol. 6; no. 1; pp. 1 - 13 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Universidad Tecnologica de Bolivar
26.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2745-0120 2745-0120 |
DOI | 10.32397/tesea.vol6.n1.659 |
Cover
Loading…
Abstract | This paper presents efficiency optimization of switched reluctance motor based on genetic algorithm optimization technique. Switched reluctance motor (SRM) is considered for various applications due to its simple and robust construction. It is very essential to improve efficiency of switched reluctance motor. In this paper, optimization of 8/6 switched reluctance motor is achieved by using genetic algorithm with efficiency as its objective function. The objective of the paper is to identify the best switched reluctance motor design that provides better efficiency to satisfy the unique requirements of various applications. Using finite element analysis, a design validation of motor and characterization was made. It is analyzed that analytical results and simulation results are very close which establishes correctness of designs. The optimization result shows that the newly developed SRM design achieved better efficiency. The efficiency is increased from 82.75 % to 86.19 % with minor increase in weight. Improvement in efficiency can lead to lower energy usage, longer motor life span, and better performance. |
---|---|
AbstractList | This paper presents efficiency optimization of switched reluctance motor based on genetic algorithm optimization technique. Switched reluctance motor (SRM) is considered for various applications due to its simple and robust construction. It is very essential to improve efficiency of switched reluctance motor. In this paper, optimization of 8/6 switched reluctance motor is achieved by using genetic algorithm with efficiency as its objective function. The objective of the paper is to identify the best switched reluctance motor design that provides better efficiency to satisfy the unique requirements of various applications. Using finite element analysis, a design validation of motor and characterization was made. It is analyzed that analytical results and simulation results are very close which establishes correctness of designs. The optimization result shows that the newly developed SRM design achieved better efficiency. The efficiency is increased from 82.75 % to 86.19 % with minor increase in weight. Improvement in efficiency can lead to lower energy usage, longer motor life span, and better performance. |
Author | N. Patel, Amit |
Author_xml | – sequence: 1 givenname: Amit orcidid: 0000-0003-3206-9849 surname: N. Patel fullname: N. Patel, Amit organization: Institute of Technology, Nirma University |
BookMark | eNpVkE1LAzEQhoMoqLV_wFP-QGs-NunuUepXoeBFz2GazG5TtokmqVJ_vWsV0cMww3t4eOc5J8chBiTkkrOpFLKZXRXMCNO32Otp4FOtmiNyJmaVmjAu2PGf-5SMc94wxqTkUs3UGelvMPsu0PhS_NZ_QPExUAhuGOj32WcaW5rffbFrdDRhv7MFgkW6jSUmuss-dLTDgMVbCn0Xky_r7X9cQbsO_nWHF-SkhT7j-GePyPPd7dP8YbJ8vF_Mr5cTK4Z_Jg1WWirQwrVaarfiq1YyBq4VtbRD6xqsqFAIlEpKdFyg1tbqGqWr21VdyxFZfHNdhI15SX4LaW8ieHMIYuoMpKFwj0aA4AOFV7WFSjlWw0yuGtUq1LwSDQws8c2yKeacsP3lcWYO-s1Bv_nSbwI3g375CZuQf2o |
Cites_doi | 10.1016/j.enconman.2021.114336 10.1109/ICElMach.2012.6349846 10.1007/s11042-020-10139-6 10.1109/PEDSTC53976.2022.9767476 10.2528/PIER13040705 10.1109/IECON.2005.1569169 10.1109/TIA.2002.805571 10.1063/1.1452667 10.1109/ACCESS.2020.2993235 10.1016/j.rser.2019.109384 10.1109/JPROC.2006.892482 10.1109/ACCESS.2018.2837111 10.1109/ICElMach.2012.6349853 10.1504/IJEHV.2018.098121 10.1109/28.464522 10.1109/TIE.2010.2051390 10.1109/TMAG.2003.816248 10.1109/28.2896 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.32397/tesea.vol6.n1.659 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2745-0120 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_2a21533148ca45d08a73b95f5e61429a 10_32397_tesea_vol6_n1_659 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c2239-9e4635a62df636db1bf300adf283c5758ac24e22e3533ed12e66cc68e3d8fb883 |
IEDL.DBID | DOA |
ISSN | 2745-0120 |
IngestDate | Tue Aug 26 23:43:45 EDT 2025 Thu Jul 31 00:03:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2239-9e4635a62df636db1bf300adf283c5758ac24e22e3533ed12e66cc68e3d8fb883 |
ORCID | 0000-0003-3206-9849 |
OpenAccessLink | https://doaj.org/article/2a21533148ca45d08a73b95f5e61429a |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2a21533148ca45d08a73b95f5e61429a crossref_primary_10_32397_tesea_vol6_n1_659 |
PublicationCentury | 2000 |
PublicationDate | 2025-02-26 |
PublicationDateYYYYMMDD | 2025-02-26 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | TESEA, transactions on energy systems and engineering applications |
PublicationYear | 2025 |
Publisher | Universidad Tecnologica de Bolivar |
Publisher_xml | – name: Universidad Tecnologica de Bolivar |
References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref21 ref0 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref0 doi: 10.1016/j.enconman.2021.114336 – ident: ref13 – ident: ref9 doi: 10.1109/ICElMach.2012.6349846 – ident: ref17 doi: 10.1007/s11042-020-10139-6 – ident: ref15 doi: 10.1109/PEDSTC53976.2022.9767476 – ident: ref6 doi: 10.2528/PIER13040705 – ident: ref14 doi: 10.1109/IECON.2005.1569169 – ident: ref20 – ident: ref5 doi: 10.1109/TIA.2002.805571 – ident: ref7 doi: 10.1063/1.1452667 – ident: ref21 – ident: ref1 doi: 10.1109/ACCESS.2020.2993235 – ident: ref2 doi: 10.1016/j.rser.2019.109384 – ident: ref10 doi: 10.1109/JPROC.2006.892482 – ident: ref3 doi: 10.1109/ACCESS.2018.2837111 – ident: ref18 doi: 10.1109/ICElMach.2012.6349853 – ident: ref19 – ident: ref11 doi: 10.1504/IJEHV.2018.098121 – ident: ref4 doi: 10.1109/28.464522 – ident: ref16 doi: 10.1109/TIE.2010.2051390 – ident: ref8 doi: 10.1109/TMAG.2003.816248 – ident: ref12 doi: 10.1109/28.2896 |
SSID | ssj0003313575 |
Score | 2.2842011 |
Snippet | This paper presents efficiency optimization of switched reluctance motor based on genetic algorithm optimization technique. Switched reluctance motor (SRM) is... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 1 |
SubjectTerms | Design Optimization Finite Element Analysis Genetic Algorithms Parametric Analysis Switched Reluctance Motor |
Title | Design optimization and analysis of switched reluctance motor using genetic algorithm optimization technique |
URI | https://doaj.org/article/2a21533148ca45d08a73b95f5e61429a |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMbSpvYiWOPPFpVSDBRqVvkZ6nUJqikYuO3c5eEqkwsDMkQJVb8ne37Trr7jpAbx6WLA5x-XEoepcaqSOcGlRGVzVUQzplG7fNFTKbp0yyb7bT6wpywVh64BW7INENKAqzd6jRzsdQ5NyoLmQfHwlRDjcDn7QRTeAbDBxyISFslwxk43WGNmWy458WgTAYCxUl3PNGOYH_jWcaH5KCjhPSu_ZUjsufLY7J8bFIraAVbetXVSlKI-uFqVURoFejH5wJBd3TtlxtbowEpQF-tKaazzyksDqxRpHo5r9aL-m31e7itfusJmY5Hrw-TqOuMEFlw5ypSPgWioAVzQXDhTGICj2PtApAFC_OW2rLUM-Y5QOddwrwQ1grpuZPBgFVOSa-sSn9GqOHKBIkVpkynNs609HlsUaYrtiJXtk9uf1Aq3lsBjAIChwbTosG0QEyLMikA0z65RyC3b6J4dfMATFp0Ji3-Mun5fwxyQfYZturF6nNxSXr1euOvgD_U5rpZKnB__hp9A4--x0I |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+optimization+and+analysis+of+switched+reluctance+motor+using+genetic+algorithm+optimization+technique&rft.jtitle=TESEA%2C+transactions+on+energy+systems+and+engineering+applications&rft.au=N.+Patel%2C+Amit&rft.date=2025-02-26&rft.issn=2745-0120&rft.eissn=2745-0120&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.32397%2Ftesea.vol6.n1.659&rft.externalDBID=n%2Fa&rft.externalDocID=10_32397_tesea_vol6_n1_659 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2745-0120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2745-0120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2745-0120&client=summon |