Initial value problems should not be associated to fractional model descriptions whatever the derivative definition used
The paper shows that the Caputo definition of fractional differentiation is problematic if it is used in the definition of a time fractional model and if initial conditions are taken into account. The demonstration is done using simple examples (or counterexamples). The analysis is extended to the R...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 10; pp. 11318 - 11329 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper shows that the Caputo definition of fractional differentiation is problematic if it is used in the definition of a time fractional model and if initial conditions are taken into account. The demonstration is done using simple examples (or counterexamples). The analysis is extended to the Riemann-Liouville and Grünwald-Letnikov definitions. These results thus question the validity of results produced in the field of time fractional model analysis in which initial conditions are involved. |
---|---|
AbstractList | The paper shows that the Caputo definition of fractional differentiation is problematic if it is used in the definition of a time fractional model and if initial conditions are taken into account. The demonstration is done using simple examples (or counterexamples). The analysis is extended to the Riemann-Liouville and Grünwald-Letnikov definitions. These results thus question the validity of results produced in the field of time fractional model analysis in which initial conditions are involved. |
Author | FARGES, Christophe SABATIER, Jocelyn |
Author_xml | – sequence: 1 givenname: Jocelyn surname: SABATIER fullname: SABATIER, Jocelyn – sequence: 2 givenname: Christophe surname: FARGES fullname: FARGES, Christophe |
BookMark | eNptkdtKxDAQhoMoeNo7HyAPYDWnJu2liIcFwRu9LtNkaiPdZkmyq769rS4i4tX8zPzzDcx_TPbHMCIhZ5xdyFqqyxXk_kIwwXVp9siRUEYWuq6q_V_6kCxSemVscgkljDoi78vRZw8D3cKwQbqOoR1wlWjqw2ZwdAyZtkghpWA9ZHQ0B9pFsNmHcdpaBYcDdZhs9Ou5l-hbP_m2GGnucZpEv4Xst7Ps_HwrjHST0J2Sgw6GhItdPSHPtzdP1_fFw-Pd8vrqobBCSFNoriXvuGKAQmnDGJY1YCeZ5srW2jhUEkTpurLiIGutWMklINjKcCOklCdk-c11AV6bdfQriB9NAN98NUJ8aSBmbwdsaqiqqtataplRExGMdqqUwGonbWXNxDr_ZtkYUorY_fA4a-YQmjmEZhfCZBd_7NZnmD-QI_jh_6VPcRmOlQ |
CitedBy_id | crossref_primary_10_1007_s12215_024_01175_4 crossref_primary_10_3390_fractalfract6100550 crossref_primary_10_3390_fractalfract8040201 crossref_primary_10_1016_j_aeue_2022_154293 crossref_primary_10_3390_fractalfract6030137 crossref_primary_10_3390_act13120534 crossref_primary_10_3390_s23167179 crossref_primary_10_3934_math_20231025 |
Cites_doi | 10.1103/PhysRevE.102.052102 10.1016/S0165-1684(03)00183-X 10.1016/j.matcom.2021.02.021 10.3390/fractalfract4010001 10.1016/j.aej.2021.03.008 10.3390/math6020016 10.1016/j.ijmecsci.2020.105992 10.3390/sym13061099 10.1016/j.camwa.2009.08.036 10.1177/1077546313481839 10.2298/TSCI160111018A 10.1155/2011/562494 10.1016/j.cnsns.2009.05.070 10.1186/s13662-015-0739-5 10.23919/ECC.2001.7076126 10.3390/fractalfract4030036 10.1016/j.physe.2009.09.006 10.3390/math8020196 10.1007/s11071-004-3756-6 10.1006/jmaa.2000.7194 10.1016/j.apnum.2019.01.004 10.1016/j.jare.2021.04.008 10.1016/j.aml.2018.05.013 10.3390/fractalfract4030040 10.1016/j.matcom.2021.05.018 10.1080/01969722.2020.1758470 10.1155/2014/238459 10.1016/j.cam.2018.02.030 10.1098/rspa.2020.0200 10.1016/j.jare.2020.04.004 10.1002/mma.7360 |
ContentType | Journal Article |
CorporateAuthor | Bordeaux University, IMS Laboratory, UMR 5218 CNRS, 351 Cours de la Libération, 33405 Talence -France |
CorporateAuthor_xml | – name: Bordeaux University, IMS Laboratory, UMR 5218 CNRS, 351 Cours de la Libération, 33405 Talence -France |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021657 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 11329 |
ExternalDocumentID | oai_doaj_org_article_9a88896b4b074df5a76d453a09d3c8c7 10_3934_math_2021657 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c2237-61631f140ae246700e59aef30614c967de43a25df581a39640513aeac87172333 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:02:36 EDT 2025 Tue Jul 01 03:56:49 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2237-61631f140ae246700e59aef30614c967de43a25df581a39640513aeac87172333 |
OpenAccessLink | https://doaj.org/article/9a88896b4b074df5a76d453a09d3c8c7 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9a88896b4b074df5a76d453a09d3c8c7 crossref_primary_10_3934_math_2021657 crossref_citationtrail_10_3934_math_2021657 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211001 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021657-31 key-10.3934/math.2021657-30 key-10.3934/math.2021657-19 key-10.3934/math.2021657-18 key-10.3934/math.2021657-11 key-10.3934/math.2021657-33 key-10.3934/math.2021657-10 key-10.3934/math.2021657-32 key-10.3934/math.2021657-13 key-10.3934/math.2021657-35 key-10.3934/math.2021657-12 key-10.3934/math.2021657-34 key-10.3934/math.2021657-15 key-10.3934/math.2021657-14 key-10.3934/math.2021657-36 key-10.3934/math.2021657-17 key-10.3934/math.2021657-16 key-10.3934/math.2021657-9 key-10.3934/math.2021657-20 key-10.3934/math.2021657-5 key-10.3934/math.2021657-6 key-10.3934/math.2021657-7 key-10.3934/math.2021657-8 key-10.3934/math.2021657-1 key-10.3934/math.2021657-2 key-10.3934/math.2021657-3 key-10.3934/math.2021657-4 key-10.3934/math.2021657-29 key-10.3934/math.2021657-22 key-10.3934/math.2021657-21 key-10.3934/math.2021657-24 key-10.3934/math.2021657-23 key-10.3934/math.2021657-26 key-10.3934/math.2021657-25 key-10.3934/math.2021657-28 key-10.3934/math.2021657-27 |
References_xml | – ident: key-10.3934/math.2021657-10 – ident: key-10.3934/math.2021657-12 – ident: key-10.3934/math.2021657-24 doi: 10.1103/PhysRevE.102.052102 – ident: key-10.3934/math.2021657-3 doi: 10.1016/S0165-1684(03)00183-X – ident: key-10.3934/math.2021657-34 doi: 10.1016/j.matcom.2021.02.021 – ident: key-10.3934/math.2021657-23 doi: 10.3390/fractalfract4010001 – ident: key-10.3934/math.2021657-35 doi: 10.1016/j.aej.2021.03.008 – ident: key-10.3934/math.2021657-16 doi: 10.3390/math6020016 – ident: key-10.3934/math.2021657-31 doi: 10.1016/j.ijmecsci.2020.105992 – ident: key-10.3934/math.2021657-28 doi: 10.3390/sym13061099 – ident: key-10.3934/math.2021657-7 doi: 10.1016/j.camwa.2009.08.036 – ident: key-10.3934/math.2021657-27 doi: 10.1177/1077546313481839 – ident: key-10.3934/math.2021657-19 doi: 10.2298/TSCI160111018A – ident: key-10.3934/math.2021657-26 – ident: key-10.3934/math.2021657-11 doi: 10.1155/2011/562494 – ident: key-10.3934/math.2021657-6 doi: 10.1016/j.cnsns.2009.05.070 – ident: key-10.3934/math.2021657-13 doi: 10.1186/s13662-015-0739-5 – ident: key-10.3934/math.2021657-2 doi: 10.23919/ECC.2001.7076126 – ident: key-10.3934/math.2021657-9 doi: 10.3390/fractalfract4030036 – ident: key-10.3934/math.2021657-30 doi: 10.1016/j.physe.2009.09.006 – ident: key-10.3934/math.2021657-18 doi: 10.3390/math8020196 – ident: key-10.3934/math.2021657-4 doi: 10.1007/s11071-004-3756-6 – ident: key-10.3934/math.2021657-14 doi: 10.1006/jmaa.2000.7194 – ident: key-10.3934/math.2021657-15 doi: 10.1016/j.apnum.2019.01.004 – ident: key-10.3934/math.2021657-32 doi: 10.1016/j.jare.2021.04.008 – ident: key-10.3934/math.2021657-21 doi: 10.1016/j.aml.2018.05.013 – ident: key-10.3934/math.2021657-1 – ident: key-10.3934/math.2021657-22 doi: 10.3390/fractalfract4030040 – ident: key-10.3934/math.2021657-33 doi: 10.1016/j.matcom.2021.05.018 – ident: key-10.3934/math.2021657-5 – ident: key-10.3934/math.2021657-20 doi: 10.1080/01969722.2020.1758470 – ident: key-10.3934/math.2021657-17 doi: 10.1155/2014/238459 – ident: key-10.3934/math.2021657-8 doi: 10.1016/j.cam.2018.02.030 – ident: key-10.3934/math.2021657-29 doi: 10.1098/rspa.2020.0200 – ident: key-10.3934/math.2021657-25 doi: 10.1016/j.jare.2020.04.004 – ident: key-10.3934/math.2021657-36 doi: 10.1002/mma.7360 |
SSID | ssj0002124274 |
Score | 2.1595004 |
Snippet | The paper shows that the Caputo definition of fractional differentiation is problematic if it is used in the definition of a time fractional model and if... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 11318 |
SubjectTerms | caputo definition grünwald-letnikov definition initial conditions memory riemann-liouville definition time fractional derivative |
Title | Initial value problems should not be associated to fractional model descriptions whatever the derivative definition used |
URI | https://doaj.org/article/9a88896b4b074df5a76d453a09d3c8c7 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT4QwEG7MnvRgfMb1lR70ZMgCLYUe1bhZTdaTm-yNtLTNmhjWAKv-fGcKEi7GizcCAzTTYR5h5vsIuXI6kdIVOohYYgIwCvikdCiDLIuUM6xQJsV55_mzmC340zJZDqi-sCeshQduFTeRCmo0KTTXEOyMS1QqDE-YCiU8KSv8HDnEvEExhT4YHDKHeqvtdGeS8Qnkf_jvIY4ERqJBDBpA9fuYMt0ju10ySG_bReyTLVsekJ15j6RaH5KvR-zuASFE5ba043-pab1CbmparhuqLVWdkq2hzZq6qp1WgLs80Q01tncONf1cKWQyqyi8Ba5Unt7sAw_da-kbuOimtuaILKYPL_ezoGNLCAoI8TjrJ1jkoF5SNuY4fGMTqaxjWPIVUqTGcqbiBFQI28CkgEwtYgr8LpRMacwYOyajcl3aE0K5UAaRBlWskCs91FlmZegEE4hiq-IxufnRX150UOLIaPGWQ0mB2s5R23mn7TG57qXfWwiNX-TucCt6GQS-9ifAHPLOHPK_zOH0Px5yRrZxTW3P3jkZNdXGXkDu0ehLb2bf55_Ytg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initial+value+problems+should+not+be+associated+to+fractional+model+descriptions+whatever+the+derivative+definition+used&rft.jtitle=AIMS+mathematics&rft.au=Jocelyn+SABATIER&rft.au=Christophe+FARGES&rft.date=2021-10-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=10&rft.spage=11318&rft.epage=11329&rft_id=info:doi/10.3934%2Fmath.2021657&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9a88896b4b074df5a76d453a09d3c8c7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |