Data‐driven rapid damage evaluation for life‐cycle seismic assessment of regional reinforced concrete bridges
Rapid and accurate post‐earthquake damage evaluation of regional reinforced concrete (RC) bridges is a key issue for assessing the seismic resilience of cities and communities. Especially, RC bridges are susceptible to the aggressive environment, which can induce time‐dependent aging effects such as...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 51; no. 11; pp. 2730 - 2751 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rapid and accurate post‐earthquake damage evaluation of regional reinforced concrete (RC) bridges is a key issue for assessing the seismic resilience of cities and communities. Especially, RC bridges are susceptible to the aggressive environment, which can induce time‐dependent aging effects such as corrosion, and thus, it should be considered in the assessment. This paper presents an approach for regional seismic performance assessment of RC bridges in a life‐cycle context based on machine‐learning techniques. The life‐cycle seismic demand and capacity of the bridges are, firstly, obtained by the elaborated numerical model, which includes the deterioration induced by the aging corrosion effect. Then, the tagging‐based damage state (green, yellow, or red) is easily obtained by comparing the pairs of demand and capacity through machine learning. Four hundred and eighty bridge models are generated to develop the machine‐learning models and the performance of the machine learning models is evaluated. Results show that the extreme gradient boosting (XGBoost) model has the best performance, which has an accuracy of 81% in predicting the damage states. The proposed approach is demonstrated with a single bridge example and bridges in a sample region. It is shown that the machine learning model can accurately predict the post‐earthquake damage states of the single bridge, and it can also rapidly assess the damage states of the bridges in the sample region. Approximately 30% bridges in the sample region will experience damage states shift after 100 years, which highlights the importance of considering the aging effects on the post‐earthquake damage assessment of bridges. |
---|---|
AbstractList | Rapid and accurate post‐earthquake damage evaluation of regional reinforced concrete (RC) bridges is a key issue for assessing the seismic resilience of cities and communities. Especially, RC bridges are susceptible to the aggressive environment, which can induce time‐dependent aging effects such as corrosion, and thus, it should be considered in the assessment. This paper presents an approach for regional seismic performance assessment of RC bridges in a life‐cycle context based on machine‐learning techniques. The life‐cycle seismic demand and capacity of the bridges are, firstly, obtained by the elaborated numerical model, which includes the deterioration induced by the aging corrosion effect. Then, the tagging‐based damage state (green, yellow, or red) is easily obtained by comparing the pairs of demand and capacity through machine learning. Four hundred and eighty bridge models are generated to develop the machine‐learning models and the performance of the machine learning models is evaluated. Results show that the extreme gradient boosting (XGBoost) model has the best performance, which has an accuracy of 81% in predicting the damage states. The proposed approach is demonstrated with a single bridge example and bridges in a sample region. It is shown that the machine learning model can accurately predict the post‐earthquake damage states of the single bridge, and it can also rapidly assess the damage states of the bridges in the sample region. Approximately 30% bridges in the sample region will experience damage states shift after 100 years, which highlights the importance of considering the aging effects on the post‐earthquake damage assessment of bridges. Rapid and accurate post‐earthquake damage evaluation of regional reinforced concrete (RC) bridges is a key issue for assessing the seismic resilience of cities and communities. Especially, RC bridges are susceptible to the aggressive environment, which can induce time‐dependent aging effects such as corrosion, and thus, it should be considered in the assessment. This paper presents an approach for regional seismic performance assessment of RC bridges in a life‐cycle context based on machine‐learning techniques. The life‐cycle seismic demand and capacity of the bridges are, firstly, obtained by the elaborated numerical model, which includes the deterioration induced by the aging corrosion effect. Then, the tagging‐based damage state (green, yellow, or red) is easily obtained by comparing the pairs of demand and capacity through machine learning. Four hundred and eighty bridge models are generated to develop the machine‐learning models and the performance of the machine learning models is evaluated. Results show that the extreme gradient boosting (XGBoost) model has the best performance, which has an accuracy of 81% in predicting the damage states. The proposed approach is demonstrated with a single bridge example and bridges in a sample region. It is shown that the machine learning model can accurately predict the post‐earthquake damage states of the single bridge, and it can also rapidly assess the damage states of the bridges in the sample region. Approximately 30% bridges in the sample region will experience damage states shift after 100 years, which highlights the importance of considering the aging effects on the post‐earthquake damage assessment of bridges. |
Author | Mangalathu, Sujith Feng, De‐Cheng Jeon, Jong‐Su Xu, Ji‐Gang |
Author_xml | – sequence: 1 givenname: Ji‐Gang orcidid: 0000-0001-7640-3613 surname: Xu fullname: Xu, Ji‐Gang organization: Nanjing Tech University – sequence: 2 givenname: De‐Cheng orcidid: 0000-0003-3691-6128 surname: Feng fullname: Feng, De‐Cheng email: dcfeng@seu.edu.cn organization: Southeast University – sequence: 3 givenname: Sujith surname: Mangalathu fullname: Mangalathu, Sujith organization: Mangalathu, Mylamkulam, Puthoor PO, Kollam – sequence: 4 givenname: Jong‐Su orcidid: 0000-0001-6657-7265 surname: Jeon fullname: Jeon, Jong‐Su organization: Hanyang University |
BookMark | eNp1kM1KAzEQx4NUsK2CjxDw4mVrdrPZ3Ryl1g8oiKDnZTaZlJT9aJNtpTcfwWf0SUxbT6KHYebw-w8zvxEZtF2LhFzGbBIzltzgGic8k_KEDGMms0gWqRiQIWOyiIoizc_IyPslY4xnLB-S9R308PXxqZ3dYksdrKymGhpYIMUt1BvobddS0zlaW4OBVDtVI_VofWMVBe_R-wbbnnaGOlwEGuow2DZkFGqqulY57JFWzuoF-nNyaqD2ePHTx-TtfvY6fYzmzw9P09t5pJKEy3ArlxkkQidCiipUYTCrUAkwxgitAHScikLkyIEhStQ5N5JJ4FxkFS_4mFwd965ct96g78tlt3HhOF8mwU-WJ2khAjU5Usp13js0pbL94efega3LmJV7rWXQWu61hsD1r8DK2Qbc7i80OqLvtsbdv1w5e5kd-G8UhozL |
CitedBy_id | crossref_primary_10_1016_j_cma_2024_116775 crossref_primary_10_1016_j_strusafe_2024_102523 crossref_primary_10_1016_j_engstruct_2023_117295 crossref_primary_10_1016_j_jobe_2024_109584 crossref_primary_10_1016_j_engstruct_2024_117534 crossref_primary_10_1016_j_soildyn_2024_108947 crossref_primary_10_1016_j_dibe_2024_100588 crossref_primary_10_1016_j_jobe_2024_110417 crossref_primary_10_1016_j_soildyn_2024_108504 crossref_primary_10_1016_j_soildyn_2024_108746 crossref_primary_10_1016_j_engstruct_2024_118626 crossref_primary_10_1016_j_istruc_2023_105712 crossref_primary_10_1016_j_istruc_2023_02_036 crossref_primary_10_1016_j_soildyn_2024_109127 crossref_primary_10_1007_s13349_024_00852_3 crossref_primary_10_1016_j_cscm_2022_e01678 crossref_primary_10_3390_app122412921 crossref_primary_10_1007_s13349_024_00831_8 crossref_primary_10_1016_j_jobe_2025_111837 crossref_primary_10_1016_j_aei_2025_103185 crossref_primary_10_1007_s10518_022_01593_8 crossref_primary_10_1016_j_rineng_2023_101388 crossref_primary_10_1016_j_engappai_2024_109701 crossref_primary_10_1016_j_engappai_2024_108659 crossref_primary_10_1016_j_istruc_2025_108227 crossref_primary_10_3390_su16135491 crossref_primary_10_1016_j_engfailanal_2022_106920 crossref_primary_10_1016_j_istruc_2023_105723 crossref_primary_10_1016_j_asoc_2024_111552 crossref_primary_10_1016_j_compstruc_2023_107114 crossref_primary_10_1016_j_compstruc_2023_107038 crossref_primary_10_1016_j_istruc_2024_107400 crossref_primary_10_1016_j_engstruct_2023_116235 crossref_primary_10_3390_math11061294 crossref_primary_10_3390_en15165778 crossref_primary_10_3390_buildings13051178 crossref_primary_10_3390_su142012994 crossref_primary_10_1016_j_jobe_2023_106130 crossref_primary_10_1016_j_jobe_2023_107984 crossref_primary_10_1016_j_jobe_2023_106257 crossref_primary_10_1016_j_compstruct_2023_117308 crossref_primary_10_3390_su142114640 crossref_primary_10_1016_j_oceaneng_2024_118360 crossref_primary_10_1016_j_jobe_2022_105716 crossref_primary_10_1016_j_compstruc_2023_107106 crossref_primary_10_3390_atmos14101527 crossref_primary_10_1061_AJRUA6_RUENG_1290 crossref_primary_10_3390_buildings13112720 crossref_primary_10_3390_su142215146 crossref_primary_10_1016_j_ymssp_2022_109838 crossref_primary_10_1186_s40069_023_00624_1 crossref_primary_10_1002_eqe_4068 crossref_primary_10_3390_su151511713 crossref_primary_10_1016_j_jobe_2022_105797 crossref_primary_10_3390_su152014763 crossref_primary_10_1016_j_engstruct_2023_117264 crossref_primary_10_3390_app14010202 crossref_primary_10_1007_s42107_024_01217_3 crossref_primary_10_1061_JBENF2_BEENG_6159 crossref_primary_10_1016_j_engfailanal_2022_106786 crossref_primary_10_1061_JBENF2_BEENG_6710 crossref_primary_10_1177_13694332241289175 crossref_primary_10_3390_buildings13112790 crossref_primary_10_3390_geotechnics3030030 crossref_primary_10_1016_j_engstruct_2023_117307 crossref_primary_10_1016_j_istruc_2023_105306 crossref_primary_10_1016_j_istruc_2023_02_026 crossref_primary_10_1016_j_apor_2023_103511 crossref_primary_10_1016_j_ymssp_2023_110873 crossref_primary_10_1002_eqe_4230 crossref_primary_10_3390_su15043282 crossref_primary_10_3390_buildings13040948 |
Cites_doi | 10.1016/j.engstruct.2020.111800 10.1002/eqe.557 10.1080/15732479.2014.951863 10.1002/eqe.782 10.1016/j.engstruct.2011.07.005 10.1016/j.engstruct.2003.09.006 10.1680/macr.2005.57.3.135 10.1016/j.engstruct.2021.112818 10.1061/(ASCE)BE.1943-5592.0000058 10.1061/(ASCE)BE.1943-5592.0000197 10.1016/j.engstruct.2018.05.084 10.1016/j.strusafe.2008.10.001 10.1002/eqe.3258 10.1193/1.2798241 10.1016/j.conbuildmat.2021.125088 10.1016/j.engstruct.2021.112142 10.1023/A:1010933404324 10.1061/AJRUA6.0001154 10.1061/(ASCE)ST.1943‐541X.0002831 10.1002/eqe.2991 10.1061/(ASCE)ST.1943-541X.0003115 10.1016/j.jobe.2020.101816 10.1016/j.engstruct.2018.01.053 10.1016/j.engstruct.2016.05.054 10.1061/(ASCE)0733-9445(1988)114:8(1804) 10.1016/j.advengsoft.2017.01.001 10.1016/j.compstruc.2019.03.004 10.1785/BSSA0690010207 10.1007/BF02472864 10.1002/eqe.3415 10.1061/(ASCE)0733-9445(2004)130:8(1214) 10.1002/eqe.3183 10.1016/j.engstruct.2019.109785 10.1201/9781315139470 10.1061/(ASCE)ST.1943-541X.0002793 10.1016/j.soildyn.2020.106165 10.1016/j.engstruct.2021.111979 10.1016/j.strusafe.2020.101972 10.1016/j.strusafe.2020.102061 10.1111/mice.12628 10.1193/102317eqs220m 10.1177/8755293020919419 10.1145/2939672.2939785 10.1061/(ASCE)ST.1943-541X.0002852 10.1061/(ASCE)BE.1943‐5592.0001711 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.3699 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 2751 |
ExternalDocumentID | 10_1002_eqe_3699 EQE3699 |
Genre | article |
GrantInformation_xml | – fundername: Jiangsu Provincial Double‐Innovation Doctor Program funderid: JSSCBS20210410 – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions funderid: 21KJB560011 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20210551; BK20211564 – fundername: National Natural Science Foundation of China funderid: 52078119 |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AABCJ AAESR AAEVG AAHHS AAHQN AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACKIV ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CKXBT CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M58 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7TG 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-c2239-88396a25d2595b5958fe6bec5afff5dcaad145857e3a0ee9ed73f909a3356b383 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Fri Jul 25 22:55:05 EDT 2025 Tue Jul 01 02:21:59 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 Wed Jan 22 16:25:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2239-88396a25d2595b5958fe6bec5afff5dcaad145857e3a0ee9ed73f909a3356b383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3691-6128 0000-0001-6657-7265 0000-0001-7640-3613 |
PQID | 2699672485 |
PQPubID | 866380 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2699672485 crossref_citationtrail_10_1002_eqe_3699 crossref_primary_10_1002_eqe_3699 wiley_primary_10_1002_eqe_3699_EQE3699 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1993; 26 2021; 26 2010; 16 2010; 15 2018; 162 2021; 244 2006; 35 2004; 26 2008; 37 2019; 201 2001; 45 2021; 36 2018; 171 2021; 33 1979; 69 2001 2021; 236 2021; 235 2004; 130 2020; 49 2020; 134 2021; 232 2007; 23 2021; 308 2021; 7 2021; 89 2020; 86 2012 2011 2021; 147 2019; 35 2015; 11 2016; 123 2011; 33 2020; 36 2006 2020; 146 2021; 50 1999 2009; 31 2021 2019; 48 1988; 114 2019 2017 2019; 218 2016 2017; 106 2005; 57 e_1_2_13_24_1 Ramanathan KN (e_1_2_13_28_1) 2012 e_1_2_13_26_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_8_1 e_1_2_13_6_1 e_1_2_13_17_1 e_1_2_13_19_1 Baker JW (e_1_2_13_34_1) 2011 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_11_1 e_1_2_13_53_1 e_1_2_13_51_1 e_1_2_13_30_1 Vapnik V (e_1_2_13_49_1) 1999 Mangalathu S (e_1_2_13_33_1) 2017 e_1_2_13_4_1 e_1_2_13_2_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_7_1 Hastie T (e_1_2_13_47_1) 2001 Capé M (e_1_2_13_41_1) 1999 Mazzoni S (e_1_2_13_29_1) 2006 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_56_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_52_1 e_1_2_13_50_1 e_1_2_13_5_1 e_1_2_13_3_1 |
References_xml | – year: 2011 – volume: 218 start-page: 108 year: 2019 end-page: 122 article-title: On the application of machine learning techniques to derive seismic fragility curves publication-title: Comput Struct – volume: 48 start-page: 1238 issue: 11 year: 2019 end-page: 1255 article-title: Stripe‐based fragility analysis of multispan concrete bridge classes using machine learning techniques publication-title: Earthq Eng Struct Dyn – volume: 26 issue: 6 year: 2021 article-title: Life‐cycle performance assessment of aging bridges subjected to tsunami hazards publication-title: J Bridge Eng – year: 2001 – volume: 50 start-page: 1612 issue: 6 year: 2021 end-page: 1627 article-title: A deep learning approach to rapid regional post‐event seismic damage assessment using time‐frequency distributions of ground motions publication-title: Earthq Eng Struct Dyn – year: 2021 – volume: 36 start-page: 504 issue: 4 year: 2021 end-page: 521 article-title: Real‐time regional seismic damage assessment framework based on long short‐term memory neural network publication-title: Comput‐Aided Civ Infrastruct Eng – volume: 232 year: 2021 article-title: Seismic behavior & risk assessment of an existing bridge considering soil–structure interaction using artificial neural networks publication-title: Eng Struct – volume: 16 start-page: 597 issue: 5 year: 2010 end-page: 611 article-title: Performance evaluation of deteriorating highway bridges located in high seismic areas publication-title: J Bridge Eng – volume: 57 start-page: 135 issue: 3 year: 2005 end-page: 147 article-title: Residual capacity of corroded reinforcing bars publication-title: Mag Concr Res – volume: 26 start-page: 187 issue: 2 year: 2004 end-page: 199 article-title: Seismic fragility of typical bridges in moderate seismic zones publication-title: Eng Struct – year: 2017 article-title: Critical uncertainty parameters influencing seismic performance of bridges using Lasso regression – volume: 36 start-page: 1769 issue: 4 year: 2020 end-page: 1801 article-title: The promise of implementing machine learning in earthquake engineering: a state‐of‐the‐art review publication-title: Earthq Spectra – volume: 123 start-page: 379 year: 2016 end-page: 394 article-title: ANCOVA‐based grouping of bridge classes for seismic fragility assessment publication-title: Eng Struct – volume: 11 start-page: 519 issue: 4 year: 2015 end-page: 532 article-title: Deteriorating beam finite element for nonlinear analysis of concrete structures under corrosion publication-title: Struct Infrastruct Eng – volume: 171 start-page: 170 year: 2018 end-page: 189 article-title: Emerging artificial intelligence methods in structural engineering publication-title: Eng Struct – volume: 244 year: 2021 article-title: Life‐cycle seismic performance assessment of aging RC bridges considering multi‐failure modes of bridge columns publication-title: Eng Struct – start-page: 785 year: 2016 end-page: 794 article-title: Xgboost: A scalable tree boosting system – volume: 23 start-page: 735 issue: 4 year: 2007 end-page: 752 article-title: Fragility assessment of steel frames using neural networks publication-title: Earthq Spectra – volume: 26 start-page: 532 issue: 9 year: 1993 end-page: 548 article-title: Cover cracking as a function of rebar corrosion: part 2—numerical model publication-title: Mater Struct – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 236 year: 2021 article-title: Seismic response prediction and variable importance analysis of extended pile‐shaft‐supported bridges against lateral spreading: exploring optimized machine learning models publication-title: Eng Struct – volume: 31 start-page: 275 issue: 4 year: 2009 end-page: 283 article-title: Seismic fragility estimates for reinforced concrete bridges subject to corrosion publication-title: Struct Saf – volume: 35 start-page: 811 issue: 7 year: 2006 end-page: 828 article-title: A Hertz contact model with non‐linear damping for pounding simulation publication-title: Earthq Eng Struct Dyn – volume: 35 start-page: 233 issue: 1 year: 2019 end-page: 266 article-title: Time‐dependent seismic fragilities of older and newly designed multi‐frame reinforced concrete box‐girder bridges in California publication-title: Earthq Spectra – volume: 33 start-page: 3409 issue: 12 year: 2011 end-page: 3421 article-title: Developing fragility curves based on neural network IDA predictions publication-title: Eng Struct – volume: 89 year: 2021 article-title: Time‐dependent reliability‐based redundancy assessment of deteriorated RC structures against progressive collapse considering corrosion effect publication-title: Struct Saf – volume: 86 year: 2020 article-title: Efficient methodology for seismic fragility curves estimation by active learning on support vector machines publication-title: Struct Saf – volume: 114 start-page: 1804 issue: 8 year: 1988 end-page: 1826 article-title: Theoretical stress–strain model for confined concrete publication-title: J Struct Eng – year: 2019 article-title: Seismic collapse assessment of deteriorating RC bridges under multiple hazards during their life‐cycle – volume: 147 issue: 11 year: 2021 article-title: Interpretable XGBoost‐SHAP machine‐learning model for shear strength prediction of squat RC walls publication-title: J Struct Eng – volume: 69 start-page: 207 issue: 1 year: 1979 end-page: 220 article-title: The July 27, 1976 Tangshan, China earthquake—a complex sequence of intraplate events publication-title: Bull Seismol Soc Am – volume: 146 issue: 11 year: 2020 article-title: Ground motion‐dependent rapid damage assessment of structures based on wavelet transform and image analysis techniques publication-title: J Struct Eng – volume: 15 start-page: 302 issue: 3 year: 2010 end-page: 311 article-title: Validated simulation models for lateral response of bridge abutments with typical backfills publication-title: J Bridge Eng – volume: 147 issue: 2 year: 2021 article-title: Data‐driven approach to predict the plastic hinge length of reinforced concrete columns and its application publication-title: J Struct Eng – year: 2012 – volume: 49 start-page: 657 issue: 7 year: 2020 end-page: 678 article-title: Pre‐and post‐earthquake regional loss assessment using deep learning publication-title: Earthq Eng Struct Dyn – volume: 33 year: 2021 article-title: Machine learning applications for building structural design and performance assessment: state‐of‐the‐art review publication-title: J Building Eng – volume: 162 start-page: 166 year: 2018 end-page: 176 article-title: Artificial neural network based multi‐dimensional fragility development of skewed concrete bridge classes publication-title: Eng Struct – volume: 130 start-page: 1214 issue: 8 year: 2004 end-page: 1224 article-title: Structural assessment of corroded reinforced concrete beams: modeling guidelines publication-title: J Struct Eng – volume: 37 start-page: 711 issue: 5 year: 2008 end-page: 725 article-title: Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios publication-title: Earthq Eng Struct Dyn – volume: 106 start-page: 1 year: 2017 end-page: 16 article-title: Seismic parameters combinations for the optimum prediction of the damage state of R/C buildings using neural networks publication-title: Adv Eng Softw – year: 2017 article-title: A unified approach to interpreting model predictions – volume: 308 year: 2021 article-title: Concrete‐to‐concrete interface shear strength prediction based on explainable extreme gradient boosting approach publication-title: Constr Build Mater – year: 2006 – volume: 146 issue: 12 year: 2020 article-title: Regional seismic risk assessment of infrastructure systems through machine learning: active learning approach publication-title: J Struct Eng – volume: 235 year: 2021 article-title: Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements publication-title: Eng Struct – volume: 7 issue: 4 year: 2021 article-title: Improved component‐level deterioration modeling and capacity estimation for seismic fragility assessment of highway bridges publication-title: ASCE‐ASME J Risk Uncertain Eng Syst, Part A: Civ Eng – volume: 134 year: 2020 article-title: Seismic fragility analysis of shear‐critical concrete columns considering corrosion induced deterioration effects publication-title: Soil Dyn Earthq Eng – year: 2017 – volume: 201 year: 2019 article-title: Rapid seismic damage evaluation of bridge portfolios using machine learning techniques publication-title: Eng Struct – year: 1999 – ident: e_1_2_13_19_1 doi: 10.1016/j.engstruct.2020.111800 – ident: e_1_2_13_32_1 doi: 10.1002/eqe.557 – ident: e_1_2_13_39_1 doi: 10.1080/15732479.2014.951863 – ident: e_1_2_13_10_1 – volume-title: Next Generation Seismic Fragility Curves for California Bridges Incorporating the Evolution in Seismic Design Philosophy year: 2012 ident: e_1_2_13_28_1 – ident: e_1_2_13_35_1 doi: 10.1002/eqe.782 – ident: e_1_2_13_24_1 doi: 10.1016/j.engstruct.2011.07.005 – ident: e_1_2_13_30_1 doi: 10.1016/j.engstruct.2003.09.006 – ident: e_1_2_13_38_1 doi: 10.1680/macr.2005.57.3.135 – ident: e_1_2_13_11_1 doi: 10.1016/j.engstruct.2021.112818 – ident: e_1_2_13_31_1 doi: 10.1061/(ASCE)BE.1943-5592.0000058 – volume-title: New Ground Motion Selection Procedures and Selected Motions for the PEER Transportation Research Program year: 2011 ident: e_1_2_13_34_1 – ident: e_1_2_13_7_1 doi: 10.1061/(ASCE)BE.1943-5592.0000197 – ident: e_1_2_13_13_1 doi: 10.1016/j.engstruct.2018.05.084 – ident: e_1_2_13_36_1 doi: 10.1016/j.strusafe.2008.10.001 – ident: e_1_2_13_26_1 doi: 10.1002/eqe.3258 – ident: e_1_2_13_22_1 doi: 10.1193/1.2798241 – ident: e_1_2_13_55_1 doi: 10.1016/j.conbuildmat.2021.125088 – ident: e_1_2_13_6_1 – ident: e_1_2_13_18_1 doi: 10.1016/j.engstruct.2021.112142 – ident: e_1_2_13_50_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_13_44_1 doi: 10.1061/AJRUA6.0001154 – ident: e_1_2_13_2_1 doi: 10.1061/(ASCE)ST.1943‐541X.0002831 – ident: e_1_2_13_4_1 doi: 10.1002/eqe.2991 – ident: e_1_2_13_54_1 doi: 10.1061/(ASCE)ST.1943-541X.0003115 – ident: e_1_2_13_15_1 doi: 10.1016/j.jobe.2020.101816 – ident: e_1_2_13_16_1 doi: 10.1016/j.engstruct.2018.01.053 – ident: e_1_2_13_27_1 doi: 10.1016/j.engstruct.2016.05.054 – ident: e_1_2_13_43_1 doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804) – ident: e_1_2_13_20_1 doi: 10.1016/j.advengsoft.2017.01.001 – ident: e_1_2_13_23_1 doi: 10.1016/j.compstruc.2019.03.004 – ident: e_1_2_13_57_1 doi: 10.1785/BSSA0690010207 – ident: e_1_2_13_42_1 doi: 10.1007/BF02472864 – ident: e_1_2_13_25_1 doi: 10.1002/eqe.3415 – ident: e_1_2_13_40_1 doi: 10.1061/(ASCE)0733-9445(2004)130:8(1214) – ident: e_1_2_13_5_1 doi: 10.1002/eqe.3183 – volume-title: Springer Series in Statistics year: 2001 ident: e_1_2_13_47_1 – ident: e_1_2_13_3_1 doi: 10.1016/j.engstruct.2019.109785 – ident: e_1_2_13_48_1 doi: 10.1201/9781315139470 – volume-title: Residual Service‐life Assessment of Existing R/C Structures year: 1999 ident: e_1_2_13_41_1 – ident: e_1_2_13_45_1 doi: 10.1061/(ASCE)ST.1943-541X.0002793 – ident: e_1_2_13_9_1 doi: 10.1016/j.soildyn.2020.106165 – ident: e_1_2_13_51_1 doi: 10.1016/j.engstruct.2021.111979 – ident: e_1_2_13_21_1 doi: 10.1016/j.strusafe.2020.101972 – ident: e_1_2_13_37_1 doi: 10.1016/j.strusafe.2020.102061 – ident: e_1_2_13_46_1 doi: 10.1111/mice.12628 – ident: e_1_2_13_12_1 doi: 10.1193/102317eqs220m – ident: e_1_2_13_14_1 doi: 10.1177/8755293020919419 – volume-title: OpenSees Command Language Manual year: 2006 ident: e_1_2_13_29_1 – volume-title: The Nature of Statistical Learning Theory year: 1999 ident: e_1_2_13_49_1 – ident: e_1_2_13_52_1 doi: 10.1145/2939672.2939785 – ident: e_1_2_13_53_1 – ident: e_1_2_13_17_1 doi: 10.1061/(ASCE)ST.1943-541X.0002852 – ident: e_1_2_13_56_1 – ident: e_1_2_13_8_1 doi: 10.1061/(ASCE)BE.1943‐5592.0001711 – volume-title: Performance Based Grouping and Fragility Analysis of Box‐girder Bridges in California year: 2017 ident: e_1_2_13_33_1 |
SSID | ssj0003607 |
Score | 2.6052532 |
Snippet | Rapid and accurate post‐earthquake damage evaluation of regional reinforced concrete (RC) bridges is a key issue for assessing the seismic resilience of cities... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2730 |
SubjectTerms | Ageing Aging Aging (artificial) aging corrosion effects Concrete bridges Corrosion Corrosion effects Damage assessment damage state Earthquake damage Earthquake prediction Earthquake resistance Earthquakes Learning algorithms Machine learning Marking and tracking techniques Mathematical models Modelling Numerical models Performance assessment Performance testing RC bridges Regional analysis Reinforced concrete Seismic activity seismic assessment Seismic response tagging |
Title | Data‐driven rapid damage evaluation for life‐cycle seismic assessment of regional reinforced concrete bridges |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3699 https://www.proquest.com/docview/2699672485 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yJz34FtcXEURPXWvTptuj6C6LoKC4IHgok2QCi-uqu_WgJ3-Cv9Ff4qSP3VUUxENpIZOSZiaTb8rMF8b24tCVxoD1JJIaQim1p6TQHhlXCFYnQudFYucXstMNz26imzKr0tXCFPwQ4x9ubmXk_totcFCjwwlpKD5hQ8jE1e65VC2Hh64mzFFC-mO6zCZ54Ip31g8Oq45fd6IJvJwGqfku015gt9X4iuSSu8Zzphr69Rt14_8-YJHNl-CTHxfWssRmcLDM5qYoCVfY0ylk8PH2bobODfIhPPYMN3BPbodPmME5QV3e71kkSf1C7-Ij7I3ue5rDmOmTP1jujn1wUJ8ecoZWjYZTAE5INUNeMkyssm67dX3S8cpjGTxNWCKh6RSJhCAyFDlFiq6mRUmmEIG1NjIawByFFIXEKMBHTNDEwiZ-AkJEUlFEvMZqg4cBrjMOQPgiboJV6IdKU5uSxrpyWAmEO7HODioVpbrkLHdHZ_TTgm05SGkSUzeJdbY7lnwseDp-kNmqtJyWK3WUBtQgY0fsVmf7ubp-7Z-2LlvuvvFXwU02G7hqiTwlbYvVsuEzbhOGydRObq2fGNzyUQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BPQAHaAuIBdq6UgunLGkezubAoeouWp4SFUjcwsQeS6uyD3aDED31J_R_9K_wK_glHeexS6tW4sKBQ5RInkSx5-HPlucbgA9RYFNj0DiSWA2BlMpJpa8cNq4AjYp9lSeJHR3L9lmwfx6eT8GvKhem4IcYb7hZz8jjtXVwuyG9PWENpSuq-zKOyxOVB3R7w-u10c5ek5X70fN2W6df2k5ZUsBRPA_GToPxgEQv1Iz6w5SvhiHJ3QjRGBNqhag_BYygI_LRJYpJR76J3Rh9P5Qpr-b4u9PwwhYQt0T9za8TripfumOCzgbH_Irp1vW2qz_9c-6bANqHsDif13YX4a4akeI4y7f6dZbW1fe_yCKfyZC9hIUSX4vPhUO8ginqvYb5B6yLS3DVxAzvf_zUQxvpxRAHHS00djmyign5uWA0Ly47hlhS3fK3xIg6o25HCRyTmYq-EbayhV3N8ENOQqtIC9XvMRjPSJQkGstw9iR9XoGZXr9HqyAQGUJFDTQpuUGquC2V2tiMX4kMrakGW5VNJKqkZbfVQS6TglDaS1hpiVVaDd6PJQcFFck_ZDYqs0rKYDRKPG6QkeWuq8Fmbh__fT9pnbTsfe2xgu9gtn16dJgc7h0frMOcZ5ND8hN4GzCTDa_pDUO2LH2bu4qAi6c2tN9w7lEp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xkCo4tNAWEcpjkVp6cjB-rOMDB0QS8WhRi4rEzYx3Z6UISEJiVNFTf0J_R_8K_4JfwqwfCVSt1AsHDpYt7Xjl3Xnst9bONwDvo8CmxqBxJLEaAimVk0pfOWxcARoV-ypPEvt8JPdOgoPT8HQCfle5MAU_xOiHm_WMPF5bB-9rszkmDaUrqvsyjssDlYd08523a8Pt_Sbr9oPntVvfdvecsqKAo3gZjJ0GwwGJXqgZ9IcpXw1DkkcRojEm1ApRbwUMoCPy0SWKSUe-id0YfT-UKW_muN9JmA6kG9syEc3jMVWVL90RP2eDQ35FdOt6m9WXPl76xnj2ISrOl7X2K7itJqQ4zXJev87SuvrxB1fk85ixOXhZomuxU7jDPExQ9zXMPuBcfANXTczw7ucvPbBxXgyw39FC4yXHVTGmPheM5cVFxxBLqhvuSwypM7zsKIEjKlPRM8LWtbB7GX7IKWgVaaF6XYbiGYmSQuMtnDzJmBdgqtvr0iIIRAZQUQNNSm6QKm5LpTY231ciA2uqwcfKJBJVkrLb2iAXSUEn7SWstMQqrQbrI8l-QUTyF5nlyqqSMhQNE48bZGSZ62qwkZvHP99PWl9b9r70v4Jr8OJLs5182j86fAczns0MyY_fLcNUNrimFcZrWbqaO4qAs6e2s3slGE_Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+rapid+damage+evaluation+for+life%E2%80%90cycle+seismic+assessment+of+regional+reinforced+concrete+bridges&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Xu%2C+Ji%E2%80%90Gang&rft.au=Feng%2C+De%E2%80%90Cheng&rft.au=Mangalathu%2C+Sujith&rft.au=Jeon%2C+Jong%E2%80%90Su&rft.date=2022-09-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=51&rft.issue=11&rft.spage=2730&rft.epage=2751&rft_id=info:doi/10.1002%2Feqe.3699&rft.externalDBID=10.1002%252Feqe.3699&rft.externalDocID=EQE3699 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |