Design optimization and analysis of switched reluctance motor using genetic algorithm optimization technique

This paper presents efficiency optimization of switched reluctance motor based on genetic algorithm optimization technique. Switched reluctance motor (SRM) is considered for various applications due to its simple and robust construction. It is very essential to improve efficiency of switched relucta...

Full description

Saved in:
Bibliographic Details
Published inTESEA, transactions on energy systems and engineering applications Vol. 6; no. 1; pp. 1 - 13
Main Author N. Patel, Amit
Format Journal Article
LanguageEnglish
Published Universidad Tecnologica de Bolivar 26.02.2025
Subjects
Online AccessGet full text
ISSN2745-0120
2745-0120
DOI10.32397/tesea.vol6.n1.659

Cover

Loading…
Abstract This paper presents efficiency optimization of switched reluctance motor based on genetic algorithm optimization technique. Switched reluctance motor (SRM) is considered for various applications due to its simple and robust construction. It is very essential to improve efficiency of switched reluctance motor. In this paper, optimization of 8/6 switched reluctance motor is achieved by using genetic algorithm with efficiency as its objective function. The objective of the paper is to identify the best switched reluctance motor design that provides better efficiency to satisfy the unique requirements of various applications. Using finite element analysis, a design validation of motor and characterization was made. It is analyzed that analytical results and simulation results are very close which establishes correctness of designs. The optimization result shows that the newly developed SRM design achieved better efficiency. The efficiency is increased from 82.75 % to 86.19 % with minor increase in weight. Improvement in efficiency can lead to lower energy usage, longer motor life span, and better performance.
AbstractList This paper presents efficiency optimization of switched reluctance motor based on genetic algorithm optimization technique. Switched reluctance motor (SRM) is considered for various applications due to its simple and robust construction. It is very essential to improve efficiency of switched reluctance motor. In this paper, optimization of 8/6 switched reluctance motor is achieved by using genetic algorithm with efficiency as its objective function. The objective of the paper is to identify the best switched reluctance motor design that provides better efficiency to satisfy the unique requirements of various applications. Using finite element analysis, a design validation of motor and characterization was made. It is analyzed that analytical results and simulation results are very close which establishes correctness of designs. The optimization result shows that the newly developed SRM design achieved better efficiency. The efficiency is increased from 82.75 % to 86.19 % with minor increase in weight. Improvement in efficiency can lead to lower energy usage, longer motor life span, and better performance.
Author N. Patel, Amit
Author_xml – sequence: 1
  givenname: Amit
  orcidid: 0000-0003-3206-9849
  surname: N. Patel
  fullname: N. Patel, Amit
  organization: Institute of Technology, Nirma University
BookMark eNpVkE1LAzEQhoMoqLV_wFP-QGs-NunuUepXoeBFz2GazG5TtokmqVJ_vWsV0cMww3t4eOc5J8chBiTkkrOpFLKZXRXMCNO32Otp4FOtmiNyJmaVmjAu2PGf-5SMc94wxqTkUs3UGelvMPsu0PhS_NZ_QPExUAhuGOj32WcaW5rffbFrdDRhv7MFgkW6jSUmuss-dLTDgMVbCn0Xky_r7X9cQbsO_nWHF-SkhT7j-GePyPPd7dP8YbJ8vF_Mr5cTK4Z_Jg1WWirQwrVaarfiq1YyBq4VtbRD6xqsqFAIlEpKdFyg1tbqGqWr21VdyxFZfHNdhI15SX4LaW8ieHMIYuoMpKFwj0aA4AOFV7WFSjlWw0yuGtUq1LwSDQws8c2yKeacsP3lcWYO-s1Bv_nSbwI3g375CZuQf2o
Cites_doi 10.1016/j.enconman.2021.114336
10.1109/ICElMach.2012.6349846
10.1007/s11042-020-10139-6
10.1109/PEDSTC53976.2022.9767476
10.2528/PIER13040705
10.1109/IECON.2005.1569169
10.1109/TIA.2002.805571
10.1063/1.1452667
10.1109/ACCESS.2020.2993235
10.1016/j.rser.2019.109384
10.1109/JPROC.2006.892482
10.1109/ACCESS.2018.2837111
10.1109/ICElMach.2012.6349853
10.1504/IJEHV.2018.098121
10.1109/28.464522
10.1109/TIE.2010.2051390
10.1109/TMAG.2003.816248
10.1109/28.2896
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.32397/tesea.vol6.n1.659
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2745-0120
EndPage 13
ExternalDocumentID oai_doaj_org_article_2a21533148ca45d08a73b95f5e61429a
10_32397_tesea_vol6_n1_659
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c2239-9e4635a62df636db1bf300adf283c5758ac24e22e3533ed12e66cc68e3d8fb883
IEDL.DBID DOA
ISSN 2745-0120
IngestDate Tue Aug 26 23:43:45 EDT 2025
Thu Jul 31 00:03:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2239-9e4635a62df636db1bf300adf283c5758ac24e22e3533ed12e66cc68e3d8fb883
ORCID 0000-0003-3206-9849
OpenAccessLink https://doaj.org/article/2a21533148ca45d08a73b95f5e61429a
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_2a21533148ca45d08a73b95f5e61429a
crossref_primary_10_32397_tesea_vol6_n1_659
PublicationCentury 2000
PublicationDate 2025-02-26
PublicationDateYYYYMMDD 2025-02-26
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-26
  day: 26
PublicationDecade 2020
PublicationTitle TESEA, transactions on energy systems and engineering applications
PublicationYear 2025
Publisher Universidad Tecnologica de Bolivar
Publisher_xml – name: Universidad Tecnologica de Bolivar
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref21
ref0
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref0
  doi: 10.1016/j.enconman.2021.114336
– ident: ref13
– ident: ref9
  doi: 10.1109/ICElMach.2012.6349846
– ident: ref17
  doi: 10.1007/s11042-020-10139-6
– ident: ref15
  doi: 10.1109/PEDSTC53976.2022.9767476
– ident: ref6
  doi: 10.2528/PIER13040705
– ident: ref14
  doi: 10.1109/IECON.2005.1569169
– ident: ref20
– ident: ref5
  doi: 10.1109/TIA.2002.805571
– ident: ref7
  doi: 10.1063/1.1452667
– ident: ref21
– ident: ref1
  doi: 10.1109/ACCESS.2020.2993235
– ident: ref2
  doi: 10.1016/j.rser.2019.109384
– ident: ref10
  doi: 10.1109/JPROC.2006.892482
– ident: ref3
  doi: 10.1109/ACCESS.2018.2837111
– ident: ref18
  doi: 10.1109/ICElMach.2012.6349853
– ident: ref19
– ident: ref11
  doi: 10.1504/IJEHV.2018.098121
– ident: ref4
  doi: 10.1109/28.464522
– ident: ref16
  doi: 10.1109/TIE.2010.2051390
– ident: ref8
  doi: 10.1109/TMAG.2003.816248
– ident: ref12
  doi: 10.1109/28.2896
SSID ssj0003313575
Score 2.2842011
Snippet This paper presents efficiency optimization of switched reluctance motor based on genetic algorithm optimization technique. Switched reluctance motor (SRM) is...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 1
SubjectTerms Design Optimization
Finite Element Analysis
Genetic Algorithms
Parametric Analysis
Switched Reluctance Motor
Title Design optimization and analysis of switched reluctance motor using genetic algorithm optimization technique
URI https://doaj.org/article/2a21533148ca45d08a73b95f5e61429a
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxYEAkR5yQMbSpvYiWOPPFpVSDBRqVvkZ6nUJqikYuO3c5eEqkwsDMkQJVb8ne37Trr7jpAbx6WLA5x-XEoepcaqSOcGlRGVzVUQzplG7fNFTKbp0yyb7bT6wpywVh64BW7INENKAqzd6jRzsdQ5NyoLmQfHwlRDjcDn7QRTeAbDBxyISFslwxk43WGNmWy458WgTAYCxUl3PNGOYH_jWcaH5KCjhPSu_ZUjsufLY7J8bFIraAVbetXVSlKI-uFqVURoFejH5wJBd3TtlxtbowEpQF-tKaazzyksDqxRpHo5r9aL-m31e7itfusJmY5Hrw-TqOuMEFlw5ypSPgWioAVzQXDhTGICj2PtApAFC_OW2rLUM-Y5QOddwrwQ1grpuZPBgFVOSa-sSn9GqOHKBIkVpkynNs609HlsUaYrtiJXtk9uf1Aq3lsBjAIChwbTosG0QEyLMikA0z65RyC3b6J4dfMATFp0Ji3-Mun5fwxyQfYZturF6nNxSXr1euOvgD_U5rpZKnB__hp9A4--x0I
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+optimization+and+analysis+of+switched+reluctance+motor+using+genetic+algorithm+optimization+technique&rft.jtitle=TESEA%2C+transactions+on+energy+systems+and+engineering+applications&rft.au=N.+Patel%2C+Amit&rft.date=2025-02-26&rft.issn=2745-0120&rft.eissn=2745-0120&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.32397%2Ftesea.vol6.n1.659&rft.externalDBID=n%2Fa&rft.externalDocID=10_32397_tesea_vol6_n1_659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2745-0120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2745-0120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2745-0120&client=summon