Robust point‐to‐point iterative learning control for constrained systems: A minimum energy approach
Iterative learning control (ILC) is a high performance control scenario that is widely applied to systems that repeat a given task or operation defined over a finite duration, and has been introduced to point‐to‐point motion tasks in existing work. However, its design degree of freedom has not been...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 32; no. 18; pp. 10139 - 10161 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iterative learning control (ILC) is a high performance control scenario that is widely applied to systems that repeat a given task or operation defined over a finite duration, and has been introduced to point‐to‐point motion tasks in existing work. However, its design degree of freedom has not been fully utilized to optimize performance beyond tracking accuracy in constrained conditions. The framework of point‐to‐point ILC in this article is extended within discrete linear time‐invariant (LTI) system, so as to take the tracking time instants of desired positions as changing variables. Therefore, it is possible to achieve the objective of minimizing energy while maintaining the required tracking accuracy. The multiobjective optimization problem is divided into two sub‐problems, which are solved with an iterative algorithm composed of norm‐optimal ILC approach as well as the coordinate descend method. Furthermore, the impact of model uncertainty on algorithm performance is also considered, and the iterative algorithm is further extended to capture constrained systems. The algorithm is robust to the model uncertainty and has a certain robustness to output disturbances. Finally, the validity of the proposed algorithm is verified by a twin rotor aerodynamic system (TRAS) model. |
---|---|
AbstractList | Iterative learning control (ILC) is a high performance control scenario that is widely applied to systems that repeat a given task or operation defined over a finite duration, and has been introduced to point‐to‐point motion tasks in existing work. However, its design degree of freedom has not been fully utilized to optimize performance beyond tracking accuracy in constrained conditions. The framework of point‐to‐point ILC in this article is extended within discrete linear time‐invariant (LTI) system, so as to take the tracking time instants of desired positions as changing variables. Therefore, it is possible to achieve the objective of minimizing energy while maintaining the required tracking accuracy. The multiobjective optimization problem is divided into two sub‐problems, which are solved with an iterative algorithm composed of norm‐optimal ILC approach as well as the coordinate descend method. Furthermore, the impact of model uncertainty on algorithm performance is also considered, and the iterative algorithm is further extended to capture constrained systems. The algorithm is robust to the model uncertainty and has a certain robustness to output disturbances. Finally, the validity of the proposed algorithm is verified by a twin rotor aerodynamic system (TRAS) model. |
Author | Chen, Yiyang Tao, Hongfeng Paszke, Wojciech Zhou, Chenhui Stojanovic, Vladimir |
Author_xml | – sequence: 1 givenname: Chenhui surname: Zhou fullname: Zhou, Chenhui organization: Jiangnan University – sequence: 2 givenname: Hongfeng surname: Tao fullname: Tao, Hongfeng organization: Jiangnan University – sequence: 3 givenname: Yiyang orcidid: 0000-0001-9960-9040 surname: Chen fullname: Chen, Yiyang email: yychen90@suda.edu.cn organization: Soochow University – sequence: 4 givenname: Vladimir orcidid: 0000-0002-6005-2086 surname: Stojanovic fullname: Stojanovic, Vladimir email: vladostojanovic@mts.rs organization: Robotics and Fluid Technique, University of Kragujevac – sequence: 5 givenname: Wojciech surname: Paszke fullname: Paszke, Wojciech organization: University of Zielona Góra |
BookMark | eNp1kMtKAzEUhoNUsK2CjxBw42ZqJslMG3eleIOiUHQ9ZHJpU2aSmqRKdz6Cj-Cz-Cg-iWnrSnRzLpzv_Ifz90DHOqsAOM3RIEcIX3grBiUp6AHo5oixLMeEdbY1ZdmIYXIEeiEsEUozTLtgMXP1OkS4csbGr7f36FLYNdBE5Xk0Lwo2intr7BwKZ6N3DdTOf36kJkTPjVUShk2Iqg2XcAxbY027bqGyys83kK9W3nGxOAaHmjdBnfzkPni6vnqc3GbTh5u7yXiaCYwJzfSwJpSXXIyozmvFay4JywvJtMaSDakkw7IeSVHgkuFCEoHyUpZKFoIphbQmfXC2101nn9cqxGrp1t6mkxUeEkoZSwqJGuwp4V0IXulKmJie3f7HTVPlqNq6WSU3q62baeH818LKm5b7zV9otkdfTaM2_3LV7H6y478Bvw6LSQ |
CitedBy_id | crossref_primary_10_1016_j_engappai_2024_107859 crossref_primary_10_1109_JAS_2023_124155 crossref_primary_10_1016_j_conengprac_2023_105830 crossref_primary_10_1016_j_ins_2023_119808 crossref_primary_10_1109_TASE_2024_3376427 crossref_primary_10_1007_s00034_023_02385_4 crossref_primary_10_1016_j_conengprac_2023_105714 crossref_primary_10_1007_s40747_023_00980_1 crossref_primary_10_1007_s10710_024_09493_3 crossref_primary_10_1007_s40747_023_01178_1 crossref_primary_10_1109_TII_2024_3390444 crossref_primary_10_1007_s40747_024_01599_6 crossref_primary_10_1109_TASE_2024_3365813 crossref_primary_10_1007_s00138_023_01447_6 crossref_primary_10_1007_s40747_023_01155_8 crossref_primary_10_1016_j_neunet_2023_03_037 crossref_primary_10_1007_s00170_023_12456_0 crossref_primary_10_1007_s40747_023_00974_z crossref_primary_10_1007_s11063_024_11649_2 crossref_primary_10_1016_j_jfranklin_2024_107112 crossref_primary_10_1016_j_knosys_2023_111101 crossref_primary_10_1007_s10846_023_01862_x crossref_primary_10_1016_j_ins_2024_120378 crossref_primary_10_1016_j_isatra_2023_09_020 crossref_primary_10_1109_JAS_2023_123960 crossref_primary_10_1007_s10846_024_02050_1 crossref_primary_10_1007_s13042_023_01792_y crossref_primary_10_1016_j_engappai_2023_105897 crossref_primary_10_1016_j_patrec_2024_06_027 crossref_primary_10_1002_rob_22235 crossref_primary_10_1016_j_ins_2023_119862 crossref_primary_10_1002_oca_3198 crossref_primary_10_1007_s40747_023_01246_6 crossref_primary_10_1016_j_conengprac_2024_105854 crossref_primary_10_1016_j_conengprac_2024_105852 crossref_primary_10_1016_j_engappai_2024_109142 crossref_primary_10_1007_s10846_023_01831_4 crossref_primary_10_1007_s40747_023_01131_2 crossref_primary_10_1007_s10846_023_01892_5 crossref_primary_10_1007_s00034_023_02455_7 crossref_primary_10_1016_j_patcog_2023_109990 crossref_primary_10_1007_s00170_023_12515_6 crossref_primary_10_1016_j_knosys_2024_111614 crossref_primary_10_1007_s40747_023_01192_3 crossref_primary_10_1007_s10846_023_01957_5 crossref_primary_10_1016_j_engappai_2023_107601 crossref_primary_10_1016_j_conengprac_2024_105847 crossref_primary_10_1016_j_conengprac_2024_105845 crossref_primary_10_1007_s40747_023_01120_5 crossref_primary_10_1016_j_eswa_2023_121948 crossref_primary_10_1007_s10846_023_01938_8 crossref_primary_10_1016_j_neucom_2024_127643 crossref_primary_10_1109_TASE_2023_3306807 crossref_primary_10_1016_j_ins_2023_01_124 crossref_primary_10_1007_s40747_023_01283_1 crossref_primary_10_1007_s40747_024_01503_2 crossref_primary_10_1007_s00521_023_09134_3 crossref_primary_10_1007_s40747_023_01144_x crossref_primary_10_1016_j_cie_2023_109764 crossref_primary_10_1016_j_ins_2023_02_080 crossref_primary_10_1007_s40747_023_01243_9 crossref_primary_10_1016_j_engappai_2023_106848 crossref_primary_10_1007_s40747_024_01638_2 crossref_primary_10_1016_j_neunet_2023_04_042 crossref_primary_10_1016_j_neucom_2023_126283 crossref_primary_10_1016_j_neucom_2023_127130 crossref_primary_10_1007_s10846_023_02004_z crossref_primary_10_1016_j_ins_2023_119579 crossref_primary_10_1007_s40747_024_01529_6 crossref_primary_10_1016_j_ins_2023_119455 crossref_primary_10_1016_j_patrec_2024_02_019 crossref_primary_10_1007_s11071_024_10418_z crossref_primary_10_1016_j_engappai_2023_106859 crossref_primary_10_1016_j_conengprac_2023_105803 crossref_primary_10_1109_JAS_2023_123828 crossref_primary_10_1016_j_engappai_2023_107398 crossref_primary_10_1016_j_engappai_2023_107035 crossref_primary_10_1016_j_ins_2024_121026 crossref_primary_10_1109_TASE_2024_3362975 crossref_primary_10_1016_j_engappai_2023_107519 crossref_primary_10_1007_s40747_023_01241_x crossref_primary_10_1016_j_conengprac_2023_105731 crossref_primary_10_1007_s10846_023_02022_x crossref_primary_10_1007_s40747_024_01385_4 crossref_primary_10_1007_s40747_023_01110_7 crossref_primary_10_1016_j_ins_2025_122086 crossref_primary_10_1016_j_neucom_2023_126986 crossref_primary_10_1016_j_ins_2024_120821 crossref_primary_10_1016_j_ins_2024_120825 crossref_primary_10_1016_j_enganabound_2024_03_019 crossref_primary_10_1007_s40747_024_01483_3 crossref_primary_10_1016_j_engappai_2023_107767 crossref_primary_10_1016_j_engappai_2024_108361 crossref_primary_10_1007_s10846_023_02033_8 crossref_primary_10_1007_s10845_023_02249_3 crossref_primary_10_1016_j_ins_2024_120396 crossref_primary_10_1016_j_ins_2023_119672 crossref_primary_10_1016_j_ins_2024_120314 crossref_primary_10_1016_j_neucom_2023_126293 |
Cites_doi | 10.1109/TIE.2016.2613498 10.1016/j.conengprac.2012.01.003 10.22581/muet1982.2101.16 10.1016/j.mechatronics.2019.02.005 10.1080/00207179.2011.574236 10.1109/JAS.2018.7511123 10.1109/TCST.2010.2040476 10.1016/j.mechatronics.2014.07.003 10.1016/j.jprocont.2016.12.007 10.1109/TIE.2017.2719598 10.1007/s11633-015-0888-8 10.1049/iet-cta.2020.0557 10.1109/TCST.2014.2356931 10.1002/acs.3396 10.1016/j.automatica.2016.04.029 10.1016/j.automatica.2015.09.017 10.1109/TCST.2012.2187787 10.1016/j.automatica.2019.02.047 10.1007/s11071-020-05941-8 10.1109/TNNLS.2015.2461022 10.1109/TCST.2014.2301375 10.1109/TCST.2017.2735358 10.1002/rnc.4812 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rnc.6354 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1239 |
EndPage | 10161 |
ExternalDocumentID | 10_1002_rnc_6354 RNC6354 |
Genre | article |
GrantInformation_xml | – fundername: Suzhou Municipal Science and Technology Bureau funderid: SYG202138 – fundername: National Science Centre in Poland funderid: 2020/39/B/ST7/01487 – fundername: Serbian Ministry of Education, Science and Technological Development funderid: 451‐03‐68/2022‐14/200108 – fundername: National Natural Science Foundation of China funderid: 61773181; 61203092; 62103293 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20210709 – fundername: Fundamental Research Funds for the Central Universities funderid: JUSRP51733B |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2234-f7b34a6ac84f1beabad3915d9ff2d974d376b8dc526925d3c016d6ed5c9ee0ff3 |
IEDL.DBID | DR2 |
ISSN | 1049-8923 |
IngestDate | Fri Jul 25 12:02:09 EDT 2025 Tue Jul 01 01:03:11 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Wed Jan 22 16:30:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2234-f7b34a6ac84f1beabad3915d9ff2d974d376b8dc526925d3c016d6ed5c9ee0ff3 |
Notes | Funding information Fundamental Research Funds for the Central Universities, Grant/Award Number: JUSRP51733B; National Natural Science Foundation of China, Grant/Award Numbers: 61773181;61203092;62103293; National Science Centre in Poland, Grant/Award Number: 2020/39/B/ST7/01487; Natural Science Foundation of Jiangsu Province, Grant/Award Number: BK20210709; Serbian Ministry of Education, Science and Technological Development, Grant/Award Number: 451‐03‐68/2022‐14/200108; Suzhou Municipal Science and Technology Bureau, Grant/Award Number: SYG202138 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6005-2086 0000-0001-9960-9040 |
PQID | 2734499376 |
PQPubID | 1026344 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2734499376 crossref_citationtrail_10_1002_rnc_6354 crossref_primary_10_1002_rnc_6354 wiley_primary_10_1002_rnc_6354_RNC6354 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 12 2015; 26 2018; 5 2011; 1 2017; 26 2020; 30 2015; 62 2017; 65 2011; 84 2019; 59 2017; 56 2019; 104 2016; 64 2022; 36 2014; 24 2020; 14 2016; 71 2020; 102 2021; 40 2012; 21 2014; 23 2012; 20 2014; 22 e_1_2_10_12_1 e_1_2_10_23_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_24_1 e_1_2_10_10_1 e_1_2_10_21_1 e_1_2_10_11_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 |
References_xml | – volume: 30 start-page: 1035 issue: 3 year: 2020 end-page: 1049 article-title: Robust design of iterative learning control for a batch process described by 2D Roesser system with packet dropouts and time‐varying delays publication-title: Int J Robust Nonlinear Control – volume: 36 start-page: 1196 issue: 5 year: 2022 end-page: 1215 article-title: Iterative learning control for repetitive tasks with randomly varying trial lengths using successive projection publication-title: Int J Adapt Control Signal Process – volume: 21 start-page: 604 issue: 3 year: 2012 end-page: 616 article-title: Iterative learning control with mixed constraints for point‐to‐point tracking publication-title: IEEE Trans Control Syst Technol – volume: 102 start-page: 269 issue: 1 year: 2020 end-page: 283 article-title: Data‐driven gradient‐based point‐to‐point iterative learning control for nonlinear systems publication-title: Nonlinear Dyn – volume: 26 start-page: 1685 issue: 5 year: 2017 end-page: 1698 article-title: Point‐to‐point iterative learning control with optimal tracking time allocation publication-title: IEEE Transa Control Syst Technol – volume: 23 start-page: 1156 issue: 3 year: 2014 end-page: 1163 article-title: A novel design framework for point‐to‐point ILC using successive projection publication-title: IEEE Transa Control Syst Technol – volume: 65 start-page: 664 issue: 1 year: 2017 end-page: 672 article-title: Iterative learning control of a robotic arm experiment platform with input constraint publication-title: IEEE Trans Ind Electron – volume: 24 start-page: 944 issue: 8 year: 2014 end-page: 953 article-title: Using iterative learning control with basis functions to compensate medium deformation in a wide‐format inkjet printer publication-title: Mechatronics – volume: 64 start-page: 4207 issue: 5 year: 2016 end-page: 4216 article-title: Enhancing flatbed printer accuracy and throughput: optimal rational feedforward controller tuning via iterative learning control publication-title: IEEE Trans Ind Electron – volume: 26 start-page: 2939 issue: 11 year: 2015 end-page: 2948 article-title: Enhanced data‐driven optimal terminal ILC using current iteration control knowledge publication-title: IEEE Trans Neural Networks Learn Syst – volume: 5 start-page: 885 issue: 5 year: 2018 end-page: 901 article-title: Iterative learning control with incomplete information: a survey publication-title: IEEE/CAA J Automat Sinica – volume: 22 start-page: 2432 issue: 6 year: 2014 end-page: 2435 article-title: Energy‐optimal time allocation of a series of point‐to‐point motions publication-title: IEEE Transa Control Syst Technol – volume: 56 start-page: 112 year: 2017 end-page: 128 article-title: Iterative learning fault‐tolerant control for differential time‐delay batch processes in finite frequency domains publication-title: J Process Control – volume: 1 start-page: 166 issue: 19 year: 2011 end-page: 180 article-title: A norm optimal approach to time‐varying ILC with application to a multi‐Axis robotic Testbed publication-title: IEEE Transa Control Syst Technol – volume: 71 start-page: 247 year: 2016 end-page: 253 article-title: Inferential iterative learning control: a 2D‐system approach publication-title: Automatica – volume: 14 start-page: 3344 issue: 19 year: 2020 end-page: 3350 article-title: Robust point‐to‐point iterative learning control with trial‐varying initial conditions publication-title: IET Control Theory Appl – volume: 20 start-page: 489 issue: 5 year: 2012 end-page: 498 article-title: Constrained point‐to‐point iterative learning control with experimental verification publication-title: Control Eng Practice – volume: 59 start-page: 25 year: 2019 end-page: 34 article-title: A coordinate descent approach to optimal tracking time allocation in point‐to‐point ILC publication-title: Mechatronics – volume: 104 start-page: 8 year: 2019 end-page: 16 article-title: Output feedback anti‐disturbance control of input‐delayed systems with time‐varying uncertainties publication-title: Automatica – volume: 62 start-page: 65 year: 2015 end-page: 76 article-title: Iterative learning control design for linear discrete‐time systems with multiple high‐order internal models publication-title: Automatica – volume: 84 start-page: 1275 issue: 7 year: 2011 end-page: 1294 article-title: A survey on iterative learning control for nonlinear systems publication-title: Int J Control – volume: 12 start-page: 243 issue: 3 year: 2015 end-page: 253 article-title: Generalized norm optimal iterative learning control with intermediate point and sub‐interval tracking publication-title: Int J Automat Comput – volume: 40 start-page: 169 issue: 1 year: 2021 end-page: 179 article-title: A hybrid H infinity control based ILC design approach for trajectory tracking of a twin rotor aerodynamic system publication-title: Mehran Univ Res J Eng Technol – ident: e_1_2_10_5_1 doi: 10.1109/TIE.2016.2613498 – ident: e_1_2_10_16_1 doi: 10.1016/j.conengprac.2012.01.003 – ident: e_1_2_10_24_1 doi: 10.22581/muet1982.2101.16 – ident: e_1_2_10_19_1 doi: 10.1016/j.mechatronics.2019.02.005 – ident: e_1_2_10_9_1 doi: 10.1080/00207179.2011.574236 – ident: e_1_2_10_8_1 doi: 10.1109/JAS.2018.7511123 – ident: e_1_2_10_21_1 doi: 10.1109/TCST.2010.2040476 – ident: e_1_2_10_4_1 doi: 10.1016/j.mechatronics.2014.07.003 – ident: e_1_2_10_6_1 doi: 10.1016/j.jprocont.2016.12.007 – ident: e_1_2_10_3_1 doi: 10.1109/TIE.2017.2719598 – ident: e_1_2_10_15_1 doi: 10.1007/s11633-015-0888-8 – ident: e_1_2_10_20_1 doi: 10.1049/iet-cta.2020.0557 – ident: e_1_2_10_22_1 doi: 10.1109/TCST.2014.2356931 – ident: e_1_2_10_23_1 doi: 10.1002/acs.3396 – ident: e_1_2_10_10_1 doi: 10.1016/j.automatica.2016.04.029 – ident: e_1_2_10_2_1 doi: 10.1016/j.automatica.2015.09.017 – ident: e_1_2_10_12_1 doi: 10.1109/TCST.2012.2187787 – ident: e_1_2_10_11_1 doi: 10.1016/j.automatica.2019.02.047 – ident: e_1_2_10_13_1 doi: 10.1007/s11071-020-05941-8 – ident: e_1_2_10_14_1 doi: 10.1109/TNNLS.2015.2461022 – ident: e_1_2_10_17_1 doi: 10.1109/TCST.2014.2301375 – ident: e_1_2_10_18_1 doi: 10.1109/TCST.2017.2735358 – ident: e_1_2_10_7_1 doi: 10.1002/rnc.4812 |
SSID | ssj0009924 |
Score | 2.6175094 |
Snippet | Iterative learning control (ILC) is a high performance control scenario that is widely applied to systems that repeat a given task or operation defined over a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10139 |
SubjectTerms | Algorithms constraint handing energy optimization Iterative algorithms iterative learning control Iterative methods Learning model uncertainty Multiple objective analysis Optimization point‐to‐point tracking robust control Robustness Tracking Uncertainty |
Title | Robust point‐to‐point iterative learning control for constrained systems: A minimum energy approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.6354 https://www.proquest.com/docview/2734499376 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NSsNAEMcX8aQHv8VqlRVET-lHskm73kqxFA89FAsFD2E_VbRJaZKLJx_BR_BZfBSfxJ1N0lZREC8JgVnY7O7s_BNmf4PQGW1qYuKicqRuMIfYQu7S444MmKdom7sBt7TPQdAfkeuxPy6yKuEsTM6HmP9wA8-w-zU4OONJfQENnRn_MdESUKCQqgV6aLggR1Ga17M1AthpGxFTcmcbbr1s-DUSLeTlski1Uaa3iW7L_uXJJY-1LOU18fwN3fi_F9hCG4X4xJ18tWyjFRXtoPUlJOEuuh_GPEtSPI0fovTj5TWNzcU-4BzAbHZHXJSauMNFojs2yvf9TYDUhIoTSuIcEJ1c4g4GeMkkm2BlTxniEmK-h0a9q5tu3ymqMTjCSAji6Bb3CAuYaBPd5IpxJgEuL6nWrjRfJdJsVbwtBZQsd33pCSMmZaCkL6hSDa29fbQaxZE6QJi7mrYEE1RKI9c0MxrJJb4CmLxPeFNW0EU5M6EoUOXQ_6cwhyy7oRm7EMaugk7nltMcz_GDTbWc3LBw0CQEqg8BbRZU0LmdpV_bh8NBF-6HfzU8QmsuHJKwSS9VtJrOMnVspEvKT-wi_QSKwPEM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dTsIwFMdPEC_UC7-NKGpNjF5NYOvGpleESFCRCwIJFybL-qVGGQTGjVc-go_gs_goPolttwEaTYw3W5a0Sdf29PzbnP4OwJFXElj6RW4wUQwMrBO5M4sYzAks7rnEdIimfTadegdfde1uBs7TuzAxH2Jy4KYsQ6_XysDVgXRhSg0dSgOS7hLPwbxK6K33U60pO8rz4oy2UgIbrpQxKXm2aBbSml990VRgzspU7WdqK3CbtjAOL3k8HUfklD5_gzf-8xdWYTnRn6gST5g1yPBwHZZmqIQbcN_qk_EoQoP-Qxh9vLxGffnQHyhmMMsFEiXZJu5QEuuOpPh9f6NKbaqkE5yhmBE9OkMVpPglvXEPcX3REKUc803o1C7a1bqRJGQwqFQR2BBlYuHACaiLRYnwgARM8eWZJ4TJ5MaEydWKuIyqrOWmzSwq9SRzOLOpx3lRCGsLsmE_5NuAiCm8Mg2ox5hUbCKQMsnENlc8eRuTEsvBSTo0Pk1o5ar9T37MWTZ92Xe-6rscHE5KDmJCxw9l8uno-omNjnwF9sFKnjk5ONbD9Gt9v9WsqvfOXwsewEK9fdPwG5fN611YNNWdCR0Dk4dsNBzzPalkIrKvZ-wngD71Jw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NSsNAEMcHrSB68FusVl1B9BTbJps08VZaS_2gSLFQ8BCyXyratLTJxZOP4CP4LD6KT-LuJmmrKIiXhMAsbHZ3dv4Js78BOPTKAsu4yA0mSoGBdSF3ZhGDOYHFPZeYDtG0z5bT7OCLrt1NsyrVWZiEDzH-4aY8Q-_XysEHTBQn0NCh9B8ZLfEszGGn5KoVXW9P0FGelxS0lQrYcKWKycCzJbOYtfwaiib6clql6jDTWIbbrINJdsnjSRyRE_r8jd34vzdYgaVUfaJqslxWYYaHa7A4xSRch_t2n8SjCA36D2H08fIa9eVFP6CEwCy3R5TWmrhDaaY7ktL3_Y0qralKTnCGEkL06BRVkaKX9OIe4vqYIcoo5hvQaZzd1JpGWo7BoFJDYENUiIUDJ6AuFmXCAxIwRZdnnhAmk58lTO5VxGVU1Sw3bWZRqSaZw5lNPc5LQlibkAv7Id8CREzhVWhAPcakXhOBFEkmtrmiyduYlFkejrOZ8WnKKlf9f_ITyrLpy7Hz1djl4WBsOUj4HD_YFLLJ9VMPHfkK64OVOHPycKRn6df2frtVU_ftvxruw_x1veFfnbcud2DBVAcmdAJMAXLRMOa7UsZEZE-v10_as_Pf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+point%E2%80%90to%E2%80%90point+iterative+learning+control+for%C2%A0constrained+systems%3A+A+minimum+energy+approach&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Zhou%2C+Chenhui&rft.au=Tao%2C+Hongfeng&rft.au=Chen%2C+Yiyang&rft.au=Stojanovic%2C+Vladimir&rft.date=2022-12-01&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=32&rft.issue=18&rft.spage=10139&rft.epage=10161&rft_id=info:doi/10.1002%2Frnc.6354&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rnc_6354 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |