Incremental multiclass open-set audio recognition

Incremental learning aims to learn new classes if they emerge while maintaining the performance for previously known classes. It acquires useful information from incoming data to update the existing models. Open-set recognition, however, requires the ability to recognize examples from known classes...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advances in intelligent informatics Vol. 8; no. 2; pp. 251 - 270
Main Authors Jleed, Hitham, Bouchard, Martin
Format Journal Article
LanguageEnglish
Published Universitas Ahmad Dahlan 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Incremental learning aims to learn new classes if they emerge while maintaining the performance for previously known classes. It acquires useful information from incoming data to update the existing models. Open-set recognition, however, requires the ability to recognize examples from known classes and reject examples from new/unknown classes. There are two main challenges in this matter. First, new class discovery: the algorithm needs to not only recognize known classes but it must also detect unknown classes. Second, model extension: after the new classes are identified, the model needs to be updated. Focusing on this matter, we introduce incremental open-set multiclass support vector machine algorithms that can classify examples from seen/unseen classes, using incremental learning to increase the current model with new classes without entirely retraining the system. Comprehensive evaluations are carried out on both open set recognition and incremental learning. For open-set recognition, we adopt the openness test that examines the effectiveness of a varying number of known/unknown labels. For incremental learning, we adapt the model to detect a single novel class in each incremental phase and update the model with unknown classes. Experimental results show promising performance for the proposed methods, compared with some representative previous methods.
AbstractList Incremental learning aims to learn new classes if they emerge while maintaining the performance for previously known classes. It acquires useful information from incoming data to update the existing models. Open-set recognition, however, requires the ability to recognize examples from known classes and reject examples from new/unknown classes. There are two main challenges in this matter. First, new class discovery: the algorithm needs to not only recognize known classes but it must also detect unknown classes. Second, model extension: after the new classes are identified, the model needs to be updated. Focusing on this matter, we introduce incremental open-set multiclass support vector machine algorithms that can classify examples from seen/unseen classes, using incremental learning to increase the current model with new classes without entirely retraining the system. Comprehensive evaluations are carried out on both open set recognition and incremental learning. For open-set recognition, we adopt the openness test that examines the effectiveness of a varying number of known/unknown labels. For incremental learning, we adapt the model to detect a single novel class in each incremental phase and update the model with unknown classes. Experimental results show promising performance for the proposed methods, compared with some representative previous methods.
Author Jleed, Hitham
Bouchard, Martin
Author_xml – sequence: 1
  givenname: Hitham
  orcidid: 0000-0001-9556-8018
  surname: Jleed
  fullname: Jleed, Hitham
– sequence: 2
  givenname: Martin
  orcidid: 0000-0002-1165-438X
  surname: Bouchard
  fullname: Bouchard, Martin
BookMark eNpNkMtqwzAQRUVJoWmadbf-ATsaWbLkZQl9BALdtGsxlqWg4EhBcgr9-zpJKV3Nnbs4zJx7MgsxWEIegVasEUKs_B59qL6UZ5UCdkPmjHNWNkLC7F--I8uc95RSUEzSGuYENsEke7BhxKE4nIbRmwFzLuLRhjLbscBT72ORrIm74EcfwwO5dThku_ydC_L58vyxfiu376-b9dO2NIyxsXQd8k4yLnvVccYNhVYpCU6KaW8FVUIxU2PbgLTYYOvQ0Z4KhaAQmRH1gmyu3D7iXh-TP2D61hG9vhQx7TSm87lWd7KGpq3Rsh44uK6DKVnDxfSicZ2ZWKsry6SYc7LujwdUXwTqi0B9FqgngfUPQCxmxQ
CitedBy_id crossref_primary_10_3390_rs15164107
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.26555/ijain.v8i2.812
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2442-6571
EndPage 270
ExternalDocumentID oai_doaj_org_article_b731693ae2d141fbb1e2dec45031cfbc
10_26555_ijain_v8i2_812
GroupedDBID 5VS
8FE
8FG
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KQ8
L6V
M7S
M~E
OK1
PIMPY
PQQKQ
PROAC
PTHSS
ID FETCH-LOGICAL-c222t-fba4b7247d8b424c0198871f758b49508582c3a9617ea6a9faf0d058a18aa2c53
IEDL.DBID DOA
ISSN 2442-6571
IngestDate Tue Oct 22 15:13:32 EDT 2024
Fri Aug 23 03:35:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c222t-fba4b7247d8b424c0198871f758b49508582c3a9617ea6a9faf0d058a18aa2c53
ORCID 0000-0002-1165-438X
0000-0001-9556-8018
OpenAccessLink https://doaj.org/article/b731693ae2d141fbb1e2dec45031cfbc
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_b731693ae2d141fbb1e2dec45031cfbc
crossref_primary_10_26555_ijain_v8i2_812
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of advances in intelligent informatics
PublicationYear 2022
Publisher Universitas Ahmad Dahlan
Publisher_xml – name: Universitas Ahmad Dahlan
SSID ssj0001827031
Score 2.2441413
Snippet Incremental learning aims to learn new classes if they emerge while maintaining the performance for previously known classes. It acquires useful information...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 251
SubjectTerms incremental learning open-set recognition support vector machine audio recognition
Title Incremental multiclass open-set audio recognition
URI https://doaj.org/article/b731693ae2d141fbb1e2dec45031cfbc
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxa-EeVLGRhY0saO7TgjIKoKCSYqdbN8_pDKkCJI-f09O2lVJha2KLKs5J3te7bO7xFyZ42RYHmVO18VOTdF1IC0kCN1xWxoJXUiXk5-fZPTGX-Zi_mO1VesCevkgTvgxhCtlerSeOYopwGA4pO3XOBotAFsWn2LemczlU5XFIvC7NFZjnMW6ztop-vDpBBivPjAbffoRy3YSFH2KyXtKPenFDM5Igc9N8weum86Jnu-OSGHG9-FrJ-Gp4TipO6O9bB1qgi0kQNn0Qkr__ZtZlZuscy2tUHL5ozMJs_vT9O8tz7ILSbsNg9gOFSMV04BZ9wiEcPVgAZk98CjcatQzJamRv7hjTR1MKFwhVCGKmOYFeU5GTTLxl-QDELlPEAZgjS8BIcZGnO0lM4KCsH7Ibnf_L3-7BQuNO4MElA6AaUjUBqBGpLHiM62WZSmTi8wYLoPmP4rYJf_0ckV2WfxHkKqm70mg_Zr5W-QHbRwmwbCGmscuQo
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incremental+multiclass+open-set+audio+recognition&rft.jtitle=International+journal+of+advances+in+intelligent+informatics&rft.au=Hitham+Jleed&rft.au=Martin+Bouchard&rft.date=2022-07-01&rft.pub=Universitas+Ahmad+Dahlan&rft.issn=2442-6571&rft.eissn=2442-6571&rft.volume=8&rft.issue=2&rft.spage=251&rft.epage=270&rft_id=info:doi/10.26555%2Fijain.v8i2.812&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b731693ae2d141fbb1e2dec45031cfbc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2442-6571&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2442-6571&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2442-6571&client=summon