Asymptotic Formula for the Moments of Lebesgue’s Singular Function
Recall Lebesgue’s singular function. Imagine flipping a biased coin with probability p of heads and probability q = 1 − p of tails. Let the binary expansion of ξ ∈ [0, 1]: ξ = ∑∞ k=1 ck2−k be determined by flipping the coin infinitely many times, that is, ck = 1 if the k-th toss is heads and ck = 0 if...
Saved in:
Published in | Modelirovanie i analiz informacionnyh sistem Vol. 22; no. 5; pp. 723 - 730 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Yaroslavl State University
04.12.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1818-1015 2313-5417 |
DOI | 10.18255/1818-1015-2015-5-723-730 |
Cover
Abstract | Recall Lebesgue’s singular function. Imagine flipping a biased coin with probability p of heads and probability q = 1 − p of tails. Let the binary expansion of ξ ∈ [0, 1]: ξ = ∑∞ k=1 ck2−k be determined by flipping the coin infinitely many times, that is, ck = 1 if the k-th toss is heads and ck = 0 if it is tails. We define Lebesgue’s singular function L(t) as the distribution function of the random variable ξ: L(t) = Prob{ξ < t}. It is well-known that L(t) is strictly increasing and its derivative is zero almost everywhere (p ̸= q). The moments of Lebesque’ singular function are defined as Mn = Eξn. The main result of this paper is the following: Mn = O(nlog2 p). |
---|---|
AbstractList | Recall Lebesgue’s singular function. Imagine flipping a biased coin with probability p of heads and probability q = 1 − p of tails. Let the binary expansion of ξ ∈ [0, 1]: ξ = ∑∞ k=1 ck2−k be determined by flipping the coin infinitely many times, that is, ck = 1 if the k-th toss is heads and ck = 0 if it is tails. We define Lebesgue’s singular function L(t) as the distribution function of the random variable ξ: L(t) = Prob{ξ < t}. It is well-known that L(t) is strictly increasing and its derivative is zero almost everywhere (p ̸= q). The moments of Lebesque’ singular function are defined as Mn = Eξn. The main result of this paper is the following: Mn = O(nlog2 p). |
Author | Timofeev, E. A. |
Author_xml | – sequence: 1 givenname: E. A. surname: Timofeev fullname: Timofeev, E. A. |
BookMark | eNqNkM1Kw0AQxxdRsNa-w_oA0exXNjlJqVYLFQ_qeZnsR11Js2U3PfTma_h6PolJKz14EoYZGP7zg_ldoNM2tBahK5Jfk5IKcUNKUmYkJyKjQxOZpCyTLD9BI8oIywQn8hSNjrFzNEnJ1znnUjAm5AjdTdNuvelC5zWeh7jeNoBdiLh7t_gprG3bJRwcXtraptXWfn9-Jfzi21Wfi3i-bXXnQ3uJzhw0yU5-5xi9ze9fZ4_Z8vlhMZsuM00py7OCgSkLnYN1hWVQCQnaaF4QQl2lpaYGqOScC0lYCa5wtC8nTQlQQGkpG6PFgWsCfKhN9GuIOxXAq_0ixJWC2H_SWOWEZFI6UxjqOK0c1FXtBK-cBCMqMD2rOrB0DClF6448kqu9XTVoU4M2NdhVQvV2VW-3v739c6t9B4OJLoJv_kH4AVHphC0 |
CitedBy_id | crossref_primary_10_3103_S0146411617070203 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.18255/1818-1015-2015-5-723-730 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2313-5417 |
EndPage | 730 |
ExternalDocumentID | oai_doaj_org_article_f57377fd6d2f429fab9bf549f7ad59ad 10_18255_1818_1015_2015_5_723_730 |
GroupedDBID | 5VS 642 AAFWJ AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ IPNFZ KQ8 RIG |
ID | FETCH-LOGICAL-c2230-63ad86c0aef6e3a957acdc46112f9c7c2da2744457138af6f26f2f7d8aa6a8e23 |
IEDL.DBID | DOA |
ISSN | 1818-1015 |
IngestDate | Wed Aug 27 01:28:26 EDT 2025 Tue Jul 01 01:10:25 EDT 2025 Thu Apr 24 23:05:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2230-63ad86c0aef6e3a957acdc46112f9c7c2da2744457138af6f26f2f7d8aa6a8e23 |
OpenAccessLink | https://doaj.org/article/f57377fd6d2f429fab9bf549f7ad59ad |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f57377fd6d2f429fab9bf549f7ad59ad crossref_primary_10_18255_1818_1015_2015_5_723_730 crossref_citationtrail_10_18255_1818_1015_2015_5_723_730 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-04 |
PublicationDateYYYYMMDD | 2015-12-04 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-04 day: 04 |
PublicationDecade | 2010 |
PublicationTitle | Modelirovanie i analiz informacionnyh sistem |
PublicationYear | 2015 |
Publisher | Yaroslavl State University |
Publisher_xml | – name: Yaroslavl State University |
SSID | ssib044753357 ssib009050552 ssib059259322 ssib006738434 ssj0001879522 |
Score | 1.9328717 |
Snippet | Recall Lebesgue’s singular function. Imagine flipping a biased coin with probability p of heads and probability q = 1 − p of tails. Let the binary expansion of... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 723 |
SubjectTerms | asymptotic lebesgue’s function mellin transform moments self-similar singular |
Title | Asymptotic Formula for the Moments of Lebesgue’s Singular Function |
URI | https://doaj.org/article/f57377fd6d2f429fab9bf549f7ad59ad |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swECWKDEGWpmla1G0TsEBXwTIpfo1uEiMImi6tAW_EiR9dEtuI7aFL0b_Rv5df0jtJFrQ1QwCBAyEK0OOJdyce32Psc6lymV1WhTNQFhVgYytRFyIJFdNE2hCaKt9v-npe3SzUYiD1RTVhLT1wC9w4KyONyVFHkXHtzFC7OmNSkw1E5SDS6lu6cpBMtfuL0g6JzxwJtqnekRPLnRwQsSmHWYDsiOyavzOkwd1sQaAHJP7TiTpkn2iFwYxKjftONDJsSBBWFoYqqQfObaAB0Dir2Sv2sosy-bR9uxP2Ii1fs-O9ggPvPuhTdjnd_Lpfb1d4G59h9Lq7A45RLMeokN-umtNvfJX5V5yDzc9devzzd8O_o7Oj2lU-Q5dI0_qGzWdXPy6ui05XoQgYDGC2KCFaHUpIWScJThkIMVQaQ6_sggkiAvEGVgoTWAtZZ4FXNtECaLBJyLfsYLlapneME12XSbjYYqBWWa1dmtBJVm1ELRKUMGJ2D4gPHek4aV_ceUo-CEtPWFKhmfKEpVcesfSI5YiJfui6Zd54yqAvhHo_gMizmw40Kd-ZlP-fSb1_jod8YEeNbVDlS_WRHWwfdukM45dtfd6YKra3v6_-AUKE4hA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotic+Formula+for+the+Moments+of+Lebesgue%E2%80%99s+Singular+Function&rft.jtitle=Modelirovanie+i+analiz+informacionnyh+sistem&rft.au=Timofeev%2C+E.+A.&rft.date=2015-12-04&rft.issn=1818-1015&rft.eissn=2313-5417&rft.volume=22&rft.issue=5&rft.spage=723&rft_id=info:doi/10.18255%2F1818-1015-2015-5-723-730&rft.externalDBID=n%2Fa&rft.externalDocID=10_18255_1818_1015_2015_5_723_730 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1818-1015&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1818-1015&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1818-1015&client=summon |