Crafting of Photothermal Cobalt/Sulfur Doped Manganese Selenide for Extreme‐Temperature‐Tolerant Flexible Zinc‐Air Batteries

Zinc–air batteries (ZABs) offer exciting potential for energy storage in emerging flexible electronics. However, despite the rapid progress achieved, the persistent sluggishness in oxygen electrocatalysis remains a significant barrier hindering the widespread utilization of ZABs, especially under de...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 31
Main Authors Wang, Wenjing, Wang, Jiajian, Pan, Shuang, Wang, Zheng‐Jun, Wang, Shun, Chen, Yihuang, Chen, Luya
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zinc–air batteries (ZABs) offer exciting potential for energy storage in emerging flexible electronics. However, despite the rapid progress achieved, the persistent sluggishness in oxygen electrocatalysis remains a significant barrier hindering the widespread utilization of ZABs, especially under demanding conditions. In this research work, cost‐effective manganese selenide (MnSe) is integrated as an intermetallic catalyst and its overall catalytic performance is subsequently enhanced by introducing cobalt and sulfur doping, in conjunction with nitrogen‐doped graphene, resulting in excellent performance catalysts with significant photothermal response and extreme temperature adaptability. The resulting Co,S‐MnSe/N‐rGO catalyst, when locally heated with photothermal assistance, accelerates reaction kinetics and promotes active site and surface reconstruction, as validated by operando Raman analysis and modeling. The activity index ∆ E is notably reduced to 0.584 V, surpassing most electrocatalysts (usually >0.700 V). Encouragingly, the photothermal electrocatalyst showcases remarkable merits of supreme power density (301 mW cm −2 , equivalent to 3 times that of conventional Pt/Ru‐based ZAB), and ultralong lifespan (5500 cycles) for liquid ZABs, and exceptional performance with extreme‐condition tolerance (broad temperature range from –40 to 60 °C and significant deformation) for flexible ZABs, offering a promising avenue for next‐generation high‐performance electronic reserve devices.
AbstractList Zinc–air batteries (ZABs) offer exciting potential for energy storage in emerging flexible electronics. However, despite the rapid progress achieved, the persistent sluggishness in oxygen electrocatalysis remains a significant barrier hindering the widespread utilization of ZABs, especially under demanding conditions. In this research work, cost‐effective manganese selenide (MnSe) is integrated as an intermetallic catalyst and its overall catalytic performance is subsequently enhanced by introducing cobalt and sulfur doping, in conjunction with nitrogen‐doped graphene, resulting in excellent performance catalysts with significant photothermal response and extreme temperature adaptability. The resulting Co,S‐MnSe/N‐rGO catalyst, when locally heated with photothermal assistance, accelerates reaction kinetics and promotes active site and surface reconstruction, as validated by operando Raman analysis and modeling. The activity index ∆ E is notably reduced to 0.584 V, surpassing most electrocatalysts (usually >0.700 V). Encouragingly, the photothermal electrocatalyst showcases remarkable merits of supreme power density (301 mW cm −2 , equivalent to 3 times that of conventional Pt/Ru‐based ZAB), and ultralong lifespan (5500 cycles) for liquid ZABs, and exceptional performance with extreme‐condition tolerance (broad temperature range from –40 to 60 °C and significant deformation) for flexible ZABs, offering a promising avenue for next‐generation high‐performance electronic reserve devices.
Zinc–air batteries (ZABs) offer exciting potential for energy storage in emerging flexible electronics. However, despite the rapid progress achieved, the persistent sluggishness in oxygen electrocatalysis remains a significant barrier hindering the widespread utilization of ZABs, especially under demanding conditions. In this research work, cost‐effective manganese selenide (MnSe) is integrated as an intermetallic catalyst and its overall catalytic performance is subsequently enhanced by introducing cobalt and sulfur doping, in conjunction with nitrogen‐doped graphene, resulting in excellent performance catalysts with significant photothermal response and extreme temperature adaptability. The resulting Co,S‐MnSe/N‐rGO catalyst, when locally heated with photothermal assistance, accelerates reaction kinetics and promotes active site and surface reconstruction, as validated by operando Raman analysis and modeling. The activity index ∆E is notably reduced to 0.584 V, surpassing most electrocatalysts (usually >0.700 V). Encouragingly, the photothermal electrocatalyst showcases remarkable merits of supreme power density (301 mW cm−2, equivalent to 3 times that of conventional Pt/Ru‐based ZAB), and ultralong lifespan (5500 cycles) for liquid ZABs, and exceptional performance with extreme‐condition tolerance (broad temperature range from –40 to 60 °C and significant deformation) for flexible ZABs, offering a promising avenue for next‐generation high‐performance electronic reserve devices.
Author Wang, Shun
Wang, Jiajian
Chen, Yihuang
Chen, Luya
Wang, Wenjing
Pan, Shuang
Wang, Zheng‐Jun
Author_xml – sequence: 1
  givenname: Wenjing
  surname: Wang
  fullname: Wang, Wenjing
  organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China, National Engineering Research Center of Ophthalmology and Optometry Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325027 China
– sequence: 2
  givenname: Jiajian
  surname: Wang
  fullname: Wang, Jiajian
  organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China
– sequence: 3
  givenname: Shuang
  surname: Pan
  fullname: Pan, Shuang
  organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China
– sequence: 4
  givenname: Zheng‐Jun
  surname: Wang
  fullname: Wang, Zheng‐Jun
  organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China
– sequence: 5
  givenname: Shun
  surname: Wang
  fullname: Wang, Shun
  organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China
– sequence: 6
  givenname: Yihuang
  orcidid: 0000-0002-2887-6317
  surname: Chen
  fullname: Chen, Yihuang
  organization: College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China
– sequence: 7
  givenname: Luya
  surname: Chen
  fullname: Chen, Luya
  organization: National Engineering Research Center of Ophthalmology and Optometry Eye Hospital Wenzhou Medical University Wenzhou Zhejiang 325027 China
BookMark eNo9kM1Kw0AUhQdRsK1uXQ-4Tjt_SZplja0KFYVWEDdhktxpUyYzdTKBuhOfwGf0SUytdHXP4RzOha-PTo01gNAVJUNKCBvJUtVDRphgoeDkBPVoRKOAEzY-PWr6eo76TbMhhMYxFz30lTqpfGVW2Cr8vLbe-jW4Wmqc2lxqP1q0WrUO39otlPhRmpU00ABegAZTlYCVdXi68w5q-Pn8XkK9BSd96_6c1Z0xHs807KpcA36rTNEFk8rhG-k9uAqaC3SmpG7g8v8O0Mtsukzvg_nT3UM6mQcFY8wHADEtFUR5qJI4FJQRkAmFJCpVPBZc5EQwIXkCYVhGrKBAgNEuKaQkBHLCB-j6sLt19r2Fxmcb2zrTvcw443GUiHEHboCGh1bhbNM4UNnWVbV0Hxkl2Z5ztuecHTnzXzr3d3E
Cites_doi 10.1038/s41929-022-00776-5
10.1039/D0CS00357C
10.1038/s41598-022-09244-3
10.1039/D1TA09864K
10.1002/advs.201802066
10.1038/s41929-022-00796-1
10.1038/s41467-022-33895-5
10.1016/j.nantod.2016.09.001
10.1002/anie.201402710
10.1038/s41524-019-0210-3
10.1021/acsomega.9b03550
10.1021/acs.chemrev.2c00515
10.1002/anie.202014551
10.1002/anie.201602851
10.1002/anie.201911477
10.1016/j.ejmech.2022.114834
10.1007/s11426-018-9407-9
10.1039/D0CS00962H
10.1016/j.apcatb.2017.07.086
10.1002/jrs.5583
10.1021/acsaem.1c01438
10.1039/C5EE02463C
10.1016/j.est.2022.105935
10.1021/acsenergylett.6b00006
10.1002/anie.202109116
10.1002/cey2.369
10.1038/s41565-020-00824-w
10.1016/j.cej.2022.140855
10.1039/C5TA00223K
10.1039/D1CS00135C
10.1039/D2CS00684G
10.1002/anie.202213026
10.1021/acs.chemrev.3c00159
10.1039/C9SE00460B
10.1039/D0TA09946E
10.1016/j.est.2021.103534
10.1039/D2TA09626A
10.1002/anie.202208042
10.1039/C7CP07960E
10.1039/c3ta01515g
10.1002/smll.202301640
10.1126/science.aan8285
10.1021/am2006433
10.1016/j.apcatb.2023.123438
10.1002/cctc.202001756
10.1002/anie.201206152
10.1038/s41427-022-00446-9
10.1002/smtd.202000621
10.1021/acs.jpcc.8b06201
10.1002/smll.202202194
10.1016/j.apcatb.2022.122163
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202425430
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202425430
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c222t-ee71dfe6b5f9754120ea91e96df78434b0424a39e55d62c1e0e21784caa00eb03
ISSN 1616-301X
IngestDate Fri Aug 08 10:40:49 EDT 2025
Wed Aug 13 23:56:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c222t-ee71dfe6b5f9754120ea91e96df78434b0424a39e55d62c1e0e21784caa00eb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2887-6317
PQID 3237694854
PQPubID 2045204
ParticipantIDs proquest_journals_3237694854
crossref_primary_10_1002_adfm_202425430
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
Wang C. (e_1_2_7_50_1) 2020; 36
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – ident: e_1_2_7_17_1
  doi: 10.1038/s41929-022-00776-5
– ident: e_1_2_7_22_1
  doi: 10.1039/D0CS00357C
– ident: e_1_2_7_7_1
  doi: 10.1038/s41598-022-09244-3
– ident: e_1_2_7_25_1
  doi: 10.1039/D1TA09864K
– volume: 36
  start-page: 992
  year: 2020
  ident: e_1_2_7_50_1
  publication-title: Chem. Res.
– ident: e_1_2_7_30_1
  doi: 10.1002/advs.201802066
– ident: e_1_2_7_12_1
  doi: 10.1038/s41929-022-00796-1
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-022-33895-5
– ident: e_1_2_7_27_1
  doi: 10.1016/j.nantod.2016.09.001
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.201402710
– ident: e_1_2_7_51_1
  doi: 10.1038/s41524-019-0210-3
– ident: e_1_2_7_14_1
  doi: 10.1021/acsomega.9b03550
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.chemrev.2c00515
– ident: e_1_2_7_48_1
  doi: 10.1002/anie.202014551
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.201602851
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.201911477
– ident: e_1_2_7_37_1
  doi: 10.1016/j.ejmech.2022.114834
– ident: e_1_2_7_3_1
  doi: 10.1007/s11426-018-9407-9
– ident: e_1_2_7_49_1
  doi: 10.1039/D0CS00962H
– ident: e_1_2_7_10_1
  doi: 10.1016/j.apcatb.2017.07.086
– ident: e_1_2_7_45_1
  doi: 10.1002/jrs.5583
– ident: e_1_2_7_33_1
  doi: 10.1021/acsaem.1c01438
– ident: e_1_2_7_24_1
  doi: 10.1039/C5EE02463C
– ident: e_1_2_7_39_1
  doi: 10.1016/j.est.2022.105935
– ident: e_1_2_7_29_1
  doi: 10.1021/acsenergylett.6b00006
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.202109116
– ident: e_1_2_7_19_1
  doi: 10.1002/cey2.369
– ident: e_1_2_7_16_1
  doi: 10.1038/s41565-020-00824-w
– ident: e_1_2_7_36_1
  doi: 10.1016/j.cej.2022.140855
– ident: e_1_2_7_44_1
  doi: 10.1039/C5TA00223K
– ident: e_1_2_7_38_1
  doi: 10.1039/D1CS00135C
– ident: e_1_2_7_1_1
  doi: 10.1039/D2CS00684G
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202213026
– ident: e_1_2_7_35_1
  doi: 10.1021/acs.chemrev.3c00159
– ident: e_1_2_7_15_1
  doi: 10.1039/C9SE00460B
– ident: e_1_2_7_43_1
  doi: 10.1039/D0TA09946E
– ident: e_1_2_7_8_1
  doi: 10.1016/j.est.2021.103534
– ident: e_1_2_7_6_1
  doi: 10.1039/D2TA09626A
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.202208042
– ident: e_1_2_7_42_1
  doi: 10.1039/C7CP07960E
– ident: e_1_2_7_46_1
  doi: 10.1039/c3ta01515g
– ident: e_1_2_7_13_1
  doi: 10.1002/smll.202301640
– ident: e_1_2_7_2_1
  doi: 10.1126/science.aan8285
– ident: e_1_2_7_47_1
  doi: 10.1021/am2006433
– ident: e_1_2_7_5_1
  doi: 10.1016/j.apcatb.2023.123438
– ident: e_1_2_7_23_1
  doi: 10.1002/cctc.202001756
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.201206152
– ident: e_1_2_7_4_1
  doi: 10.1038/s41427-022-00446-9
– ident: e_1_2_7_41_1
  doi: 10.1002/smtd.202000621
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.jpcc.8b06201
– ident: e_1_2_7_52_1
  doi: 10.1002/smll.202202194
– ident: e_1_2_7_9_1
  doi: 10.1016/j.apcatb.2022.122163
SSID ssj0017734
Score 2.5115912
Snippet Zinc–air batteries (ZABs) offer exciting potential for energy storage in emerging flexible electronics. However, despite the rapid progress achieved, the...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Catalysts
Electrocatalysts
Flexible components
Graphene
Manganese
Metal air batteries
Raman spectroscopy
Reaction kinetics
Sulfur
Zinc-oxygen batteries
Title Crafting of Photothermal Cobalt/Sulfur Doped Manganese Selenide for Extreme‐Temperature‐Tolerant Flexible Zinc‐Air Batteries
URI https://www.proquest.com/docview/3237694854
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaWcoED4lcUCvIBiUMVmjh_m2NVdlWtSqlQVqx6iZzY7m61ZKslkRAnxBPwPDwOT8JMbGe9KkKFS5Qdr6Jo5svM2J75TMirJA5TUSaVJyD4eBErwQ8qVXlBkKgoZAJggM3J706T42k0mcWzweCnU7XUNuWb6usf-0r-x6ogA7til-w_WLZ_KAjgHuwLV7AwXG9k46M1V7Zs-Wy-arpuqk_dckDJlw3ukrZL1a4hTb6SWE9RX3A8cRI8BASbhdCE36MvDS4S9mUPuYRUWlMtb2SrJYjqZn-MBJrYbXW-AEXY4cPFel8zddqaREtsa0sMMH6aZUfIkbVyNov52uF8lPWljaSOeLLglw6Iz8yS7bzl1_97PpdwY19r0tbuqgaL-5q6m_pOx2cnAZbvdSfvQEhzZabv3Dh6zYtiAK1jz7UAoglpuVDIUoDTschsG20xdZ--L8bTk5MiH83yW-Q2gykKnp7x9kNPXRakqa5osC9nCUN9drD99O2EaDsf6JKc_D65Z2Yn9FBD7QEZyPohuetwVj4i3y3o6EpRF3RUg-5AQ452kKM95KiFHAXIUQO5X99-OGDDXwZm1MKMIsxgAABGe4A9JtPxKD869sxBHl4FHqDxpEwDoWRSxipL4yhgvuRZILNEqHQYhVGJ--88zGQci4RVgfQlzJSHUcW578vSD5-QnXpVy6eECp4lQ16xLg8uYXacZQzcivR9Pqz8UOyS11abxZXmayk0MzcrUO9Fr_ddsmeVXZhv-nMRYpEYEiZFz_4-_Jzc2cB2j-w061a-gPS0KV92OPgNYBCUrA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crafting+of+Photothermal+Cobalt%2FSulfur+Doped+Manganese+Selenide+for+Extreme%E2%80%90Temperature%E2%80%90Tolerant+Flexible+Zinc%E2%80%90Air+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Wenjing&rft.au=Wang%2C+Jiajian&rft.au=Pan%2C+Shuang&rft.au=Wang%2C+Zheng%E2%80%90Jun&rft.date=2025-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=31&rft_id=info:doi/10.1002%2Fadfm.202425430&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon