Data‐driven rapid damage evaluation for life‐cycle seismic assessment of regional reinforced concrete bridges

Rapid and accurate post‐earthquake damage evaluation of regional reinforced concrete (RC) bridges is a key issue for assessing the seismic resilience of cities and communities. Especially, RC bridges are susceptible to the aggressive environment, which can induce time‐dependent aging effects such as...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 51; no. 11; pp. 2730 - 2751
Main Authors Xu, Ji‐Gang, Feng, De‐Cheng, Mangalathu, Sujith, Jeon, Jong‐Su
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rapid and accurate post‐earthquake damage evaluation of regional reinforced concrete (RC) bridges is a key issue for assessing the seismic resilience of cities and communities. Especially, RC bridges are susceptible to the aggressive environment, which can induce time‐dependent aging effects such as corrosion, and thus, it should be considered in the assessment. This paper presents an approach for regional seismic performance assessment of RC bridges in a life‐cycle context based on machine‐learning techniques. The life‐cycle seismic demand and capacity of the bridges are, firstly, obtained by the elaborated numerical model, which includes the deterioration induced by the aging corrosion effect. Then, the tagging‐based damage state (green, yellow, or red) is easily obtained by comparing the pairs of demand and capacity through machine learning. Four hundred and eighty bridge models are generated to develop the machine‐learning models and the performance of the machine learning models is evaluated. Results show that the extreme gradient boosting (XGBoost) model has the best performance, which has an accuracy of 81% in predicting the damage states. The proposed approach is demonstrated with a single bridge example and bridges in a sample region. It is shown that the machine learning model can accurately predict the post‐earthquake damage states of the single bridge, and it can also rapidly assess the damage states of the bridges in the sample region. Approximately 30% bridges in the sample region will experience damage states shift after 100 years, which highlights the importance of considering the aging effects on the post‐earthquake damage assessment of bridges.
AbstractList Rapid and accurate post‐earthquake damage evaluation of regional reinforced concrete (RC) bridges is a key issue for assessing the seismic resilience of cities and communities. Especially, RC bridges are susceptible to the aggressive environment, which can induce time‐dependent aging effects such as corrosion, and thus, it should be considered in the assessment. This paper presents an approach for regional seismic performance assessment of RC bridges in a life‐cycle context based on machine‐learning techniques. The life‐cycle seismic demand and capacity of the bridges are, firstly, obtained by the elaborated numerical model, which includes the deterioration induced by the aging corrosion effect. Then, the tagging‐based damage state (green, yellow, or red) is easily obtained by comparing the pairs of demand and capacity through machine learning. Four hundred and eighty bridge models are generated to develop the machine‐learning models and the performance of the machine learning models is evaluated. Results show that the extreme gradient boosting (XGBoost) model has the best performance, which has an accuracy of 81% in predicting the damage states. The proposed approach is demonstrated with a single bridge example and bridges in a sample region. It is shown that the machine learning model can accurately predict the post‐earthquake damage states of the single bridge, and it can also rapidly assess the damage states of the bridges in the sample region. Approximately 30% bridges in the sample region will experience damage states shift after 100 years, which highlights the importance of considering the aging effects on the post‐earthquake damage assessment of bridges.
Rapid and accurate post‐earthquake damage evaluation of regional reinforced concrete (RC) bridges is a key issue for assessing the seismic resilience of cities and communities. Especially, RC bridges are susceptible to the aggressive environment, which can induce time‐dependent aging effects such as corrosion, and thus, it should be considered in the assessment. This paper presents an approach for regional seismic performance assessment of RC bridges in a life‐cycle context based on machine‐learning techniques. The life‐cycle seismic demand and capacity of the bridges are, firstly, obtained by the elaborated numerical model, which includes the deterioration induced by the aging corrosion effect. Then, the tagging‐based damage state (green, yellow, or red) is easily obtained by comparing the pairs of demand and capacity through machine learning. Four hundred and eighty bridge models are generated to develop the machine‐learning models and the performance of the machine learning models is evaluated. Results show that the extreme gradient boosting (XGBoost) model has the best performance, which has an accuracy of 81% in predicting the damage states. The proposed approach is demonstrated with a single bridge example and bridges in a sample region. It is shown that the machine learning model can accurately predict the post‐earthquake damage states of the single bridge, and it can also rapidly assess the damage states of the bridges in the sample region. Approximately 30% bridges in the sample region will experience damage states shift after 100 years, which highlights the importance of considering the aging effects on the post‐earthquake damage assessment of bridges.
Author Mangalathu, Sujith
Feng, De‐Cheng
Jeon, Jong‐Su
Xu, Ji‐Gang
Author_xml – sequence: 1
  givenname: Ji‐Gang
  orcidid: 0000-0001-7640-3613
  surname: Xu
  fullname: Xu, Ji‐Gang
  organization: Nanjing Tech University
– sequence: 2
  givenname: De‐Cheng
  orcidid: 0000-0003-3691-6128
  surname: Feng
  fullname: Feng, De‐Cheng
  email: dcfeng@seu.edu.cn
  organization: Southeast University
– sequence: 3
  givenname: Sujith
  surname: Mangalathu
  fullname: Mangalathu, Sujith
  organization: Mangalathu, Mylamkulam, Puthoor PO, Kollam
– sequence: 4
  givenname: Jong‐Su
  orcidid: 0000-0001-6657-7265
  surname: Jeon
  fullname: Jeon, Jong‐Su
  organization: Hanyang University
BookMark eNp1kM1KAzEQx4NUsK2CjxDw4mVrdrPZ3Ryl1g8oiKDnZTaZlJT9aJNtpTcfwWf0SUxbT6KHYebw-w8zvxEZtF2LhFzGbBIzltzgGic8k_KEDGMms0gWqRiQIWOyiIoizc_IyPslY4xnLB-S9R308PXxqZ3dYksdrKymGhpYIMUt1BvobddS0zlaW4OBVDtVI_VofWMVBe_R-wbbnnaGOlwEGuow2DZkFGqqulY57JFWzuoF-nNyaqD2ePHTx-TtfvY6fYzmzw9P09t5pJKEy3ArlxkkQidCiipUYTCrUAkwxgitAHScikLkyIEhStQ5N5JJ4FxkFS_4mFwd965ct96g78tlt3HhOF8mwU-WJ2khAjU5Usp13js0pbL94efega3LmJV7rWXQWu61hsD1r8DK2Qbc7i80OqLvtsbdv1w5e5kd-G8UhozL
CitedBy_id crossref_primary_10_1016_j_cma_2024_116775
crossref_primary_10_1016_j_strusafe_2024_102523
crossref_primary_10_1016_j_engstruct_2023_117295
crossref_primary_10_1016_j_jobe_2024_109584
crossref_primary_10_1016_j_engstruct_2024_117534
crossref_primary_10_1016_j_soildyn_2024_108947
crossref_primary_10_1016_j_dibe_2024_100588
crossref_primary_10_1016_j_jobe_2024_110417
crossref_primary_10_1016_j_soildyn_2024_108504
crossref_primary_10_1016_j_soildyn_2024_108746
crossref_primary_10_1016_j_engstruct_2024_118626
crossref_primary_10_1016_j_istruc_2023_105712
crossref_primary_10_1016_j_istruc_2023_02_036
crossref_primary_10_1016_j_soildyn_2024_109127
crossref_primary_10_1007_s13349_024_00852_3
crossref_primary_10_1016_j_cscm_2022_e01678
crossref_primary_10_3390_app122412921
crossref_primary_10_1007_s13349_024_00831_8
crossref_primary_10_1016_j_jobe_2025_111837
crossref_primary_10_1016_j_aei_2025_103185
crossref_primary_10_1007_s10518_022_01593_8
crossref_primary_10_1016_j_rineng_2023_101388
crossref_primary_10_1016_j_engappai_2024_109701
crossref_primary_10_1016_j_engappai_2024_108659
crossref_primary_10_1016_j_istruc_2025_108227
crossref_primary_10_3390_su16135491
crossref_primary_10_1016_j_engfailanal_2022_106920
crossref_primary_10_1016_j_istruc_2023_105723
crossref_primary_10_1016_j_asoc_2024_111552
crossref_primary_10_1016_j_compstruc_2023_107114
crossref_primary_10_1016_j_compstruc_2023_107038
crossref_primary_10_1016_j_istruc_2024_107400
crossref_primary_10_1016_j_engstruct_2023_116235
crossref_primary_10_3390_math11061294
crossref_primary_10_3390_en15165778
crossref_primary_10_3390_buildings13051178
crossref_primary_10_3390_su142012994
crossref_primary_10_1016_j_jobe_2023_106130
crossref_primary_10_1016_j_jobe_2023_107984
crossref_primary_10_1016_j_jobe_2023_106257
crossref_primary_10_1016_j_compstruct_2023_117308
crossref_primary_10_3390_su142114640
crossref_primary_10_1016_j_oceaneng_2024_118360
crossref_primary_10_1016_j_jobe_2022_105716
crossref_primary_10_1016_j_compstruc_2023_107106
crossref_primary_10_3390_atmos14101527
crossref_primary_10_1061_AJRUA6_RUENG_1290
crossref_primary_10_3390_buildings13112720
crossref_primary_10_3390_su142215146
crossref_primary_10_1016_j_ymssp_2022_109838
crossref_primary_10_1186_s40069_023_00624_1
crossref_primary_10_1002_eqe_4068
crossref_primary_10_3390_su151511713
crossref_primary_10_1016_j_jobe_2022_105797
crossref_primary_10_3390_su152014763
crossref_primary_10_1016_j_engstruct_2023_117264
crossref_primary_10_3390_app14010202
crossref_primary_10_1007_s42107_024_01217_3
crossref_primary_10_1061_JBENF2_BEENG_6159
crossref_primary_10_1016_j_engfailanal_2022_106786
crossref_primary_10_1061_JBENF2_BEENG_6710
crossref_primary_10_1177_13694332241289175
crossref_primary_10_3390_buildings13112790
crossref_primary_10_3390_geotechnics3030030
crossref_primary_10_1016_j_engstruct_2023_117307
crossref_primary_10_1016_j_istruc_2023_105306
crossref_primary_10_1016_j_istruc_2023_02_026
crossref_primary_10_1016_j_apor_2023_103511
crossref_primary_10_1016_j_ymssp_2023_110873
crossref_primary_10_1002_eqe_4230
crossref_primary_10_3390_su15043282
crossref_primary_10_3390_buildings13040948
Cites_doi 10.1016/j.engstruct.2020.111800
10.1002/eqe.557
10.1080/15732479.2014.951863
10.1002/eqe.782
10.1016/j.engstruct.2011.07.005
10.1016/j.engstruct.2003.09.006
10.1680/macr.2005.57.3.135
10.1016/j.engstruct.2021.112818
10.1061/(ASCE)BE.1943-5592.0000058
10.1061/(ASCE)BE.1943-5592.0000197
10.1016/j.engstruct.2018.05.084
10.1016/j.strusafe.2008.10.001
10.1002/eqe.3258
10.1193/1.2798241
10.1016/j.conbuildmat.2021.125088
10.1016/j.engstruct.2021.112142
10.1023/A:1010933404324
10.1061/AJRUA6.0001154
10.1061/(ASCE)ST.1943‐541X.0002831
10.1002/eqe.2991
10.1061/(ASCE)ST.1943-541X.0003115
10.1016/j.jobe.2020.101816
10.1016/j.engstruct.2018.01.053
10.1016/j.engstruct.2016.05.054
10.1061/(ASCE)0733-9445(1988)114:8(1804)
10.1016/j.advengsoft.2017.01.001
10.1016/j.compstruc.2019.03.004
10.1785/BSSA0690010207
10.1007/BF02472864
10.1002/eqe.3415
10.1061/(ASCE)0733-9445(2004)130:8(1214)
10.1002/eqe.3183
10.1016/j.engstruct.2019.109785
10.1201/9781315139470
10.1061/(ASCE)ST.1943-541X.0002793
10.1016/j.soildyn.2020.106165
10.1016/j.engstruct.2021.111979
10.1016/j.strusafe.2020.101972
10.1016/j.strusafe.2020.102061
10.1111/mice.12628
10.1193/102317eqs220m
10.1177/8755293020919419
10.1145/2939672.2939785
10.1061/(ASCE)ST.1943-541X.0002852
10.1061/(ASCE)BE.1943‐5592.0001711
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/eqe.3699
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 2751
ExternalDocumentID 10_1002_eqe_3699
EQE3699
Genre article
GrantInformation_xml – fundername: Jiangsu Provincial Double‐Innovation Doctor Program
  funderid: JSSCBS20210410
– fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions
  funderid: 21KJB560011
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20210551; BK20211564
– fundername: National Natural Science Foundation of China
  funderid: 52078119
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACKIV
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CKXBT
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M58
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
7TG
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c2239-88396a25d2595b5958fe6bec5afff5dcaad145857e3a0ee9ed73f909a3356b383
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Fri Jul 25 22:55:05 EDT 2025
Tue Jul 01 02:21:59 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
Wed Jan 22 16:25:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2239-88396a25d2595b5958fe6bec5afff5dcaad145857e3a0ee9ed73f909a3356b383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3691-6128
0000-0001-6657-7265
0000-0001-7640-3613
PQID 2699672485
PQPubID 866380
PageCount 22
ParticipantIDs proquest_journals_2699672485
crossref_citationtrail_10_1002_eqe_3699
crossref_primary_10_1002_eqe_3699
wiley_primary_10_1002_eqe_3699_EQE3699
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1993; 26
2021; 26
2010; 16
2010; 15
2018; 162
2021; 244
2006; 35
2004; 26
2008; 37
2019; 201
2001; 45
2021; 36
2018; 171
2021; 33
1979; 69
2001
2021; 236
2021; 235
2004; 130
2020; 49
2020; 134
2021; 232
2007; 23
2021; 308
2021; 7
2021; 89
2020; 86
2012
2011
2021; 147
2019; 35
2015; 11
2016; 123
2011; 33
2020; 36
2006
2020; 146
2021; 50
1999
2009; 31
2021
2019; 48
1988; 114
2019
2017
2019; 218
2016
2017; 106
2005; 57
e_1_2_13_24_1
Ramanathan KN (e_1_2_13_28_1) 2012
e_1_2_13_26_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_8_1
e_1_2_13_6_1
e_1_2_13_17_1
e_1_2_13_19_1
Baker JW (e_1_2_13_34_1) 2011
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_11_1
e_1_2_13_53_1
e_1_2_13_51_1
e_1_2_13_30_1
Vapnik V (e_1_2_13_49_1) 1999
Mangalathu S (e_1_2_13_33_1) 2017
e_1_2_13_4_1
e_1_2_13_2_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_7_1
Hastie T (e_1_2_13_47_1) 2001
Capé M (e_1_2_13_41_1) 1999
Mazzoni S (e_1_2_13_29_1) 2006
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_56_1
e_1_2_13_12_1
e_1_2_13_54_1
e_1_2_13_52_1
e_1_2_13_50_1
e_1_2_13_5_1
e_1_2_13_3_1
References_xml – year: 2011
– volume: 218
  start-page: 108
  year: 2019
  end-page: 122
  article-title: On the application of machine learning techniques to derive seismic fragility curves
  publication-title: Comput Struct
– volume: 48
  start-page: 1238
  issue: 11
  year: 2019
  end-page: 1255
  article-title: Stripe‐based fragility analysis of multispan concrete bridge classes using machine learning techniques
  publication-title: Earthq Eng Struct Dyn
– volume: 26
  issue: 6
  year: 2021
  article-title: Life‐cycle performance assessment of aging bridges subjected to tsunami hazards
  publication-title: J Bridge Eng
– year: 2001
– volume: 50
  start-page: 1612
  issue: 6
  year: 2021
  end-page: 1627
  article-title: A deep learning approach to rapid regional post‐event seismic damage assessment using time‐frequency distributions of ground motions
  publication-title: Earthq Eng Struct Dyn
– year: 2021
– volume: 36
  start-page: 504
  issue: 4
  year: 2021
  end-page: 521
  article-title: Real‐time regional seismic damage assessment framework based on long short‐term memory neural network
  publication-title: Comput‐Aided Civ Infrastruct Eng
– volume: 232
  year: 2021
  article-title: Seismic behavior & risk assessment of an existing bridge considering soil–structure interaction using artificial neural networks
  publication-title: Eng Struct
– volume: 16
  start-page: 597
  issue: 5
  year: 2010
  end-page: 611
  article-title: Performance evaluation of deteriorating highway bridges located in high seismic areas
  publication-title: J Bridge Eng
– volume: 57
  start-page: 135
  issue: 3
  year: 2005
  end-page: 147
  article-title: Residual capacity of corroded reinforcing bars
  publication-title: Mag Concr Res
– volume: 26
  start-page: 187
  issue: 2
  year: 2004
  end-page: 199
  article-title: Seismic fragility of typical bridges in moderate seismic zones
  publication-title: Eng Struct
– year: 2017
  article-title: Critical uncertainty parameters influencing seismic performance of bridges using Lasso regression
– volume: 36
  start-page: 1769
  issue: 4
  year: 2020
  end-page: 1801
  article-title: The promise of implementing machine learning in earthquake engineering: a state‐of‐the‐art review
  publication-title: Earthq Spectra
– volume: 123
  start-page: 379
  year: 2016
  end-page: 394
  article-title: ANCOVA‐based grouping of bridge classes for seismic fragility assessment
  publication-title: Eng Struct
– volume: 11
  start-page: 519
  issue: 4
  year: 2015
  end-page: 532
  article-title: Deteriorating beam finite element for nonlinear analysis of concrete structures under corrosion
  publication-title: Struct Infrastruct Eng
– volume: 171
  start-page: 170
  year: 2018
  end-page: 189
  article-title: Emerging artificial intelligence methods in structural engineering
  publication-title: Eng Struct
– volume: 244
  year: 2021
  article-title: Life‐cycle seismic performance assessment of aging RC bridges considering multi‐failure modes of bridge columns
  publication-title: Eng Struct
– start-page: 785
  year: 2016
  end-page: 794
  article-title: Xgboost: A scalable tree boosting system
– volume: 23
  start-page: 735
  issue: 4
  year: 2007
  end-page: 752
  article-title: Fragility assessment of steel frames using neural networks
  publication-title: Earthq Spectra
– volume: 26
  start-page: 532
  issue: 9
  year: 1993
  end-page: 548
  article-title: Cover cracking as a function of rebar corrosion: part 2—numerical model
  publication-title: Mater Struct
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 236
  year: 2021
  article-title: Seismic response prediction and variable importance analysis of extended pile‐shaft‐supported bridges against lateral spreading: exploring optimized machine learning models
  publication-title: Eng Struct
– volume: 31
  start-page: 275
  issue: 4
  year: 2009
  end-page: 283
  article-title: Seismic fragility estimates for reinforced concrete bridges subject to corrosion
  publication-title: Struct Saf
– volume: 35
  start-page: 811
  issue: 7
  year: 2006
  end-page: 828
  article-title: A Hertz contact model with non‐linear damping for pounding simulation
  publication-title: Earthq Eng Struct Dyn
– volume: 35
  start-page: 233
  issue: 1
  year: 2019
  end-page: 266
  article-title: Time‐dependent seismic fragilities of older and newly designed multi‐frame reinforced concrete box‐girder bridges in California
  publication-title: Earthq Spectra
– volume: 33
  start-page: 3409
  issue: 12
  year: 2011
  end-page: 3421
  article-title: Developing fragility curves based on neural network IDA predictions
  publication-title: Eng Struct
– volume: 89
  year: 2021
  article-title: Time‐dependent reliability‐based redundancy assessment of deteriorated RC structures against progressive collapse considering corrosion effect
  publication-title: Struct Saf
– volume: 86
  year: 2020
  article-title: Efficient methodology for seismic fragility curves estimation by active learning on support vector machines
  publication-title: Struct Saf
– volume: 114
  start-page: 1804
  issue: 8
  year: 1988
  end-page: 1826
  article-title: Theoretical stress–strain model for confined concrete
  publication-title: J Struct Eng
– year: 2019
  article-title: Seismic collapse assessment of deteriorating RC bridges under multiple hazards during their life‐cycle
– volume: 147
  issue: 11
  year: 2021
  article-title: Interpretable XGBoost‐SHAP machine‐learning model for shear strength prediction of squat RC walls
  publication-title: J Struct Eng
– volume: 69
  start-page: 207
  issue: 1
  year: 1979
  end-page: 220
  article-title: The July 27, 1976 Tangshan, China earthquake—a complex sequence of intraplate events
  publication-title: Bull Seismol Soc Am
– volume: 146
  issue: 11
  year: 2020
  article-title: Ground motion‐dependent rapid damage assessment of structures based on wavelet transform and image analysis techniques
  publication-title: J Struct Eng
– volume: 15
  start-page: 302
  issue: 3
  year: 2010
  end-page: 311
  article-title: Validated simulation models for lateral response of bridge abutments with typical backfills
  publication-title: J Bridge Eng
– volume: 147
  issue: 2
  year: 2021
  article-title: Data‐driven approach to predict the plastic hinge length of reinforced concrete columns and its application
  publication-title: J Struct Eng
– year: 2012
– volume: 49
  start-page: 657
  issue: 7
  year: 2020
  end-page: 678
  article-title: Pre‐and post‐earthquake regional loss assessment using deep learning
  publication-title: Earthq Eng Struct Dyn
– volume: 33
  year: 2021
  article-title: Machine learning applications for building structural design and performance assessment: state‐of‐the‐art review
  publication-title: J Building Eng
– volume: 162
  start-page: 166
  year: 2018
  end-page: 176
  article-title: Artificial neural network based multi‐dimensional fragility development of skewed concrete bridge classes
  publication-title: Eng Struct
– volume: 130
  start-page: 1214
  issue: 8
  year: 2004
  end-page: 1224
  article-title: Structural assessment of corroded reinforced concrete beams: modeling guidelines
  publication-title: J Struct Eng
– volume: 37
  start-page: 711
  issue: 5
  year: 2008
  end-page: 725
  article-title: Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios
  publication-title: Earthq Eng Struct Dyn
– volume: 106
  start-page: 1
  year: 2017
  end-page: 16
  article-title: Seismic parameters combinations for the optimum prediction of the damage state of R/C buildings using neural networks
  publication-title: Adv Eng Softw
– year: 2017
  article-title: A unified approach to interpreting model predictions
– volume: 308
  year: 2021
  article-title: Concrete‐to‐concrete interface shear strength prediction based on explainable extreme gradient boosting approach
  publication-title: Constr Build Mater
– year: 2006
– volume: 146
  issue: 12
  year: 2020
  article-title: Regional seismic risk assessment of infrastructure systems through machine learning: active learning approach
  publication-title: J Struct Eng
– volume: 235
  year: 2021
  article-title: Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements
  publication-title: Eng Struct
– volume: 7
  issue: 4
  year: 2021
  article-title: Improved component‐level deterioration modeling and capacity estimation for seismic fragility assessment of highway bridges
  publication-title: ASCE‐ASME J Risk Uncertain Eng Syst, Part A: Civ Eng
– volume: 134
  year: 2020
  article-title: Seismic fragility analysis of shear‐critical concrete columns considering corrosion induced deterioration effects
  publication-title: Soil Dyn Earthq Eng
– year: 2017
– volume: 201
  year: 2019
  article-title: Rapid seismic damage evaluation of bridge portfolios using machine learning techniques
  publication-title: Eng Struct
– year: 1999
– ident: e_1_2_13_19_1
  doi: 10.1016/j.engstruct.2020.111800
– ident: e_1_2_13_32_1
  doi: 10.1002/eqe.557
– ident: e_1_2_13_39_1
  doi: 10.1080/15732479.2014.951863
– ident: e_1_2_13_10_1
– volume-title: Next Generation Seismic Fragility Curves for California Bridges Incorporating the Evolution in Seismic Design Philosophy
  year: 2012
  ident: e_1_2_13_28_1
– ident: e_1_2_13_35_1
  doi: 10.1002/eqe.782
– ident: e_1_2_13_24_1
  doi: 10.1016/j.engstruct.2011.07.005
– ident: e_1_2_13_30_1
  doi: 10.1016/j.engstruct.2003.09.006
– ident: e_1_2_13_38_1
  doi: 10.1680/macr.2005.57.3.135
– ident: e_1_2_13_11_1
  doi: 10.1016/j.engstruct.2021.112818
– ident: e_1_2_13_31_1
  doi: 10.1061/(ASCE)BE.1943-5592.0000058
– volume-title: New Ground Motion Selection Procedures and Selected Motions for the PEER Transportation Research Program
  year: 2011
  ident: e_1_2_13_34_1
– ident: e_1_2_13_7_1
  doi: 10.1061/(ASCE)BE.1943-5592.0000197
– ident: e_1_2_13_13_1
  doi: 10.1016/j.engstruct.2018.05.084
– ident: e_1_2_13_36_1
  doi: 10.1016/j.strusafe.2008.10.001
– ident: e_1_2_13_26_1
  doi: 10.1002/eqe.3258
– ident: e_1_2_13_22_1
  doi: 10.1193/1.2798241
– ident: e_1_2_13_55_1
  doi: 10.1016/j.conbuildmat.2021.125088
– ident: e_1_2_13_6_1
– ident: e_1_2_13_18_1
  doi: 10.1016/j.engstruct.2021.112142
– ident: e_1_2_13_50_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_13_44_1
  doi: 10.1061/AJRUA6.0001154
– ident: e_1_2_13_2_1
  doi: 10.1061/(ASCE)ST.1943‐541X.0002831
– ident: e_1_2_13_4_1
  doi: 10.1002/eqe.2991
– ident: e_1_2_13_54_1
  doi: 10.1061/(ASCE)ST.1943-541X.0003115
– ident: e_1_2_13_15_1
  doi: 10.1016/j.jobe.2020.101816
– ident: e_1_2_13_16_1
  doi: 10.1016/j.engstruct.2018.01.053
– ident: e_1_2_13_27_1
  doi: 10.1016/j.engstruct.2016.05.054
– ident: e_1_2_13_43_1
  doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
– ident: e_1_2_13_20_1
  doi: 10.1016/j.advengsoft.2017.01.001
– ident: e_1_2_13_23_1
  doi: 10.1016/j.compstruc.2019.03.004
– ident: e_1_2_13_57_1
  doi: 10.1785/BSSA0690010207
– ident: e_1_2_13_42_1
  doi: 10.1007/BF02472864
– ident: e_1_2_13_25_1
  doi: 10.1002/eqe.3415
– ident: e_1_2_13_40_1
  doi: 10.1061/(ASCE)0733-9445(2004)130:8(1214)
– ident: e_1_2_13_5_1
  doi: 10.1002/eqe.3183
– volume-title: Springer Series in Statistics
  year: 2001
  ident: e_1_2_13_47_1
– ident: e_1_2_13_3_1
  doi: 10.1016/j.engstruct.2019.109785
– ident: e_1_2_13_48_1
  doi: 10.1201/9781315139470
– volume-title: Residual Service‐life Assessment of Existing R/C Structures
  year: 1999
  ident: e_1_2_13_41_1
– ident: e_1_2_13_45_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002793
– ident: e_1_2_13_9_1
  doi: 10.1016/j.soildyn.2020.106165
– ident: e_1_2_13_51_1
  doi: 10.1016/j.engstruct.2021.111979
– ident: e_1_2_13_21_1
  doi: 10.1016/j.strusafe.2020.101972
– ident: e_1_2_13_37_1
  doi: 10.1016/j.strusafe.2020.102061
– ident: e_1_2_13_46_1
  doi: 10.1111/mice.12628
– ident: e_1_2_13_12_1
  doi: 10.1193/102317eqs220m
– ident: e_1_2_13_14_1
  doi: 10.1177/8755293020919419
– volume-title: OpenSees Command Language Manual
  year: 2006
  ident: e_1_2_13_29_1
– volume-title: The Nature of Statistical Learning Theory
  year: 1999
  ident: e_1_2_13_49_1
– ident: e_1_2_13_52_1
  doi: 10.1145/2939672.2939785
– ident: e_1_2_13_53_1
– ident: e_1_2_13_17_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002852
– ident: e_1_2_13_56_1
– ident: e_1_2_13_8_1
  doi: 10.1061/(ASCE)BE.1943‐5592.0001711
– volume-title: Performance Based Grouping and Fragility Analysis of Box‐girder Bridges in California
  year: 2017
  ident: e_1_2_13_33_1
SSID ssj0003607
Score 2.6052532
Snippet Rapid and accurate post‐earthquake damage evaluation of regional reinforced concrete (RC) bridges is a key issue for assessing the seismic resilience of cities...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2730
SubjectTerms Ageing
Aging
Aging (artificial)
aging corrosion effects
Concrete bridges
Corrosion
Corrosion effects
Damage assessment
damage state
Earthquake damage
Earthquake prediction
Earthquake resistance
Earthquakes
Learning algorithms
Machine learning
Marking and tracking techniques
Mathematical models
Modelling
Numerical models
Performance assessment
Performance testing
RC bridges
Regional analysis
Reinforced concrete
Seismic activity
seismic assessment
Seismic response
tagging
Title Data‐driven rapid damage evaluation for life‐cycle seismic assessment of regional reinforced concrete bridges
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3699
https://www.proquest.com/docview/2699672485
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yJz34FtcXEURPXWvTptuj6C6LoKC4IHgok2QCi-uqu_WgJ3-Cv9Ff4qSP3VUUxENpIZOSZiaTb8rMF8b24tCVxoD1JJIaQim1p6TQHhlXCFYnQudFYucXstMNz26imzKr0tXCFPwQ4x9ubmXk_totcFCjwwlpKD5hQ8jE1e65VC2Hh64mzFFC-mO6zCZ54Ip31g8Oq45fd6IJvJwGqfku015gt9X4iuSSu8Zzphr69Rt14_8-YJHNl-CTHxfWssRmcLDM5qYoCVfY0ylk8PH2bobODfIhPPYMN3BPbodPmME5QV3e71kkSf1C7-Ij7I3ue5rDmOmTP1jujn1wUJ8ecoZWjYZTAE5INUNeMkyssm67dX3S8cpjGTxNWCKh6RSJhCAyFDlFiq6mRUmmEIG1NjIawByFFIXEKMBHTNDEwiZ-AkJEUlFEvMZqg4cBrjMOQPgiboJV6IdKU5uSxrpyWAmEO7HODioVpbrkLHdHZ_TTgm05SGkSUzeJdbY7lnwseDp-kNmqtJyWK3WUBtQgY0fsVmf7ubp-7Z-2LlvuvvFXwU02G7hqiTwlbYvVsuEzbhOGydRObq2fGNzyUQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BPQAHaAuIBdq6UgunLGkezubAoeouWp4SFUjcwsQeS6uyD3aDED31J_R_9K_wK_glHeexS6tW4sKBQ5RInkSx5-HPlucbgA9RYFNj0DiSWA2BlMpJpa8cNq4AjYp9lSeJHR3L9lmwfx6eT8GvKhem4IcYb7hZz8jjtXVwuyG9PWENpSuq-zKOyxOVB3R7w-u10c5ek5X70fN2W6df2k5ZUsBRPA_GToPxgEQv1Iz6w5SvhiHJ3QjRGBNqhag_BYygI_LRJYpJR76J3Rh9P5Qpr-b4u9PwwhYQt0T9za8TripfumOCzgbH_Irp1vW2qz_9c-6bANqHsDif13YX4a4akeI4y7f6dZbW1fe_yCKfyZC9hIUSX4vPhUO8ginqvYb5B6yLS3DVxAzvf_zUQxvpxRAHHS00djmyign5uWA0Ly47hlhS3fK3xIg6o25HCRyTmYq-EbayhV3N8ENOQqtIC9XvMRjPSJQkGstw9iR9XoGZXr9HqyAQGUJFDTQpuUGquC2V2tiMX4kMrakGW5VNJKqkZbfVQS6TglDaS1hpiVVaDd6PJQcFFck_ZDYqs0rKYDRKPG6QkeWuq8Fmbh__fT9pnbTsfe2xgu9gtn16dJgc7h0frMOcZ5ND8hN4GzCTDa_pDUO2LH2bu4qAi6c2tN9w7lEp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xkCo4tNAWEcpjkVp6cjB-rOMDB0QS8WhRi4rEzYx3Z6UISEJiVNFTf0J_R_8K_4JfwqwfCVSt1AsHDpYt7Xjl3Xnst9bONwDvo8CmxqBxJLEaAimVk0pfOWxcARoV-ypPEvt8JPdOgoPT8HQCfle5MAU_xOiHm_WMPF5bB-9rszkmDaUrqvsyjssDlYd08523a8Pt_Sbr9oPntVvfdvecsqKAo3gZjJ0GwwGJXqgZ9IcpXw1DkkcRojEm1ApRbwUMoCPy0SWKSUe-id0YfT-UKW_muN9JmA6kG9syEc3jMVWVL90RP2eDQ35FdOt6m9WXPl76xnj2ISrOl7X2K7itJqQ4zXJev87SuvrxB1fk85ixOXhZomuxU7jDPExQ9zXMPuBcfANXTczw7ucvPbBxXgyw39FC4yXHVTGmPheM5cVFxxBLqhvuSwypM7zsKIEjKlPRM8LWtbB7GX7IKWgVaaF6XYbiGYmSQuMtnDzJmBdgqtvr0iIIRAZQUQNNSm6QKm5LpTY231ciA2uqwcfKJBJVkrLb2iAXSUEn7SWstMQqrQbrI8l-QUTyF5nlyqqSMhQNE48bZGSZ62qwkZvHP99PWl9b9r70v4Jr8OJLs5182j86fAczns0MyY_fLcNUNrimFcZrWbqaO4qAs6e2s3slGE_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+rapid+damage+evaluation+for+life%E2%80%90cycle+seismic+assessment+of+regional+reinforced+concrete+bridges&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Xu%2C+Ji%E2%80%90Gang&rft.au=Feng%2C+De%E2%80%90Cheng&rft.au=Mangalathu%2C+Sujith&rft.au=Jeon%2C+Jong%E2%80%90Su&rft.date=2022-09-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=51&rft.issue=11&rft.spage=2730&rft.epage=2751&rft_id=info:doi/10.1002%2Feqe.3699&rft.externalDBID=10.1002%252Feqe.3699&rft.externalDocID=EQE3699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon