Crafting of Photothermal Cobalt/Sulfur Doped Manganese Selenide for Extreme‐Temperature‐Tolerant Flexible Zinc‐Air Batteries
Zinc–air batteries (ZABs) offer exciting potential for energy storage in emerging flexible electronics. However, despite the rapid progress achieved, the persistent sluggishness in oxygen electrocatalysis remains a significant barrier hindering the widespread utilization of ZABs, especially under de...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 31 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zinc–air batteries (ZABs) offer exciting potential for energy storage in emerging flexible electronics. However, despite the rapid progress achieved, the persistent sluggishness in oxygen electrocatalysis remains a significant barrier hindering the widespread utilization of ZABs, especially under demanding conditions. In this research work, cost‐effective manganese selenide (MnSe) is integrated as an intermetallic catalyst and its overall catalytic performance is subsequently enhanced by introducing cobalt and sulfur doping, in conjunction with nitrogen‐doped graphene, resulting in excellent performance catalysts with significant photothermal response and extreme temperature adaptability. The resulting Co,S‐MnSe/N‐rGO catalyst, when locally heated with photothermal assistance, accelerates reaction kinetics and promotes active site and surface reconstruction, as validated by operando Raman analysis and modeling. The activity index ∆ E is notably reduced to 0.584 V, surpassing most electrocatalysts (usually >0.700 V). Encouragingly, the photothermal electrocatalyst showcases remarkable merits of supreme power density (301 mW cm −2 , equivalent to 3 times that of conventional Pt/Ru‐based ZAB), and ultralong lifespan (5500 cycles) for liquid ZABs, and exceptional performance with extreme‐condition tolerance (broad temperature range from –40 to 60 °C and significant deformation) for flexible ZABs, offering a promising avenue for next‐generation high‐performance electronic reserve devices. |
---|---|
AbstractList | Zinc–air batteries (ZABs) offer exciting potential for energy storage in emerging flexible electronics. However, despite the rapid progress achieved, the persistent sluggishness in oxygen electrocatalysis remains a significant barrier hindering the widespread utilization of ZABs, especially under demanding conditions. In this research work, cost‐effective manganese selenide (MnSe) is integrated as an intermetallic catalyst and its overall catalytic performance is subsequently enhanced by introducing cobalt and sulfur doping, in conjunction with nitrogen‐doped graphene, resulting in excellent performance catalysts with significant photothermal response and extreme temperature adaptability. The resulting Co,S‐MnSe/N‐rGO catalyst, when locally heated with photothermal assistance, accelerates reaction kinetics and promotes active site and surface reconstruction, as validated by operando Raman analysis and modeling. The activity index ∆ E is notably reduced to 0.584 V, surpassing most electrocatalysts (usually >0.700 V). Encouragingly, the photothermal electrocatalyst showcases remarkable merits of supreme power density (301 mW cm −2 , equivalent to 3 times that of conventional Pt/Ru‐based ZAB), and ultralong lifespan (5500 cycles) for liquid ZABs, and exceptional performance with extreme‐condition tolerance (broad temperature range from –40 to 60 °C and significant deformation) for flexible ZABs, offering a promising avenue for next‐generation high‐performance electronic reserve devices. Zinc–air batteries (ZABs) offer exciting potential for energy storage in emerging flexible electronics. However, despite the rapid progress achieved, the persistent sluggishness in oxygen electrocatalysis remains a significant barrier hindering the widespread utilization of ZABs, especially under demanding conditions. In this research work, cost‐effective manganese selenide (MnSe) is integrated as an intermetallic catalyst and its overall catalytic performance is subsequently enhanced by introducing cobalt and sulfur doping, in conjunction with nitrogen‐doped graphene, resulting in excellent performance catalysts with significant photothermal response and extreme temperature adaptability. The resulting Co,S‐MnSe/N‐rGO catalyst, when locally heated with photothermal assistance, accelerates reaction kinetics and promotes active site and surface reconstruction, as validated by operando Raman analysis and modeling. The activity index ∆E is notably reduced to 0.584 V, surpassing most electrocatalysts (usually >0.700 V). Encouragingly, the photothermal electrocatalyst showcases remarkable merits of supreme power density (301 mW cm−2, equivalent to 3 times that of conventional Pt/Ru‐based ZAB), and ultralong lifespan (5500 cycles) for liquid ZABs, and exceptional performance with extreme‐condition tolerance (broad temperature range from –40 to 60 °C and significant deformation) for flexible ZABs, offering a promising avenue for next‐generation high‐performance electronic reserve devices. |
Author | Wang, Shun Wang, Jiajian Chen, Yihuang Chen, Luya Wang, Wenjing Pan, Shuang Wang, Zheng‐Jun |
Author_xml | – sequence: 1 givenname: Wenjing surname: Wang fullname: Wang, Wenjing organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China, National Engineering Research Center of Ophthalmology and Optometry Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325027 China – sequence: 2 givenname: Jiajian surname: Wang fullname: Wang, Jiajian organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China – sequence: 3 givenname: Shuang surname: Pan fullname: Pan, Shuang organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China – sequence: 4 givenname: Zheng‐Jun surname: Wang fullname: Wang, Zheng‐Jun organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China – sequence: 5 givenname: Shun surname: Wang fullname: Wang, Shun organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China – sequence: 6 givenname: Yihuang orcidid: 0000-0002-2887-6317 surname: Chen fullname: Chen, Yihuang organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China – sequence: 7 givenname: Luya surname: Chen fullname: Chen, Luya organization: National Engineering Research Center of Ophthalmology and Optometry Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325027 China |
BookMark | eNo9kM1Kw0AUhQdRsK1uXQ-4Tjt_SZplja0KFYVWEDdhktxpUyYzdTKBuhOfwGf0SUytdHXP4RzOha-PTo01gNAVJUNKCBvJUtVDRphgoeDkBPVoRKOAEzY-PWr6eo76TbMhhMYxFz30lTqpfGVW2Cr8vLbe-jW4Wmqc2lxqP1q0WrUO39otlPhRmpU00ABegAZTlYCVdXi68w5q-Pn8XkK9BSd96_6c1Z0xHs807KpcA36rTNEFk8rhG-k9uAqaC3SmpG7g8v8O0Mtsukzvg_nT3UM6mQcFY8wHADEtFUR5qJI4FJQRkAmFJCpVPBZc5EQwIXkCYVhGrKBAgNEuKaQkBHLCB-j6sLt19r2Fxmcb2zrTvcw443GUiHEHboCGh1bhbNM4UNnWVbV0Hxkl2Z5ztuecHTnzXzr3d3E |
Cites_doi | 10.1038/s41929-022-00776-5 10.1039/D0CS00357C 10.1038/s41598-022-09244-3 10.1039/D1TA09864K 10.1002/advs.201802066 10.1038/s41929-022-00796-1 10.1038/s41467-022-33895-5 10.1016/j.nantod.2016.09.001 10.1002/anie.201402710 10.1038/s41524-019-0210-3 10.1021/acsomega.9b03550 10.1021/acs.chemrev.2c00515 10.1002/anie.202014551 10.1002/anie.201602851 10.1002/anie.201911477 10.1016/j.ejmech.2022.114834 10.1007/s11426-018-9407-9 10.1039/D0CS00962H 10.1016/j.apcatb.2017.07.086 10.1002/jrs.5583 10.1021/acsaem.1c01438 10.1039/C5EE02463C 10.1016/j.est.2022.105935 10.1021/acsenergylett.6b00006 10.1002/anie.202109116 10.1002/cey2.369 10.1038/s41565-020-00824-w 10.1016/j.cej.2022.140855 10.1039/C5TA00223K 10.1039/D1CS00135C 10.1039/D2CS00684G 10.1002/anie.202213026 10.1021/acs.chemrev.3c00159 10.1039/C9SE00460B 10.1039/D0TA09946E 10.1016/j.est.2021.103534 10.1039/D2TA09626A 10.1002/anie.202208042 10.1039/C7CP07960E 10.1039/c3ta01515g 10.1002/smll.202301640 10.1126/science.aan8285 10.1021/am2006433 10.1016/j.apcatb.2023.123438 10.1002/cctc.202001756 10.1002/anie.201206152 10.1038/s41427-022-00446-9 10.1002/smtd.202000621 10.1021/acs.jpcc.8b06201 10.1002/smll.202202194 10.1016/j.apcatb.2022.122163 |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202425430 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202425430 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c222t-ee71dfe6b5f9754120ea91e96df78434b0424a39e55d62c1e0e21784caa00eb03 |
ISSN | 1616-301X |
IngestDate | Fri Aug 08 10:40:49 EDT 2025 Wed Aug 13 23:56:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c222t-ee71dfe6b5f9754120ea91e96df78434b0424a39e55d62c1e0e21784caa00eb03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2887-6317 |
PQID | 3237694854 |
PQPubID | 2045204 |
ParticipantIDs | proquest_journals_3237694854 crossref_primary_10_1002_adfm_202425430 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 Wang C. (e_1_2_7_50_1) 2020; 36 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – ident: e_1_2_7_17_1 doi: 10.1038/s41929-022-00776-5 – ident: e_1_2_7_22_1 doi: 10.1039/D0CS00357C – ident: e_1_2_7_7_1 doi: 10.1038/s41598-022-09244-3 – ident: e_1_2_7_25_1 doi: 10.1039/D1TA09864K – volume: 36 start-page: 992 year: 2020 ident: e_1_2_7_50_1 publication-title: Chem. Res. – ident: e_1_2_7_30_1 doi: 10.1002/advs.201802066 – ident: e_1_2_7_12_1 doi: 10.1038/s41929-022-00796-1 – ident: e_1_2_7_40_1 doi: 10.1038/s41467-022-33895-5 – ident: e_1_2_7_27_1 doi: 10.1016/j.nantod.2016.09.001 – ident: e_1_2_7_32_1 doi: 10.1002/anie.201402710 – ident: e_1_2_7_51_1 doi: 10.1038/s41524-019-0210-3 – ident: e_1_2_7_14_1 doi: 10.1021/acsomega.9b03550 – ident: e_1_2_7_11_1 doi: 10.1021/acs.chemrev.2c00515 – ident: e_1_2_7_48_1 doi: 10.1002/anie.202014551 – ident: e_1_2_7_26_1 doi: 10.1002/anie.201602851 – ident: e_1_2_7_21_1 doi: 10.1002/anie.201911477 – ident: e_1_2_7_37_1 doi: 10.1016/j.ejmech.2022.114834 – ident: e_1_2_7_3_1 doi: 10.1007/s11426-018-9407-9 – ident: e_1_2_7_49_1 doi: 10.1039/D0CS00962H – ident: e_1_2_7_10_1 doi: 10.1016/j.apcatb.2017.07.086 – ident: e_1_2_7_45_1 doi: 10.1002/jrs.5583 – ident: e_1_2_7_33_1 doi: 10.1021/acsaem.1c01438 – ident: e_1_2_7_24_1 doi: 10.1039/C5EE02463C – ident: e_1_2_7_39_1 doi: 10.1016/j.est.2022.105935 – ident: e_1_2_7_29_1 doi: 10.1021/acsenergylett.6b00006 – ident: e_1_2_7_34_1 doi: 10.1002/anie.202109116 – ident: e_1_2_7_19_1 doi: 10.1002/cey2.369 – ident: e_1_2_7_16_1 doi: 10.1038/s41565-020-00824-w – ident: e_1_2_7_36_1 doi: 10.1016/j.cej.2022.140855 – ident: e_1_2_7_44_1 doi: 10.1039/C5TA00223K – ident: e_1_2_7_38_1 doi: 10.1039/D1CS00135C – ident: e_1_2_7_1_1 doi: 10.1039/D2CS00684G – ident: e_1_2_7_18_1 doi: 10.1002/anie.202213026 – ident: e_1_2_7_35_1 doi: 10.1021/acs.chemrev.3c00159 – ident: e_1_2_7_15_1 doi: 10.1039/C9SE00460B – ident: e_1_2_7_43_1 doi: 10.1039/D0TA09946E – ident: e_1_2_7_8_1 doi: 10.1016/j.est.2021.103534 – ident: e_1_2_7_6_1 doi: 10.1039/D2TA09626A – ident: e_1_2_7_20_1 doi: 10.1002/anie.202208042 – ident: e_1_2_7_42_1 doi: 10.1039/C7CP07960E – ident: e_1_2_7_46_1 doi: 10.1039/c3ta01515g – ident: e_1_2_7_13_1 doi: 10.1002/smll.202301640 – ident: e_1_2_7_2_1 doi: 10.1126/science.aan8285 – ident: e_1_2_7_47_1 doi: 10.1021/am2006433 – ident: e_1_2_7_5_1 doi: 10.1016/j.apcatb.2023.123438 – ident: e_1_2_7_23_1 doi: 10.1002/cctc.202001756 – ident: e_1_2_7_31_1 doi: 10.1002/anie.201206152 – ident: e_1_2_7_4_1 doi: 10.1038/s41427-022-00446-9 – ident: e_1_2_7_41_1 doi: 10.1002/smtd.202000621 – ident: e_1_2_7_28_1 doi: 10.1021/acs.jpcc.8b06201 – ident: e_1_2_7_52_1 doi: 10.1002/smll.202202194 – ident: e_1_2_7_9_1 doi: 10.1016/j.apcatb.2022.122163 |
SSID | ssj0017734 |
Score | 2.5115912 |
Snippet | Zinc–air batteries (ZABs) offer exciting potential for energy storage in emerging flexible electronics. However, despite the rapid progress achieved, the... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Catalysts Electrocatalysts Flexible components Graphene Manganese Metal air batteries Raman spectroscopy Reaction kinetics Sulfur Zinc-oxygen batteries |
Title | Crafting of Photothermal Cobalt/Sulfur Doped Manganese Selenide for Extreme‐Temperature‐Tolerant Flexible Zinc‐Air Batteries |
URI | https://www.proquest.com/docview/3237694854 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaWcoED4lcUCvIBiUMVmjh_m2NVdlWtSqlQVqx6iZzY7m61ZKslkRAnxBPwPDwOT8JMbGe9KkKFS5Qdr6Jo5svM2J75TMirJA5TUSaVJyD4eBErwQ8qVXlBkKgoZAJggM3J706T42k0mcWzweCnU7XUNuWb6usf-0r-x6ogA7til-w_WLZ_KAjgHuwLV7AwXG9k46M1V7Zs-Wy-arpuqk_dckDJlw3ukrZL1a4hTb6SWE9RX3A8cRI8BASbhdCE36MvDS4S9mUPuYRUWlMtb2SrJYjqZn-MBJrYbXW-AEXY4cPFel8zddqaREtsa0sMMH6aZUfIkbVyNov52uF8lPWljaSOeLLglw6Iz8yS7bzl1_97PpdwY19r0tbuqgaL-5q6m_pOx2cnAZbvdSfvQEhzZabv3Dh6zYtiAK1jz7UAoglpuVDIUoDTschsG20xdZ--L8bTk5MiH83yW-Q2gykKnp7x9kNPXRakqa5osC9nCUN9drD99O2EaDsf6JKc_D65Z2Yn9FBD7QEZyPohuetwVj4i3y3o6EpRF3RUg-5AQ452kKM95KiFHAXIUQO5X99-OGDDXwZm1MKMIsxgAABGe4A9JtPxKD869sxBHl4FHqDxpEwDoWRSxipL4yhgvuRZILNEqHQYhVGJ--88zGQci4RVgfQlzJSHUcW578vSD5-QnXpVy6eECp4lQ16xLg8uYXacZQzcivR9Pqz8UOyS11abxZXmayk0MzcrUO9Fr_ddsmeVXZhv-nMRYpEYEiZFz_4-_Jzc2cB2j-w061a-gPS0KV92OPgNYBCUrA |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crafting+of+Photothermal+Cobalt%2FSulfur+Doped+Manganese+Selenide+for+Extreme%E2%80%90Temperature%E2%80%90Tolerant+Flexible+Zinc%E2%80%90Air+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Wenjing&rft.au=Wang%2C+Jiajian&rft.au=Pan%2C+Shuang&rft.au=Wang%2C+Zheng%E2%80%90Jun&rft.date=2025-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=31&rft_id=info:doi/10.1002%2Fadfm.202425430&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |