Asymptotic Formula for the Moments of Lebesgue’s Singular Function

Recall Lebesgue’s singular function. Imagine flipping a biased coin with probability p of heads and probability q = 1 − p of tails. Let the binary expansion of ξ ∈ [0, 1]: ξ = ∑∞ k=1 ck2−k be determined by flipping the coin infinitely many times, that is, ck = 1 if the k-th toss is heads and ck = 0 if...

Full description

Saved in:
Bibliographic Details
Published inModelirovanie i analiz informacionnyh sistem Vol. 22; no. 5; pp. 723 - 730
Main Author Timofeev, E. A.
Format Journal Article
LanguageEnglish
Published Yaroslavl State University 04.12.2015
Subjects
Online AccessGet full text
ISSN1818-1015
2313-5417
DOI10.18255/1818-1015-2015-5-723-730

Cover

Abstract Recall Lebesgue’s singular function. Imagine flipping a biased coin with probability p of heads and probability q = 1 − p of tails. Let the binary expansion of ξ ∈ [0, 1]: ξ = ∑∞ k=1 ck2−k be determined by flipping the coin infinitely many times, that is, ck = 1 if the k-th toss is heads and ck = 0 if it is tails. We define Lebesgue’s singular function L(t) as the distribution function of the random variable ξ: L(t) = Prob{ξ < t}. It is well-known that L(t) is strictly increasing and its derivative is zero almost everywhere (p ̸= q). The moments of Lebesque’ singular function are defined as Mn = Eξn. The main result of this paper is the following: Mn = O(nlog2 p).
AbstractList Recall Lebesgue’s singular function. Imagine flipping a biased coin with probability p of heads and probability q = 1 − p of tails. Let the binary expansion of ξ ∈ [0, 1]: ξ = ∑∞ k=1 ck2−k be determined by flipping the coin infinitely many times, that is, ck = 1 if the k-th toss is heads and ck = 0 if it is tails. We define Lebesgue’s singular function L(t) as the distribution function of the random variable ξ: L(t) = Prob{ξ < t}. It is well-known that L(t) is strictly increasing and its derivative is zero almost everywhere (p ̸= q). The moments of Lebesque’ singular function are defined as Mn = Eξn. The main result of this paper is the following: Mn = O(nlog2 p).
Author Timofeev, E. A.
Author_xml – sequence: 1
  givenname: E. A.
  surname: Timofeev
  fullname: Timofeev, E. A.
BookMark eNqNkM1Kw0AQxxdRsNa-w_oA0exXNjlJqVYLFQ_qeZnsR11Js2U3PfTma_h6PolJKz14EoYZGP7zg_ldoNM2tBahK5Jfk5IKcUNKUmYkJyKjQxOZpCyTLD9BI8oIywQn8hSNjrFzNEnJ1znnUjAm5AjdTdNuvelC5zWeh7jeNoBdiLh7t_gprG3bJRwcXtraptXWfn9-Jfzi21Wfi3i-bXXnQ3uJzhw0yU5-5xi9ze9fZ4_Z8vlhMZsuM00py7OCgSkLnYN1hWVQCQnaaF4QQl2lpaYGqOScC0lYCa5wtC8nTQlQQGkpG6PFgWsCfKhN9GuIOxXAq_0ixJWC2H_SWOWEZFI6UxjqOK0c1FXtBK-cBCMqMD2rOrB0DClF6448kqu9XTVoU4M2NdhVQvV2VW-3v739c6t9B4OJLoJv_kH4AVHphC0
CitedBy_id crossref_primary_10_3103_S0146411617070203
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.18255/1818-1015-2015-5-723-730
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2313-5417
EndPage 730
ExternalDocumentID oai_doaj_org_article_f57377fd6d2f429fab9bf549f7ad59ad
10_18255_1818_1015_2015_5_723_730
GroupedDBID 5VS
642
AAFWJ
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
IPNFZ
KQ8
RIG
ID FETCH-LOGICAL-c2230-63ad86c0aef6e3a957acdc46112f9c7c2da2744457138af6f26f2f7d8aa6a8e23
IEDL.DBID DOA
ISSN 1818-1015
IngestDate Wed Aug 27 01:28:26 EDT 2025
Tue Jul 01 01:10:25 EDT 2025
Thu Apr 24 23:05:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2230-63ad86c0aef6e3a957acdc46112f9c7c2da2744457138af6f26f2f7d8aa6a8e23
OpenAccessLink https://doaj.org/article/f57377fd6d2f429fab9bf549f7ad59ad
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_f57377fd6d2f429fab9bf549f7ad59ad
crossref_primary_10_18255_1818_1015_2015_5_723_730
crossref_citationtrail_10_18255_1818_1015_2015_5_723_730
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-04
PublicationDateYYYYMMDD 2015-12-04
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-04
  day: 04
PublicationDecade 2010
PublicationTitle Modelirovanie i analiz informacionnyh sistem
PublicationYear 2015
Publisher Yaroslavl State University
Publisher_xml – name: Yaroslavl State University
SSID ssib044753357
ssib009050552
ssib059259322
ssib006738434
ssj0001879522
Score 1.9328717
Snippet Recall Lebesgue’s singular function. Imagine flipping a biased coin with probability p of heads and probability q = 1 − p of tails. Let the binary expansion of...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 723
SubjectTerms asymptotic
lebesgue’s function
mellin transform
moments
self-similar
singular
Title Asymptotic Formula for the Moments of Lebesgue’s Singular Function
URI https://doaj.org/article/f57377fd6d2f429fab9bf549f7ad59ad
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swECWKDEGWpmla1G0TsEBXwTIpfo1uEiMImi6tAW_EiR9dEtuI7aFL0b_Rv5df0jtJFrQ1QwCBAyEK0OOJdyce32Psc6lymV1WhTNQFhVgYytRFyIJFdNE2hCaKt9v-npe3SzUYiD1RTVhLT1wC9w4KyONyVFHkXHtzFC7OmNSkw1E5SDS6lu6cpBMtfuL0g6JzxwJtqnekRPLnRwQsSmHWYDsiOyavzOkwd1sQaAHJP7TiTpkn2iFwYxKjftONDJsSBBWFoYqqQfObaAB0Dir2Sv2sosy-bR9uxP2Ii1fs-O9ggPvPuhTdjnd_Lpfb1d4G59h9Lq7A45RLMeokN-umtNvfJX5V5yDzc9devzzd8O_o7Oj2lU-Q5dI0_qGzWdXPy6ui05XoQgYDGC2KCFaHUpIWScJThkIMVQaQ6_sggkiAvEGVgoTWAtZZ4FXNtECaLBJyLfsYLlapneME12XSbjYYqBWWa1dmtBJVm1ELRKUMGJ2D4gPHek4aV_ceUo-CEtPWFKhmfKEpVcesfSI5YiJfui6Zd54yqAvhHo_gMizmw40Kd-ZlP-fSb1_jod8YEeNbVDlS_WRHWwfdukM45dtfd6YKra3v6_-AUKE4hA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+Formula+for+the+Moments+of+Lebesgue%E2%80%99s+Singular+Function&rft.jtitle=Modelirovanie+i+analiz+informacionnyh+sistem&rft.au=Timofeev%2C+E.+A.&rft.date=2015-12-04&rft.issn=1818-1015&rft.eissn=2313-5417&rft.volume=22&rft.issue=5&rft.spage=723&rft_id=info:doi/10.18255%2F1818-1015-2015-5-723-730&rft.externalDBID=n%2Fa&rft.externalDocID=10_18255_1818_1015_2015_5_723_730
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1818-1015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1818-1015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1818-1015&client=summon