Robust point‐to‐point iterative learning control for constrained systems: A minimum energy approach

Iterative learning control (ILC) is a high performance control scenario that is widely applied to systems that repeat a given task or operation defined over a finite duration, and has been introduced to point‐to‐point motion tasks in existing work. However, its design degree of freedom has not been...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of robust and nonlinear control Vol. 32; no. 18; pp. 10139 - 10161
Main Authors Zhou, Chenhui, Tao, Hongfeng, Chen, Yiyang, Stojanovic, Vladimir, Paszke, Wojciech
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Iterative learning control (ILC) is a high performance control scenario that is widely applied to systems that repeat a given task or operation defined over a finite duration, and has been introduced to point‐to‐point motion tasks in existing work. However, its design degree of freedom has not been fully utilized to optimize performance beyond tracking accuracy in constrained conditions. The framework of point‐to‐point ILC in this article is extended within discrete linear time‐invariant (LTI) system, so as to take the tracking time instants of desired positions as changing variables. Therefore, it is possible to achieve the objective of minimizing energy while maintaining the required tracking accuracy. The multiobjective optimization problem is divided into two sub‐problems, which are solved with an iterative algorithm composed of norm‐optimal ILC approach as well as the coordinate descend method. Furthermore, the impact of model uncertainty on algorithm performance is also considered, and the iterative algorithm is further extended to capture constrained systems. The algorithm is robust to the model uncertainty and has a certain robustness to output disturbances. Finally, the validity of the proposed algorithm is verified by a twin rotor aerodynamic system (TRAS) model.
AbstractList Iterative learning control (ILC) is a high performance control scenario that is widely applied to systems that repeat a given task or operation defined over a finite duration, and has been introduced to point‐to‐point motion tasks in existing work. However, its design degree of freedom has not been fully utilized to optimize performance beyond tracking accuracy in constrained conditions. The framework of point‐to‐point ILC in this article is extended within discrete linear time‐invariant (LTI) system, so as to take the tracking time instants of desired positions as changing variables. Therefore, it is possible to achieve the objective of minimizing energy while maintaining the required tracking accuracy. The multiobjective optimization problem is divided into two sub‐problems, which are solved with an iterative algorithm composed of norm‐optimal ILC approach as well as the coordinate descend method. Furthermore, the impact of model uncertainty on algorithm performance is also considered, and the iterative algorithm is further extended to capture constrained systems. The algorithm is robust to the model uncertainty and has a certain robustness to output disturbances. Finally, the validity of the proposed algorithm is verified by a twin rotor aerodynamic system (TRAS) model.
Author Chen, Yiyang
Tao, Hongfeng
Paszke, Wojciech
Zhou, Chenhui
Stojanovic, Vladimir
Author_xml – sequence: 1
  givenname: Chenhui
  surname: Zhou
  fullname: Zhou, Chenhui
  organization: Jiangnan University
– sequence: 2
  givenname: Hongfeng
  surname: Tao
  fullname: Tao, Hongfeng
  organization: Jiangnan University
– sequence: 3
  givenname: Yiyang
  orcidid: 0000-0001-9960-9040
  surname: Chen
  fullname: Chen, Yiyang
  email: yychen90@suda.edu.cn
  organization: Soochow University
– sequence: 4
  givenname: Vladimir
  orcidid: 0000-0002-6005-2086
  surname: Stojanovic
  fullname: Stojanovic, Vladimir
  email: vladostojanovic@mts.rs
  organization: Robotics and Fluid Technique, University of Kragujevac
– sequence: 5
  givenname: Wojciech
  surname: Paszke
  fullname: Paszke, Wojciech
  organization: University of Zielona Góra
BookMark eNp1kMtKAzEUhoNUsK2CjxBw42ZqJslMG3eleIOiUHQ9ZHJpU2aSmqRKdz6Cj-Cz-Cg-iWnrSnRzLpzv_Ifz90DHOqsAOM3RIEcIX3grBiUp6AHo5oixLMeEdbY1ZdmIYXIEeiEsEUozTLtgMXP1OkS4csbGr7f36FLYNdBE5Xk0Lwo2intr7BwKZ6N3DdTOf36kJkTPjVUShk2Iqg2XcAxbY027bqGyys83kK9W3nGxOAaHmjdBnfzkPni6vnqc3GbTh5u7yXiaCYwJzfSwJpSXXIyozmvFay4JywvJtMaSDakkw7IeSVHgkuFCEoHyUpZKFoIphbQmfXC2101nn9cqxGrp1t6mkxUeEkoZSwqJGuwp4V0IXulKmJie3f7HTVPlqNq6WSU3q62baeH818LKm5b7zV9otkdfTaM2_3LV7H6y478Bvw6LSQ
CitedBy_id crossref_primary_10_1016_j_engappai_2024_107859
crossref_primary_10_1109_JAS_2023_124155
crossref_primary_10_1016_j_conengprac_2023_105830
crossref_primary_10_1016_j_ins_2023_119808
crossref_primary_10_1109_TASE_2024_3376427
crossref_primary_10_1007_s00034_023_02385_4
crossref_primary_10_1016_j_conengprac_2023_105714
crossref_primary_10_1007_s40747_023_00980_1
crossref_primary_10_1007_s10710_024_09493_3
crossref_primary_10_1007_s40747_023_01178_1
crossref_primary_10_1109_TII_2024_3390444
crossref_primary_10_1007_s40747_024_01599_6
crossref_primary_10_1109_TASE_2024_3365813
crossref_primary_10_1007_s00138_023_01447_6
crossref_primary_10_1007_s40747_023_01155_8
crossref_primary_10_1016_j_neunet_2023_03_037
crossref_primary_10_1007_s00170_023_12456_0
crossref_primary_10_1007_s40747_023_00974_z
crossref_primary_10_1007_s11063_024_11649_2
crossref_primary_10_1016_j_jfranklin_2024_107112
crossref_primary_10_1016_j_knosys_2023_111101
crossref_primary_10_1007_s10846_023_01862_x
crossref_primary_10_1016_j_ins_2024_120378
crossref_primary_10_1016_j_isatra_2023_09_020
crossref_primary_10_1109_JAS_2023_123960
crossref_primary_10_1007_s10846_024_02050_1
crossref_primary_10_1007_s13042_023_01792_y
crossref_primary_10_1016_j_engappai_2023_105897
crossref_primary_10_1016_j_patrec_2024_06_027
crossref_primary_10_1002_rob_22235
crossref_primary_10_1016_j_ins_2023_119862
crossref_primary_10_1002_oca_3198
crossref_primary_10_1007_s40747_023_01246_6
crossref_primary_10_1016_j_conengprac_2024_105854
crossref_primary_10_1016_j_conengprac_2024_105852
crossref_primary_10_1016_j_engappai_2024_109142
crossref_primary_10_1007_s10846_023_01831_4
crossref_primary_10_1007_s40747_023_01131_2
crossref_primary_10_1007_s10846_023_01892_5
crossref_primary_10_1007_s00034_023_02455_7
crossref_primary_10_1016_j_patcog_2023_109990
crossref_primary_10_1007_s00170_023_12515_6
crossref_primary_10_1016_j_knosys_2024_111614
crossref_primary_10_1007_s40747_023_01192_3
crossref_primary_10_1007_s10846_023_01957_5
crossref_primary_10_1016_j_engappai_2023_107601
crossref_primary_10_1016_j_conengprac_2024_105847
crossref_primary_10_1016_j_conengprac_2024_105845
crossref_primary_10_1007_s40747_023_01120_5
crossref_primary_10_1016_j_eswa_2023_121948
crossref_primary_10_1007_s10846_023_01938_8
crossref_primary_10_1016_j_neucom_2024_127643
crossref_primary_10_1109_TASE_2023_3306807
crossref_primary_10_1016_j_ins_2023_01_124
crossref_primary_10_1007_s40747_023_01283_1
crossref_primary_10_1007_s40747_024_01503_2
crossref_primary_10_1007_s00521_023_09134_3
crossref_primary_10_1007_s40747_023_01144_x
crossref_primary_10_1016_j_cie_2023_109764
crossref_primary_10_1016_j_ins_2023_02_080
crossref_primary_10_1007_s40747_023_01243_9
crossref_primary_10_1016_j_engappai_2023_106848
crossref_primary_10_1007_s40747_024_01638_2
crossref_primary_10_1016_j_neunet_2023_04_042
crossref_primary_10_1016_j_neucom_2023_126283
crossref_primary_10_1016_j_neucom_2023_127130
crossref_primary_10_1007_s10846_023_02004_z
crossref_primary_10_1016_j_ins_2023_119579
crossref_primary_10_1007_s40747_024_01529_6
crossref_primary_10_1016_j_ins_2023_119455
crossref_primary_10_1016_j_patrec_2024_02_019
crossref_primary_10_1007_s11071_024_10418_z
crossref_primary_10_1016_j_engappai_2023_106859
crossref_primary_10_1016_j_conengprac_2023_105803
crossref_primary_10_1109_JAS_2023_123828
crossref_primary_10_1016_j_engappai_2023_107398
crossref_primary_10_1016_j_engappai_2023_107035
crossref_primary_10_1016_j_ins_2024_121026
crossref_primary_10_1109_TASE_2024_3362975
crossref_primary_10_1016_j_engappai_2023_107519
crossref_primary_10_1007_s40747_023_01241_x
crossref_primary_10_1016_j_conengprac_2023_105731
crossref_primary_10_1007_s10846_023_02022_x
crossref_primary_10_1007_s40747_024_01385_4
crossref_primary_10_1007_s40747_023_01110_7
crossref_primary_10_1016_j_ins_2025_122086
crossref_primary_10_1016_j_neucom_2023_126986
crossref_primary_10_1016_j_ins_2024_120821
crossref_primary_10_1016_j_ins_2024_120825
crossref_primary_10_1016_j_enganabound_2024_03_019
crossref_primary_10_1007_s40747_024_01483_3
crossref_primary_10_1016_j_engappai_2023_107767
crossref_primary_10_1016_j_engappai_2024_108361
crossref_primary_10_1007_s10846_023_02033_8
crossref_primary_10_1007_s10845_023_02249_3
crossref_primary_10_1016_j_ins_2024_120396
crossref_primary_10_1016_j_ins_2023_119672
crossref_primary_10_1016_j_ins_2024_120314
crossref_primary_10_1016_j_neucom_2023_126293
Cites_doi 10.1109/TIE.2016.2613498
10.1016/j.conengprac.2012.01.003
10.22581/muet1982.2101.16
10.1016/j.mechatronics.2019.02.005
10.1080/00207179.2011.574236
10.1109/JAS.2018.7511123
10.1109/TCST.2010.2040476
10.1016/j.mechatronics.2014.07.003
10.1016/j.jprocont.2016.12.007
10.1109/TIE.2017.2719598
10.1007/s11633-015-0888-8
10.1049/iet-cta.2020.0557
10.1109/TCST.2014.2356931
10.1002/acs.3396
10.1016/j.automatica.2016.04.029
10.1016/j.automatica.2015.09.017
10.1109/TCST.2012.2187787
10.1016/j.automatica.2019.02.047
10.1007/s11071-020-05941-8
10.1109/TNNLS.2015.2461022
10.1109/TCST.2014.2301375
10.1109/TCST.2017.2735358
10.1002/rnc.4812
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rnc.6354
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1239
EndPage 10161
ExternalDocumentID 10_1002_rnc_6354
RNC6354
Genre article
GrantInformation_xml – fundername: Suzhou Municipal Science and Technology Bureau
  funderid: SYG202138
– fundername: National Science Centre in Poland
  funderid: 2020/39/B/ST7/01487
– fundername: Serbian Ministry of Education, Science and Technological Development
  funderid: 451‐03‐68/2022‐14/200108
– fundername: National Natural Science Foundation of China
  funderid: 61773181; 61203092; 62103293
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20210709
– fundername: Fundamental Research Funds for the Central Universities
  funderid: JUSRP51733B
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2234-f7b34a6ac84f1beabad3915d9ff2d974d376b8dc526925d3c016d6ed5c9ee0ff3
IEDL.DBID DR2
ISSN 1049-8923
IngestDate Fri Jul 25 12:02:09 EDT 2025
Tue Jul 01 01:03:11 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Wed Jan 22 16:30:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2234-f7b34a6ac84f1beabad3915d9ff2d974d376b8dc526925d3c016d6ed5c9ee0ff3
Notes Funding information
Fundamental Research Funds for the Central Universities, Grant/Award Number: JUSRP51733B; National Natural Science Foundation of China, Grant/Award Numbers: 61773181;61203092;62103293; National Science Centre in Poland, Grant/Award Number: 2020/39/B/ST7/01487; Natural Science Foundation of Jiangsu Province, Grant/Award Number: BK20210709; Serbian Ministry of Education, Science and Technological Development, Grant/Award Number: 451‐03‐68/2022‐14/200108; Suzhou Municipal Science and Technology Bureau, Grant/Award Number: SYG202138
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6005-2086
0000-0001-9960-9040
PQID 2734499376
PQPubID 1026344
PageCount 23
ParticipantIDs proquest_journals_2734499376
crossref_citationtrail_10_1002_rnc_6354
crossref_primary_10_1002_rnc_6354
wiley_primary_10_1002_rnc_6354_RNC6354
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of robust and nonlinear control
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 12
2015; 26
2018; 5
2011; 1
2017; 26
2020; 30
2015; 62
2017; 65
2011; 84
2019; 59
2017; 56
2019; 104
2016; 64
2022; 36
2014; 24
2020; 14
2016; 71
2020; 102
2021; 40
2012; 21
2014; 23
2012; 20
2014; 22
e_1_2_10_12_1
e_1_2_10_23_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_24_1
e_1_2_10_10_1
e_1_2_10_21_1
e_1_2_10_11_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
References_xml – volume: 30
  start-page: 1035
  issue: 3
  year: 2020
  end-page: 1049
  article-title: Robust design of iterative learning control for a batch process described by 2D Roesser system with packet dropouts and time‐varying delays
  publication-title: Int J Robust Nonlinear Control
– volume: 36
  start-page: 1196
  issue: 5
  year: 2022
  end-page: 1215
  article-title: Iterative learning control for repetitive tasks with randomly varying trial lengths using successive projection
  publication-title: Int J Adapt Control Signal Process
– volume: 21
  start-page: 604
  issue: 3
  year: 2012
  end-page: 616
  article-title: Iterative learning control with mixed constraints for point‐to‐point tracking
  publication-title: IEEE Trans Control Syst Technol
– volume: 102
  start-page: 269
  issue: 1
  year: 2020
  end-page: 283
  article-title: Data‐driven gradient‐based point‐to‐point iterative learning control for nonlinear systems
  publication-title: Nonlinear Dyn
– volume: 26
  start-page: 1685
  issue: 5
  year: 2017
  end-page: 1698
  article-title: Point‐to‐point iterative learning control with optimal tracking time allocation
  publication-title: IEEE Transa Control Syst Technol
– volume: 23
  start-page: 1156
  issue: 3
  year: 2014
  end-page: 1163
  article-title: A novel design framework for point‐to‐point ILC using successive projection
  publication-title: IEEE Transa Control Syst Technol
– volume: 65
  start-page: 664
  issue: 1
  year: 2017
  end-page: 672
  article-title: Iterative learning control of a robotic arm experiment platform with input constraint
  publication-title: IEEE Trans Ind Electron
– volume: 24
  start-page: 944
  issue: 8
  year: 2014
  end-page: 953
  article-title: Using iterative learning control with basis functions to compensate medium deformation in a wide‐format inkjet printer
  publication-title: Mechatronics
– volume: 64
  start-page: 4207
  issue: 5
  year: 2016
  end-page: 4216
  article-title: Enhancing flatbed printer accuracy and throughput: optimal rational feedforward controller tuning via iterative learning control
  publication-title: IEEE Trans Ind Electron
– volume: 26
  start-page: 2939
  issue: 11
  year: 2015
  end-page: 2948
  article-title: Enhanced data‐driven optimal terminal ILC using current iteration control knowledge
  publication-title: IEEE Trans Neural Networks Learn Syst
– volume: 5
  start-page: 885
  issue: 5
  year: 2018
  end-page: 901
  article-title: Iterative learning control with incomplete information: a survey
  publication-title: IEEE/CAA J Automat Sinica
– volume: 22
  start-page: 2432
  issue: 6
  year: 2014
  end-page: 2435
  article-title: Energy‐optimal time allocation of a series of point‐to‐point motions
  publication-title: IEEE Transa Control Syst Technol
– volume: 56
  start-page: 112
  year: 2017
  end-page: 128
  article-title: Iterative learning fault‐tolerant control for differential time‐delay batch processes in finite frequency domains
  publication-title: J Process Control
– volume: 1
  start-page: 166
  issue: 19
  year: 2011
  end-page: 180
  article-title: A norm optimal approach to time‐varying ILC with application to a multi‐Axis robotic Testbed
  publication-title: IEEE Transa Control Syst Technol
– volume: 71
  start-page: 247
  year: 2016
  end-page: 253
  article-title: Inferential iterative learning control: a 2D‐system approach
  publication-title: Automatica
– volume: 14
  start-page: 3344
  issue: 19
  year: 2020
  end-page: 3350
  article-title: Robust point‐to‐point iterative learning control with trial‐varying initial conditions
  publication-title: IET Control Theory Appl
– volume: 20
  start-page: 489
  issue: 5
  year: 2012
  end-page: 498
  article-title: Constrained point‐to‐point iterative learning control with experimental verification
  publication-title: Control Eng Practice
– volume: 59
  start-page: 25
  year: 2019
  end-page: 34
  article-title: A coordinate descent approach to optimal tracking time allocation in point‐to‐point ILC
  publication-title: Mechatronics
– volume: 104
  start-page: 8
  year: 2019
  end-page: 16
  article-title: Output feedback anti‐disturbance control of input‐delayed systems with time‐varying uncertainties
  publication-title: Automatica
– volume: 62
  start-page: 65
  year: 2015
  end-page: 76
  article-title: Iterative learning control design for linear discrete‐time systems with multiple high‐order internal models
  publication-title: Automatica
– volume: 84
  start-page: 1275
  issue: 7
  year: 2011
  end-page: 1294
  article-title: A survey on iterative learning control for nonlinear systems
  publication-title: Int J Control
– volume: 12
  start-page: 243
  issue: 3
  year: 2015
  end-page: 253
  article-title: Generalized norm optimal iterative learning control with intermediate point and sub‐interval tracking
  publication-title: Int J Automat Comput
– volume: 40
  start-page: 169
  issue: 1
  year: 2021
  end-page: 179
  article-title: A hybrid H infinity control based ILC design approach for trajectory tracking of a twin rotor aerodynamic system
  publication-title: Mehran Univ Res J Eng Technol
– ident: e_1_2_10_5_1
  doi: 10.1109/TIE.2016.2613498
– ident: e_1_2_10_16_1
  doi: 10.1016/j.conengprac.2012.01.003
– ident: e_1_2_10_24_1
  doi: 10.22581/muet1982.2101.16
– ident: e_1_2_10_19_1
  doi: 10.1016/j.mechatronics.2019.02.005
– ident: e_1_2_10_9_1
  doi: 10.1080/00207179.2011.574236
– ident: e_1_2_10_8_1
  doi: 10.1109/JAS.2018.7511123
– ident: e_1_2_10_21_1
  doi: 10.1109/TCST.2010.2040476
– ident: e_1_2_10_4_1
  doi: 10.1016/j.mechatronics.2014.07.003
– ident: e_1_2_10_6_1
  doi: 10.1016/j.jprocont.2016.12.007
– ident: e_1_2_10_3_1
  doi: 10.1109/TIE.2017.2719598
– ident: e_1_2_10_15_1
  doi: 10.1007/s11633-015-0888-8
– ident: e_1_2_10_20_1
  doi: 10.1049/iet-cta.2020.0557
– ident: e_1_2_10_22_1
  doi: 10.1109/TCST.2014.2356931
– ident: e_1_2_10_23_1
  doi: 10.1002/acs.3396
– ident: e_1_2_10_10_1
  doi: 10.1016/j.automatica.2016.04.029
– ident: e_1_2_10_2_1
  doi: 10.1016/j.automatica.2015.09.017
– ident: e_1_2_10_12_1
  doi: 10.1109/TCST.2012.2187787
– ident: e_1_2_10_11_1
  doi: 10.1016/j.automatica.2019.02.047
– ident: e_1_2_10_13_1
  doi: 10.1007/s11071-020-05941-8
– ident: e_1_2_10_14_1
  doi: 10.1109/TNNLS.2015.2461022
– ident: e_1_2_10_17_1
  doi: 10.1109/TCST.2014.2301375
– ident: e_1_2_10_18_1
  doi: 10.1109/TCST.2017.2735358
– ident: e_1_2_10_7_1
  doi: 10.1002/rnc.4812
SSID ssj0009924
Score 2.6175094
Snippet Iterative learning control (ILC) is a high performance control scenario that is widely applied to systems that repeat a given task or operation defined over a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10139
SubjectTerms Algorithms
constraint handing
energy optimization
Iterative algorithms
iterative learning control
Iterative methods
Learning
model uncertainty
Multiple objective analysis
Optimization
point‐to‐point tracking
robust control
Robustness
Tracking
Uncertainty
Title Robust point‐to‐point iterative learning control for constrained systems: A minimum energy approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.6354
https://www.proquest.com/docview/2734499376
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NSsNAEMcX8aQHv8VqlRVET-lHskm73kqxFA89FAsFD2E_VbRJaZKLJx_BR_BZfBSfxJ1N0lZREC8JgVnY7O7s_BNmf4PQGW1qYuKicqRuMIfYQu7S444MmKdom7sBt7TPQdAfkeuxPy6yKuEsTM6HmP9wA8-w-zU4OONJfQENnRn_MdESUKCQqgV6aLggR1Ga17M1AthpGxFTcmcbbr1s-DUSLeTlski1Uaa3iW7L_uXJJY-1LOU18fwN3fi_F9hCG4X4xJ18tWyjFRXtoPUlJOEuuh_GPEtSPI0fovTj5TWNzcU-4BzAbHZHXJSauMNFojs2yvf9TYDUhIoTSuIcEJ1c4g4GeMkkm2BlTxniEmK-h0a9q5tu3ymqMTjCSAji6Bb3CAuYaBPd5IpxJgEuL6nWrjRfJdJsVbwtBZQsd33pCSMmZaCkL6hSDa29fbQaxZE6QJi7mrYEE1RKI9c0MxrJJb4CmLxPeFNW0EU5M6EoUOXQ_6cwhyy7oRm7EMaugk7nltMcz_GDTbWc3LBw0CQEqg8BbRZU0LmdpV_bh8NBF-6HfzU8QmsuHJKwSS9VtJrOMnVspEvKT-wi_QSKwPEM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dTsIwFMdPEC_UC7-NKGpNjF5NYOvGpleESFCRCwIJFybL-qVGGQTGjVc-go_gs_goPolttwEaTYw3W5a0Sdf29PzbnP4OwJFXElj6RW4wUQwMrBO5M4sYzAks7rnEdIimfTadegdfde1uBs7TuzAxH2Jy4KYsQ6_XysDVgXRhSg0dSgOS7hLPwbxK6K33U60pO8rz4oy2UgIbrpQxKXm2aBbSml990VRgzspU7WdqK3CbtjAOL3k8HUfklD5_gzf-8xdWYTnRn6gST5g1yPBwHZZmqIQbcN_qk_EoQoP-Qxh9vLxGffnQHyhmMMsFEiXZJu5QEuuOpPh9f6NKbaqkE5yhmBE9OkMVpPglvXEPcX3REKUc803o1C7a1bqRJGQwqFQR2BBlYuHACaiLRYnwgARM8eWZJ4TJ5MaEydWKuIyqrOWmzSwq9SRzOLOpx3lRCGsLsmE_5NuAiCm8Mg2ox5hUbCKQMsnENlc8eRuTEsvBSTo0Pk1o5ar9T37MWTZ92Xe-6rscHE5KDmJCxw9l8uno-omNjnwF9sFKnjk5ONbD9Gt9v9WsqvfOXwsewEK9fdPwG5fN611YNNWdCR0Dk4dsNBzzPalkIrKvZ-wngD71Jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NSsNAEMcHrSB68FusVl1B9BTbJps08VZaS_2gSLFQ8BCyXyratLTJxZOP4CP4LD6KT-LuJmmrKIiXhMAsbHZ3dv4Js78BOPTKAsu4yA0mSoGBdSF3ZhGDOYHFPZeYDtG0z5bT7OCLrt1NsyrVWZiEDzH-4aY8Q-_XysEHTBQn0NCh9B8ZLfEszGGn5KoVXW9P0FGelxS0lQrYcKWKycCzJbOYtfwaiib6clql6jDTWIbbrINJdsnjSRyRE_r8jd34vzdYgaVUfaJqslxWYYaHa7A4xSRch_t2n8SjCA36D2H08fIa9eVFP6CEwCy3R5TWmrhDaaY7ktL3_Y0qralKTnCGEkL06BRVkaKX9OIe4vqYIcoo5hvQaZzd1JpGWo7BoFJDYENUiIUDJ6AuFmXCAxIwRZdnnhAmk58lTO5VxGVU1Sw3bWZRqSaZw5lNPc5LQlibkAv7Id8CREzhVWhAPcakXhOBFEkmtrmiyduYlFkejrOZ8WnKKlf9f_ITyrLpy7Hz1djl4WBsOUj4HD_YFLLJ9VMPHfkK64OVOHPycKRn6df2frtVU_ftvxruw_x1veFfnbcud2DBVAcmdAJMAXLRMOa7UsZEZE-v10_as_Pf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+point%E2%80%90to%E2%80%90point+iterative+learning+control+for%C2%A0constrained+systems%3A+A+minimum+energy+approach&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Zhou%2C+Chenhui&rft.au=Tao%2C+Hongfeng&rft.au=Chen%2C+Yiyang&rft.au=Stojanovic%2C+Vladimir&rft.date=2022-12-01&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=32&rft.issue=18&rft.spage=10139&rft.epage=10161&rft_id=info:doi/10.1002%2Frnc.6354&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rnc_6354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon