From intermediate capture to functional cluster construction: Synthesis of silver clusters and their Br − /I − sensing applications
In this study, the controlled synthesis of highly stable Ag56 clusters was achieved using 4-vinylbenzoic acid (p-VBA) and tert-butyl mercaptan as ligands by accurately tuning reaction parameters such as temperature and solvent. Additionally, intermediates Ag20, Ag31, Ag32, along with the dimers of A...
Saved in:
Published in | Polyoxometalates Vol. 4; no. 2; p. 9140086 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Tsinghua University Press
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the controlled synthesis of highly stable Ag56 clusters was achieved using 4-vinylbenzoic acid (p-VBA) and tert-butyl mercaptan as ligands by accurately tuning reaction parameters such as temperature and solvent. Additionally, intermediates Ag20, Ag31, Ag32, along with the dimers of Ag31/Ag32, Ag30-bpbenz (bpbenz: 1,4-di(4-pyridyl)benzene), and Ag31-bpe (bpe: 1,2-bis(4-pyridyl)) were successfully captured. This series of nanoclusters exhibited a distinctive fluorescence aggregation-induced redshift phenomenon owing to the π–π interactions of the ligand. Additionally, the Ag56 nanocluster serves as a near-infrared fluorescence sensor for Br− and I−, with detection limits as low as 85 and 105 nM, respectively. This study offers new insights and methodologies for the synthesis of metal clusters and their applications in ion sensing. |
---|---|
AbstractList | In this study, the controlled synthesis of highly stable Ag56 clusters was achieved using 4-vinylbenzoic acid (p-VBA) and tert-butyl mercaptan as ligands by accurately tuning reaction parameters such as temperature and solvent. Additionally, intermediates Ag20, Ag31, Ag32, along with the dimers of Ag31/Ag32, Ag30-bpbenz (bpbenz: 1,4-di(4-pyridyl)benzene), and Ag31-bpe (bpe: 1,2-bis(4-pyridyl)) were successfully captured. This series of nanoclusters exhibited a distinctive fluorescence aggregation-induced redshift phenomenon owing to the π–π interactions of the ligand. Additionally, the Ag56 nanocluster serves as a near-infrared fluorescence sensor for Br− and I−, with detection limits as low as 85 and 105 nM, respectively. This study offers new insights and methodologies for the synthesis of metal clusters and their applications in ion sensing. |
Author | Zhang, Zhixun Feng, Cheng-Cheng Zhou, Lebing Yu, Xianyong Dai, Juefei Shi, Chuanhua Yang, Chao Zhang, Xueji Yang, Huayan |
Author_xml | – sequence: 1 givenname: Zhixun surname: Zhang fullname: Zhang, Zhixun – sequence: 2 givenname: Juefei surname: Dai fullname: Dai, Juefei – sequence: 3 givenname: Cheng-Cheng surname: Feng fullname: Feng, Cheng-Cheng – sequence: 4 givenname: Chuanhua surname: Shi fullname: Shi, Chuanhua – sequence: 5 givenname: Lebing surname: Zhou fullname: Zhou, Lebing – sequence: 6 givenname: Xianyong surname: Yu fullname: Yu, Xianyong – sequence: 7 givenname: Chao surname: Yang fullname: Yang, Chao – sequence: 8 givenname: Xueji surname: Zhang fullname: Zhang, Xueji – sequence: 9 givenname: Huayan surname: Yang fullname: Yang, Huayan |
BookMark | eNo9kUlOAzEQRS0EEmE4ADtfIMFDu9vNDiKGSEFBAtaWhzIYdezI7iBxAlhzRE5CJlj90q-vt3lHaD-mCAidUTJitWjb84fZ_YgRJkYtrQiR9R4asFY0w1YQvv93S0YP0Wkpb4QQ1jLBGBmgz5uc5jjEHvIcXNA9YKsX_TID7hP2y2j7kKLusO2WZTXCNsXS5-WmvsCPH7F_hRIKTh6X0L2vF9tlwTo6vPqGjK8y_vn6xueTTRSIJcQXrBeLLli9JpUTdOB1V-B0l8fo-eb6aXw3nM5uJ-PL6dAyxush9Z5z4ZjkppaVEZZIAlYCmJrVoBtvuWk0tYI1ovGmaoyjurWeiEo6Zxk_RpMt1yX9phY5zHX-UEkHtSlSflE698F2oIwBR4yVVHpdkdYbLQyvTOUYNA5cs2LRLcvmVEoG_8-jRG3EqJUYtRajdmL4L1RRiGw |
Cites_doi | 10.1016/j.cjsc.2023.100154 10.1016/j.bioactmat.2020.11.006 10.1039/D0DT03879B 10.1016/S0140-6736(08)61005-3 10.1002/anie.202007122 10.1021/jacs.2c06093 10.1021/jacs.1c01799 10.1039/b201116f 10.1038/nrendo.2013.251 10.1038/nchem.2718 10.1021/ja108684m 10.1002/agt2.508 10.1002/advs.202000738 10.1002/1521-3773(20021018)41:20<3818::AID-ANIE3818>3.0.CO;2-R 10.1039/C8CS00800K 10.1038/s41467-022-29370-w 10.1039/D3SC02793G 10.1002/anie.201511765 10.1038/s41467-020-17200-w 10.1002/anie.201807548 10.1002/anie.200602709 10.1039/C9EN00138G 10.1038/s41467-018-04499-9 10.1016/j.snb.2016.08.151 10.1038/s41565-024-01612-6 10.1039/D0TC01983F 10.1016/j.bios.2017.01.005 10.1039/c3nj00645j 10.1021/acs.inorgchem.7b01326 10.1039/C9NJ05076K 10.1002/anie.202421656 10.1007/s00259-024-06967-5 10.1038/s41467-018-06755-4 10.1002/anie.202100006 10.1007/s00216-020-02530-x 10.1002/ejic.200300392 10.1002/chem.200600566 10.1021/jacs.7b12136 10.1039/D2SC04204E 10.6023/A20070317 10.1097/01.ccm.0000457553.95006.19 10.1016/j.snb.2018.01.107 10.1002/anie.200501414 10.1021/acs.analchem.2c03782 10.1021/jacs.9b02486 10.1016/j.bios.2019.04.057 10.1038/s41467-023-41050-x 10.1039/D2CC03120E 10.1002/anie.200460052 10.1021/jacs.3c00321 10.1002/anie.201702522 10.1002/anie.201906425 10.1039/D2SC02786K 10.1002/anie.200352351 10.1039/D2SC04390D 10.1021/jacs.2c05881 10.1016/j.scib.2022.01.014 10.1039/D2SC06436G 10.1002/anie.202004268 10.1021/jacs.0c05199 10.1039/D0CS01393E 10.1002/anie.202412553 10.1021/acs.chemrev.5b00263 10.1002/anie.200704249 10.1002/anie.202314515 10.1021/jacs.9b05952 10.1021/acs.analchem.4c00396 10.1039/C9CC03533H |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.26599/POM.2025.9140086 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2957-9503 |
ExternalDocumentID | oai_doaj_org_article_bbed0bc818fa409fba5b34b4d2e7ded7 10_26599_POM_2025_9140086 |
GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c2236-1ff335d283b684b5c080ec8eeb626ea7fc3b7a1c52757fb47bd1a9cf0548ddc23 |
IEDL.DBID | DOA |
ISSN | 2957-9821 |
IngestDate | Wed Aug 27 00:43:35 EDT 2025 Tue Jul 01 05:31:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2236-1ff335d283b684b5c080ec8eeb626ea7fc3b7a1c52757fb47bd1a9cf0548ddc23 |
ORCID | 0009-0009-1444-882X 0000-0002-8954-1414 0000-0002-0035-3821 0009-0000-8189-5675 |
OpenAccessLink | https://doaj.org/article/bbed0bc818fa409fba5b34b4d2e7ded7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bbed0bc818fa409fba5b34b4d2e7ded7 crossref_primary_10_26599_POM_2025_9140086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Polyoxometalates |
PublicationYear | 2025 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | S. Li (ref29) 2018; 57 R. W. Huang (ref38) 2017; 9 A. K. Das (ref16) 2022; 13 Y. Jin (ref49) 2021; 50 L. J. Liu (ref55) 2021; 50 ref10 J. S. Yang (ref20) 2020; 59 S. Hong (ref41) 2024; 19 O. Crespo (ref7) 2007; 13 S. Biswas (ref17) 2022; 13 H. Y. Chen (ref43) 2024; 63 Y. J. Kong (ref39) 2022; 144 M. Cao (ref25) 2019; 141 S. Li (ref30) 2018; 140 X. D. Tang (ref58) 2021; 6 M. J. Alhilaly (ref26) 2019; 141 A. M. Leung (ref51) 2014; 10 Z. Wang (ref27) 2018; 9 J. L. Jin (ref32) 2017; 56 F. Pena-Pereira (ref53) 2018; 261 Z. A. Nan (ref61) 2019; 55 Z. Wang (ref28) 2018; 9 Z. Lei (ref31) 2017; 56 K. L. Tang (ref1) 2002 K. L. Tang (ref4) 2004; 2004 K. J. Mossburg (ref45) 2025; 52 D. He (ref47) 2019; 6 S. Chitsaz (ref6) 2006; 45 S. Yuan (ref62) 2013; 37 X. Y. Dong (ref23) 2020; 11 Z. H. Li (ref59) 2017; 96 Y. L. Shen (ref64) 2020; 78 Y. H. Feng (ref63) 2020; 44 L. L. Fu (ref52) 2017; 240 Z. Wang (ref14) 2022; 13 S. Li (ref21) 2020; 7 W. T. Dou (ref56) 2022; 67 X. J. Wang (ref2) 2002; 41 M. H. Zhao (ref19) 2020; 59 M. D. Li (ref40) 2022; 94 J. Mei (ref67) 2015; 115 J. Q. Chen (ref60) 2020; 412 H. Liu (ref33) 2016; 55 X. Kang (ref68) 2019; 48 X. Liu (ref66) 2023; 42 M. B. Zimmermann (ref50) 2008; 372 D. Fenske (ref5) 2005; 44 Z. Wang (ref11) 2023; 14 Z. Wang (ref34) 2024; 63 J. Y. Wang (ref48) 2024; 5 Y. Z. Fan (ref54) 2020; 8 R. Ahlrichs (ref9) 2004; 43 C. H. Gong (ref44) 2022; 58 G. Li (ref36) 2010; 132 S. S. Zhang (ref37) 2022; 144 B. Li (ref35) 2014; 20 B. W. Zhang (ref46) 2024; 96 Y. Zeng (ref65) 2021; 143 W. M. He (ref18) 2021; 60 D. Fenske (ref3) 2004; 43 C. E. Anson (ref8) 2008; 47 K. Sheng (ref12) 2023; 145 Y. Q. Tian (ref42) 2023; 14 R. K. Gupta (ref13) 2023; 14 X. M. Luo (ref15) 2022; 13 M. F. Cai (ref57) 2019; 137 M. Ueda (ref24) 2019; 58 M. Y. Gao (ref22) 2020; 142 |
References_xml | – volume: 42 start-page: 100154 year: 2023 ident: ref66 article-title: Surface ligand engineering on the optical properties of atomically precise AuAg nanoclusters publication-title: Chin. J. Struct. Chem. doi: 10.1016/j.cjsc.2023.100154 – volume: 6 start-page: 1541 year: 2021 ident: ref58 article-title: Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2020.11.006 – volume: 50 start-page: 1697 year: 2021 ident: ref55 article-title: A terbium(III) lanthanide-organic framework as a selective and sensitive iodide/bromide sensor in aqueous medium publication-title: Dalton Trans. doi: 10.1039/D0DT03879B – volume: 372 start-page: 1251 year: 2008 ident: ref50 article-title: Iodine-deficiency disorders publication-title: Lancet doi: 10.1016/S0140-6736(08)61005-3 – volume: 59 start-page: 20031 year: 2020 ident: ref19 article-title: Ambient chemical fixation of CO2 using a robust Ag27 cluster-based two-dimensional metal-organic framework publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202007122 – volume: 144 start-page: 18305 year: 2022 ident: ref37 article-title: Sulfide boosting near-unity photoluminescence quantum yield of silver nanocluster publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c06093 – volume: 143 start-page: 9405 year: 2021 ident: ref65 article-title: Impact of ligands on structural and optical properties of Ag29 nanoclusters publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c01799 – start-page: 1024 year: 2002 ident: ref1 article-title: Synthesis and crystal structure of a novel pentaconta-nuclear silver anionic cluster complex [HNEt3]4[Ag50S7(SC6H4But-4)40]·2CS2·6C3H6O publication-title: Chem. Commun. doi: 10.1039/b201116f – volume: 10 start-page: 136 year: 2014 ident: ref51 article-title: Consequences of excess iodine publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2013.251 – volume: 9 start-page: 689 year: 2017 ident: ref38 article-title: Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework publication-title: Nat. Chem. doi: 10.1038/nchem.2718 – volume: 132 start-page: 17678 year: 2010 ident: ref36 article-title: Luminescent molecular Ag−S nanocluster [Ag62S13(SBut)32](BF4)4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja108684m – volume: 5 start-page: e508 year: 2024 ident: ref48 article-title: Engineering intelligent chiral silver cluster-assembled materials for temperature-triggered dynamic circularly polarized luminescence publication-title: Aggregate doi: 10.1002/agt2.508 – volume: 7 start-page: 2000738 year: 2020 ident: ref21 article-title: Stepwise achievement of circularly polarized luminescence on atomically precise silver clusters publication-title: Adv. Sci. doi: 10.1002/advs.202000738 – volume: 41 start-page: 3818 year: 2002 ident: ref2 article-title: Syntheses and crystal structures of the new Ag–S clusters [Ag70S16(SPh)34(PhCO2)4(triphos)4] and [Ag188S94(PR3)30] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20021018)41:20<3818::AID-ANIE3818>3.0.CO;2-R – volume: 48 start-page: 2422 year: 2019 ident: ref68 article-title: Tailoring the photoluminescence of atomically precise nanoclusters publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00800K – volume: 13 start-page: 1802 year: 2022 ident: ref14 article-title: Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines publication-title: Nat. Commun. doi: 10.1038/s41467-022-29370-w – volume: 14 start-page: 10212 year: 2023 ident: ref42 article-title: Stepwise assembly of thiacalix[4]arene-protected Ag/Ti bimetallic nanoclusters: Accurate identification of catalytic Ag sites in CO2 electroreduction publication-title: Chem. Sci. doi: 10.1039/D3SC02793G – volume: 55 start-page: 3699 year: 2016 ident: ref33 article-title: Acid-base-triggered structural transformation of a polyoxometalate core inside a dodecahedrane-like silver thiolate shell publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201511765 – volume: 11 start-page: 3678 year: 2020 ident: ref23 article-title: Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework publication-title: Nat. Commun. doi: 10.1038/s41467-020-17200-w – volume: 57 start-page: 12775 year: 2018 ident: ref29 article-title: Smart transformation of a polyhedral oligomeric silsesquioxane shell controlled by thiolate silver(I) nanocluster core in cluster@clusters dendrimers publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201807548 – volume: 45 start-page: 8055 year: 2006 ident: ref6 article-title: Silver chalcogenide clusters with dimethylanilinomercapto ligands: Syntheses and crystal structures of [Ag65S13(SC6H4NMe2)39(dppm)5], [Ag76Se13(SC6H4NMe2)50(PPh3)65], and [Ag88Se12(SC6H4NMe2)63(PPh3)6] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200602709 – volume: 6 start-page: 1674 year: 2019 ident: ref47 article-title: Silver sulfide nanoparticles in aqueous environments: Formation, transformation and toxicity publication-title: Environ. Sci.: Nano doi: 10.1039/C9EN00138G – volume: 9 start-page: 2094 year: 2018 ident: ref28 article-title: Trapping an octahedral Ag6 kernel in a seven-fold symmetric Ag56 nanowheel publication-title: Nat. Commun. doi: 10.1038/s41467-018-04499-9 – volume: 240 start-page: 315 year: 2017 ident: ref52 article-title: Simultaneous determination of iodide and bromide using a novel LSPR fluorescent Ag nanocluster probe publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2016.08.151 – volume: 19 start-page: 810 year: 2024 ident: ref41 article-title: A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-024-01612-6 – volume: 8 start-page: 11517 year: 2020 ident: ref54 article-title: A ratiometric optical strategy for bromide and iodide ion sensing based on target-induced competitive coordination of a metal-organic nanosystem publication-title: J. Mater. Chem. C doi: 10.1039/D0TC01983F – volume: 96 start-page: 44 year: 2017 ident: ref59 article-title: A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.01.005 – volume: 37 start-page: 2973 year: 2013 ident: ref62 article-title: A temperature-sensitive luminescent Ag20 nanocluster templated by carbonate in situ generated from atmospheric CO2 fixation publication-title: New J. Chem. doi: 10.1039/c3nj00645j – volume: 56 start-page: 10412 year: 2017 ident: ref32 article-title: Structure-directing role of phosphonate in the synthesis of high-nuclearity silver(I) sulfide-ethynide-thiolate clusters publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b01326 – volume: 44 start-page: 663 year: 2020 ident: ref63 article-title: A stably discrete 31-nuclearity silver(I) thiolate nanocluster luminescent thermometer supported by DMF auxiliary ligands publication-title: New J. Chem. doi: 10.1039/C9NJ05076K – ident: ref10 publication-title: null doi: 10.1002/anie.202421656 – volume: 52 start-page: 1177 year: 2025 ident: ref45 article-title: Towards the clinical translation of a silver sulfide nanoparticle contrast agent: Large scale production with a highly parallelized microfluidic chip publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-024-06967-5 – volume: 9 start-page: 4407 year: 2018 ident: ref27 article-title: Deciphering synergetic core-shell transformation from [Mo6O22@Ag44] to [Mo8O28@Ag50] publication-title: Nat. Commun. doi: 10.1038/s41467-018-06755-4 – volume: 60 start-page: 8505 year: 2021 ident: ref18 article-title: Ultrafast size expansion and turn-on luminescence of atomically precise silver clusters by hydrogen sulfide publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202100006 – volume: 412 start-page: 2893 year: 2020 ident: ref60 article-title: Label-free iodide detection using functionalized carbon nanodots as fluorescent probes publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-020-02530-x – volume: 2004 start-page: 78 year: 2004 ident: ref4 article-title: Synthesis and crystal structure of {[HNEt3]2n[Ag8Ag4/2(SC6H4tBu-4)12]n·nC2H5OH} and its reaction product with CS2 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200300392 – volume: 13 start-page: 235 year: 2007 ident: ref7 article-title: Highly luminescent gold(I)-silver(I) and gold(I)-copper(I) chalcogenide clusters publication-title: Chem.—Eur. J. doi: 10.1002/chem.200600566 – volume: 140 start-page: 594 year: 2018 ident: ref30 article-title: Atom-precise modification of silver(I) thiolate cluster by shell ligand substitution: A new approach to generation of cluster functionality and chirality publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12136 – volume: 13 start-page: 11110 year: 2022 ident: ref15 article-title: Snapshots of key intermediates unveiling the growth from silver ions to Ag70 nanoclusters publication-title: Chem. Sci. doi: 10.1039/D2SC04204E – volume: 78 start-page: 1255 year: 2020 ident: ref64 article-title: Formation of spindle-like Ag58 cluster induced by isomerization of [Ag14] publication-title: Acta Chim. Sin. doi: 10.6023/A20070317 – volume: 20 start-page: 12416 year: 2014 ident: ref35 article-title: Thermochromic luminescent nest-like silver thiolate cluster publication-title: Chem.—Eur. J. doi: 10.1097/01.ccm.0000457553.95006.19 – volume: 261 start-page: 481 year: 2018 ident: ref53 article-title: Ratiometric detection of total bromine in E-waste polymers by colloidal gold-based headspace single-drop microextraction and microvolume spectrophotometry publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2018.01.107 – volume: 44 start-page: 5242 year: 2005 ident: ref5 article-title: Syntheses and crystal structures of [Ag123S35(StBu)50] and [Ag344S124(StBu)96] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200501414 – volume: 94 start-page: 16427 year: 2022 ident: ref40 article-title: A reciprocal-amplifiable fluorescence sensing platform via replicated hybridization chain reaction for hosting concatenated multi-Ag nanoclusters as signal reporter publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03782 – volume: 141 start-page: 9585 year: 2019 ident: ref26 article-title: Assembly of atomically precise silver nanoclusters into nanocluster-based frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02486 – volume: 137 start-page: 148 year: 2019 ident: ref57 article-title: A ratiometric fluorescent assay for the detection and bioimaging of alkaline phosphatase based on near infrared Ag2S quantum dots and calcein publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.04.057 – volume: 14 start-page: 5295 year: 2023 ident: ref11 article-title: A route to metalloligands consolidated silver nanoclusters by grafting thiacalix[4]arene onto polyoxovanadates publication-title: Nat. Commun. doi: 10.1038/s41467-023-41050-x – volume: 58 start-page: 9806 year: 2022 ident: ref44 article-title: Phosphate anion-induced silver-chalcogenide cluster-based metal organic frameworks as dual-functional catalysts for detoxifying chemical warfare agent simulants publication-title: Chem. Commun. doi: 10.1039/D2CC03120E – volume: 43 start-page: 3823 year: 2004 ident: ref9 article-title: Synthesis and structure of [Ag26In18S36Cl6(dppm)10(thf)4][InCl4(thf)]2-A combined approach of theory and experiment publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200460052 – volume: 145 start-page: 10595 year: 2023 ident: ref12 article-title: Solvent-mediated separation and reversible transformation of 1D supramolecular polymorphs built from [W10O32]4− templated 48-nuclei silver(I) cluster publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c00321 – volume: 56 start-page: 7117 year: 2017 ident: ref31 article-title: Full protection of intensely luminescent gold(I)-silver(I) cluster by phosphine ligands and inorganic anions publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702522 – volume: 58 start-page: 14673 year: 2019 ident: ref24 article-title: Structurally precise silver sulfide nanoclusters protected by rhodium(III) octahedra with aminothiolates publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201906425 – volume: 13 start-page: 8355 year: 2022 ident: ref16 article-title: An atomically precise silver nanocluster for artificial light-harvesting system through supramolecular functionalization publication-title: Chem. Sci. doi: 10.1039/D2SC02786K – volume: 43 start-page: 305 year: 2004 ident: ref3 article-title: Syntheses and crystal structures of the Ag–S cluster compounds [Ag70S20(SPh)28(dppm)10] (CF3CO2)2 and [Ag262S100(StBu)62(dppb)6] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200352351 – volume: 13 start-page: 11394 year: 2022 ident: ref17 article-title: Template-assisted alloying of atom-precise silver nanoclusters: A new approach to generate cluster functionality publication-title: Chem. Sci. doi: 10.1039/D2SC04390D – volume: 144 start-page: 19739 year: 2022 ident: ref39 article-title: Achiral-core-metal change in isomorphic enantiomeric Ag12Ag32 and Au12Ag32 clusters triggers circularly polarized phosphorescence publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c05881 – volume: 67 start-page: 853 year: 2022 ident: ref56 article-title: Fluorescent probes for the detection of disease-associated biomarkers publication-title: Sci. Bull. doi: 10.1016/j.scib.2022.01.014 – volume: 14 start-page: 1138 year: 2023 ident: ref13 article-title: Regulating the assembly and expansion of the silver cluster from the Ag37 to Ag46 nanowheel driven by heteroanions publication-title: Chem. Sci. doi: 10.1039/D2SC06436G – volume: 59 start-page: 11898 year: 2020 ident: ref20 article-title: Extra silver atom triggers room-temperature photoluminescence in atomically precise radarlike silver clusters publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202004268 – volume: 142 start-page: 12784 year: 2020 ident: ref22 article-title: Tetrahedral geometry induction of stable Ag–Ti nanoclusters by flexible trifurcate TiL3 metalloligand publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05199 – volume: 50 start-page: 2297 year: 2021 ident: ref49 article-title: Shell engineering to achieve modification and assembly of atomically-precise silver clusters publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01393E – volume: 63 start-page: e202412553 year: 2024 ident: ref43 article-title: Integration of plasmonic Ag(I) clusters and Fe(II) porphyrinates into metal-organic frameworks for efficient photocatalytic CO2 reduction coupling with photosynthesis of pure H2O2 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202412553 – volume: 115 start-page: 11718 year: 2015 ident: ref67 article-title: Aggregation-induced emission: Together we shine, united we soar! publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00263 – volume: 47 start-page: 1326 year: 2008 ident: ref8 article-title: Synthesis and crystal structures of the ligand-stabilized silver chalcogenide clusters [Ag154Se77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128(StC5H11)96], and [Ag490S188(StC5H11)114] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200704249 – volume: 63 start-page: e202314515 year: 2024 ident: ref34 article-title: Three in one: Three different molybdates trapped in a thiacalix[4]arene protected Ag72 nanocluster for structural transformation and photothermal conversion publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202314515 – volume: 141 start-page: 14505 year: 2019 ident: ref25 article-title: Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05952 – volume: 96 start-page: 5029 year: 2024 ident: ref46 article-title: Chameleon-like response mechanism of gold-silver bimetallic nanoclusters stimulated by sulfur ions and their application in visual fluorescence sensing publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c00396 – volume: 55 start-page: 6771 year: 2019 ident: ref61 article-title: Monitoring the growth of Ag–S clusters through crystallization of intermediate clusters publication-title: Chem. Commun. doi: 10.1039/C9CC03533H |
SSID | ssj0002925220 |
Score | 2.2929587 |
Snippet | In this study, the controlled synthesis of highly stable Ag56 clusters was achieved using 4-vinylbenzoic acid (p-VBA) and tert-butyl mercaptan as ligands by... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 9140086 |
SubjectTerms | aggregation-induced redshift halide ion sensing ligand-controlled synthesis near-infrared fluorescence silver nanoclusters |
Title | From intermediate capture to functional cluster construction: Synthesis of silver clusters and their Br − /I − sensing applications |
URI | https://doaj.org/article/bbed0bc818fa409fba5b34b4d2e7ded7 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27SsRAFB3EykYUFdcXU1gJcTfzSsZOxUWFVUEX7MLceYigiWzWwt7C2k_0S7yT7Go6G5sUYQjDuUnuua8zhOzjNyRVCDLhJueJsF4kIIROrGAgjBrwkMbh5NGVOh-Ly3t53znqK_aEtfLALXB9AO8GYNGvBIOxSAAjgQsQjvnMedfMkaPP6wRT8R_MNENiERMsTMss0TlL25ImU1Lr_s31CENDJg81xheDOEfdcUod7f7GyQxXyPKMHdLjdlerZMGXa-R9OKmeadR1mDRzHlNPrXmJmX86rWh0TG0-j9qn1yh7QG31Kwt7RG_fSiR59WNNq0Drx9gJPV9ZU1M62tQK6Mnk6-Ozf4EXWsem9vKBdovb62Q8PLs7PU9mhyckFj2-StIQOJcO2QOoXICMiuLe5t4DhjDeZMFyyExqJctkFkBk4FKjbUAKlztnGd8gi2VV-k1CuTMKjLWqVZdThjFgAxl4Zoz1qeiRgzl6xUurkVFgbNFAXSDURYS6mEHdIycR35-FUd66uYFGL2ZGL_4y-tZ_PGSbLMWNtX1fO2QRDeN3kWFMYa95mb4Ba5zT5A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+intermediate+capture+to+functional+cluster+construction%3A+Synthesis+of+silver+clusters+and+their+Br+%E2%88%92+%2FI+%E2%88%92+sensing+applications&rft.jtitle=Polyoxometalates&rft.au=Zhang%2C+Zhixun&rft.au=Dai%2C+Juefei&rft.au=Feng%2C+Cheng-Cheng&rft.au=Shi%2C+Chuanhua&rft.date=2025-06-01&rft.issn=2957-9821&rft.eissn=2957-9503&rft.volume=4&rft.issue=2&rft.spage=9140086&rft_id=info:doi/10.26599%2FPOM.2025.9140086&rft.externalDBID=n%2Fa&rft.externalDocID=10_26599_POM_2025_9140086 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2957-9821&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2957-9821&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2957-9821&client=summon |