Characterization of NMDA receptor Allostery modulation

NMDA receptors are subject to numerous endogenous and exogenous allosteric regulations, which are essential for their complex pathophysiological functions in the brain, and serve as a basis for therapeutic targeting. However, the structural basis of many of these allosteric mechanisms remains unclea...

Full description

Saved in:
Bibliographic Details
Published inJournal of structural biology Vol. 217; no. 3; p. 108238
Main Authors Liu, Yunsheng, Song, Wangsheng, Zhong, Rongde, Zhang, Jinfang, Wu, Xianlin, Jia, Yanyan, Kou, Zengwei
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2025
Subjects
Online AccessGet full text
ISSN1047-8477
1095-8657
1095-8657
DOI10.1016/j.jsb.2025.108238

Cover

Loading…
Abstract NMDA receptors are subject to numerous endogenous and exogenous allosteric regulations, which are essential for their complex pathophysiological functions in the brain, and serve as a basis for therapeutic targeting. However, the structural basis of many of these allosteric mechanisms remains unclear. In this study, we first utilized AlphaFold to predict the structural conformations of different NMDA receptor subtypes. Subsequent comparative analyses with experimentally resolved protein structures, coupled with validation using disulfide bond formation, revealed the high precision of these computational predictions. Based on these structures, we systematically investigated the allosteric regulation of NMDA receptors using RoseTTAFold-All-Atom. Our findings elucidated the binding sites of several allosteric modulators across different NMDA receptor subtypes and identified the key amino acids required for binding. These results reveal the structural basis of NMDA receptor allosteric regulation, providing new insights into its physiological and pathological roles, and offering potential avenues for drug development.
AbstractList NMDA receptors are subject to numerous endogenous and exogenous allosteric regulations, which are essential for their complex pathophysiological functions in the brain, and serve as a basis for therapeutic targeting. However, the structural basis of many of these allosteric mechanisms remains unclear. In this study, we first utilized AlphaFold to predict the structural conformations of different NMDA receptor subtypes. Subsequent comparative analyses with experimentally resolved protein structures, coupled with validation using disulfide bond formation, revealed the high precision of these computational predictions. Based on these structures, we systematically investigated the allosteric regulation of NMDA receptors using RoseTTAFold-All-Atom. Our findings elucidated the binding sites of several allosteric modulators across different NMDA receptor subtypes and identified the key amino acids required for binding. These results reveal the structural basis of NMDA receptor allosteric regulation, providing new insights into its physiological and pathological roles, and offering potential avenues for drug development.NMDA receptors are subject to numerous endogenous and exogenous allosteric regulations, which are essential for their complex pathophysiological functions in the brain, and serve as a basis for therapeutic targeting. However, the structural basis of many of these allosteric mechanisms remains unclear. In this study, we first utilized AlphaFold to predict the structural conformations of different NMDA receptor subtypes. Subsequent comparative analyses with experimentally resolved protein structures, coupled with validation using disulfide bond formation, revealed the high precision of these computational predictions. Based on these structures, we systematically investigated the allosteric regulation of NMDA receptors using RoseTTAFold-All-Atom. Our findings elucidated the binding sites of several allosteric modulators across different NMDA receptor subtypes and identified the key amino acids required for binding. These results reveal the structural basis of NMDA receptor allosteric regulation, providing new insights into its physiological and pathological roles, and offering potential avenues for drug development.
NMDA receptors are subject to numerous endogenous and exogenous allosteric regulations, which are essential for their complex pathophysiological functions in the brain, and serve as a basis for therapeutic targeting. However, the structural basis of many of these allosteric mechanisms remains unclear. In this study, we first utilized AlphaFold to predict the structural conformations of different NMDA receptor subtypes. Subsequent comparative analyses with experimentally resolved protein structures, coupled with validation using disulfide bond formation, revealed the high precision of these computational predictions. Based on these structures, we systematically investigated the allosteric regulation of NMDA receptors using RoseTTAFold-All-Atom. Our findings elucidated the binding sites of several allosteric modulators across different NMDA receptor subtypes and identified the key amino acids required for binding. These results reveal the structural basis of NMDA receptor allosteric regulation, providing new insights into its physiological and pathological roles, and offering potential avenues for drug development.
ArticleNumber 108238
Author Zhong, Rongde
Liu, Yunsheng
Kou, Zengwei
Zhang, Jinfang
Song, Wangsheng
Jia, Yanyan
Wu, Xianlin
Author_xml – sequence: 1
  givenname: Yunsheng
  surname: Liu
  fullname: Liu, Yunsheng
  organization: Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
– sequence: 2
  givenname: Wangsheng
  surname: Song
  fullname: Song, Wangsheng
  organization: Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai 201803, China
– sequence: 3
  givenname: Rongde
  surname: Zhong
  fullname: Zhong, Rongde
  organization: Department of Neurosurgery, Institute of Translational Medicine, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
– sequence: 4
  givenname: Jinfang
  surname: Zhang
  fullname: Zhang, Jinfang
  organization: Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
– sequence: 5
  givenname: Xianlin
  surname: Wu
  fullname: Wu, Xianlin
  organization: Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
– sequence: 6
  givenname: Yanyan
  orcidid: 0000-0001-7089-0959
  surname: Jia
  fullname: Jia, Yanyan
  email: jiayanyan@fudan.edu.cn
  organization: ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
– sequence: 7
  givenname: Zengwei
  surname: Kou
  fullname: Kou, Zengwei
  email: zengwei.kou@utoronto.ca
  organization: Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40819686$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtOwzAQRS1URB_wAWxQlmxSbMdxHLGqylMqsIG15dgTkSiJi50gla_HJYUlq5mRzh3pnjmadLYDhM4JXhJM-FW9rH2xpJim4RY0EUdoRnCexoKn2WS_sywWLMumaO59jTFmhJITNGVYkJwLPkN8_a6c0j246kv1le0iW0bPTzeryIGGbW9dtGoa6wOwi1prhuaHOkXHpWo8nB3mAr3d3b6uH-LNy_3jerWJNaW0j7U2uQIOZVFqTIAwDUYxnuUUKBY44cRAginVUBLKC5WVRWog1UkOosy5SRbocvy7dfZjAN_LtvIamkZ1YAcvE8owEzhL8oBeHNChaMHIrata5Xbyt2sAyAhoZ713UP4hBMu9T1nL4FPufcrRZ8hcjxkIJT8rcNLrCrpQowp-emls9U_6G81xfLQ
Cites_doi 10.1002/cmdc.202200484
10.1016/j.neuron.2021.05.031
10.1523/JNEUROSCI.3712-12.2013
10.1016/j.neuro.2023.12.006
10.1016/j.cell.2018.10.043
10.1073/pnas.0805624105
10.1113/JP278168
10.1002/glia.23609
10.1016/j.neuroscience.2016.08.012
10.1016/j.intimp.2022.108702
10.4103/NRR.NRR-D-24-00398
10.1016/j.neuron.2023.05.002
10.1016/j.csbj.2025.07.027
10.1016/j.cell.2018.07.028
10.1016/j.schres.2021.12.002
10.1038/s41594-023-00959-z
10.1038/nrn.2017.24
10.3389/fphys.2024.1446459
10.1038/307462a0
10.1007/s11064-025-04346-6
10.1038/nature25509
10.1038/s41586-021-03828-1
10.1080/19336950.2025.2490308
10.1074/jbc.M115.649723
10.1038/s41586-024-07487-w
10.1016/0304-3940(92)90040-E
10.1523/JNEUROSCI.0829-13.2013
10.1016/j.msard.2025.106593
10.1016/j.ijbiomac.2025.142597
10.1085/jgp.201812032
10.1126/science.adl2528
10.1016/j.bbrc.2022.01.024
10.4103/NRR.NRR-D-24-00154
10.1152/ajpcell.00353.2014
10.1016/j.cophys.2017.12.004
10.1113/JP279028
10.1016/j.celrep.2018.11.071
10.1111/cts.13623
10.3390/ijms20020309
10.1016/j.neuropharm.2021.108861
10.1002/glia.24361
10.1016/j.bbr.2023.114716
10.1038/s41586-021-03769-9
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright © 2025 Elsevier Inc. All rights reserved.
Copyright © 2025. Published by Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
– notice: Copyright © 2025 Elsevier Inc. All rights reserved.
– notice: Copyright © 2025. Published by Elsevier Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jsb.2025.108238
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-8657
ExternalDocumentID 40819686
10_1016_j_jsb_2025_108238
S1047847725000735
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29L
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
85S
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
H~9
IH2
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RNS
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TWZ
UKR
UNMZH
VH1
WH7
WUQ
X7M
XJT
XOL
XPP
Y6R
ZGI
ZKB
ZMT
ZU3
ZXP
~02
~G-
~KM
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c222t-ccd9ae6efbfc01e14ceda46792e2080361de3022cef126ba7fb5de5c39e8f96d3
IEDL.DBID .~1
ISSN 1047-8477
1095-8657
IngestDate Mon Aug 18 16:30:35 EDT 2025
Thu Aug 28 04:36:23 EDT 2025
Wed Aug 27 16:29:15 EDT 2025
Sat Aug 30 17:14:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Allostery modulation
Glutamate receptor
Protein prediction
Protein structure
AlphaFold
Language English
License Copyright © 2025 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c222t-ccd9ae6efbfc01e14ceda46792e2080361de3022cef126ba7fb5de5c39e8f96d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7089-0959
PMID 40819686
PQID 3240480739
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3240480739
pubmed_primary_40819686
crossref_primary_10_1016_j_jsb_2025_108238
elsevier_sciencedirect_doi_10_1016_j_jsb_2025_108238
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of structural biology
PublicationTitleAlternate J Struct Biol
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Abramson (b0010) 2024; 630
eadl2528, doi:10.1126/science.adl2528 (2024).
Stroebel, Casado, Paoletti (b0150) 2018; 2
Lin (b0085) 2016; 31
Zhang (b0210) 2021; 596
Lee (b0075) 2015; 308
Zhang (b0215) 2023; 30
Krishna, R.
Zhang, J. B. et al. Structural Basis of the Proton Sensitivity of Human GluN1-GluN2A NMDA Receptors. Cell reports 25, 3582-3590 e3584, doi:10.1016/j.celrep.2018.11.071 (2018).
Zhou (b0230) 2022; 249
Chen (b0015) 2025
Madry, Betz, Geiger, Laube (b0110) 2008; 105
Dupuis, Nicole, Groc (b0030) 2023; 111
Skowronska, K., Obara-Michlewska, M., Zielinska, M. & Albrecht, J. NMDA Receptors in Astrocytes: In Search for Roles in Neurotransmission and Astrocytic Homeostasis. Int. J. Mol. Sci. 20, doi:10.3390/ijms20020309 (2019).
Wang (b0175) 2022; 594
Zheng, Kong, Wang, He, Xie (b0225) 2022; 107
Gomez-Mancilla (b0040) 2023; 16
Tahiri, Corti, Duarte (b0160) 2025; 50
Jalali-Yazdi, F., Chowdhury, S., Yoshioka, C. & Gouaux, E. Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Cell 175, 1520-1532 e1515, doi:10.1016/j.cell.2018.10.043 (2018).
Tovar, McGinley, Westbrook (b0165) 2013; 33
Nowak, Bregestovski, Ascher, Herbet, Prochiantz (b0115) 1984; 307
Sirrieh, MacLean, Jayaraman (b0135) 2015; 290
Saunders, A. et al. Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. Cell 174, 1015-1030 e1016, doi:10.1016/j.cell.2018.07.028 (2018).
Yang (b0195) 2018; 554
Dembeck, Dieterich, Fendt (b0025) 2024; 456
Wang, H. et al. Gating mechanism and a modulatory niche of human GluN1-GluN2A NMDA receptors. Neuron 109, 2443-2456 e2445, doi:10.1016/j.neuron.2021.05.031 (2021).
Liu, Jia, Kou (b0105) 2025; 16
Kou (b0060) 2019; 67
Steigerwald, R., Chou, T. H., Furukawa, H. & Wunsch, B. GluN2A-Selective NMDA Receptor Antagonists: Mimicking the U-Shaped Bioactive Conformation of TCN-201 by a [2.2]Paracyclophane System.
Liu, Tang, Zhang, Li, Kou (b0100) 2025; 27
Tunyasuvunakool (b0170) 2021; 596
Xiong, Lou, Lian, Wu, Kou (b0190) 2025; 19
Yi, Bhattacharya, Thompson, Traynelis, Hansen (b0200) 2019; 597
Wu, Kou, Mo, Deng, Sun (b0185) 2016; 334
Kou (b0065) 2025; 101
Gibb (b0035) 2022; 202
Generalized biomolecular modeling and design with RoseTTAFold All-Atom.
Shan, Dong, Wen, Cui, Cao (b0130) 2025; 308
e202200484, doi:10.1002/cmdc.202200484 (2022).
Liu (b0090) 2024; 100
Abbott (b0005) 2024
Lei (b0080) 2023; 71
Clarke, Glasgow, Johnson (b0020) 2013; 33
Stroebel, Paoletti (b0155) 2021; 599
Liu, Shao, Lou, Kou (b0095) 2024; 15
Iacobucci, Popescu (b0050) 2017; 18
Hansen (b0045) 2018; 150
Panter, Faden (b0120) 1992; 136
Yu, Choi, Jiang, Wei (b0205) 2025; 20
Dupuis (10.1016/j.jsb.2025.108238_b0030) 2023; 111
10.1016/j.jsb.2025.108238_b0140
10.1016/j.jsb.2025.108238_b0180
Shan (10.1016/j.jsb.2025.108238_b0130) 2025; 308
Yang (10.1016/j.jsb.2025.108238_b0195) 2018; 554
Kou (10.1016/j.jsb.2025.108238_b0065) 2025; 101
10.1016/j.jsb.2025.108238_b0125
Panter (10.1016/j.jsb.2025.108238_b0120) 1992; 136
Liu (10.1016/j.jsb.2025.108238_b0090) 2024; 100
10.1016/j.jsb.2025.108238_b0220
10.1016/j.jsb.2025.108238_b0145
Zheng (10.1016/j.jsb.2025.108238_b0225) 2022; 107
Dembeck (10.1016/j.jsb.2025.108238_b0025) 2024; 456
Liu (10.1016/j.jsb.2025.108238_b0100) 2025; 27
Stroebel (10.1016/j.jsb.2025.108238_b0155) 2021; 599
Wang (10.1016/j.jsb.2025.108238_b0175) 2022; 594
Lin (10.1016/j.jsb.2025.108238_b0085) 2016; 31
Sirrieh (10.1016/j.jsb.2025.108238_b0135) 2015; 290
Tunyasuvunakool (10.1016/j.jsb.2025.108238_b0170) 2021; 596
Wu (10.1016/j.jsb.2025.108238_b0185) 2016; 334
Zhang (10.1016/j.jsb.2025.108238_b0210) 2021; 596
Nowak (10.1016/j.jsb.2025.108238_b0115) 1984; 307
Stroebel (10.1016/j.jsb.2025.108238_b0150) 2018; 2
Xiong (10.1016/j.jsb.2025.108238_b0190) 2025; 19
Hansen (10.1016/j.jsb.2025.108238_b0045) 2018; 150
Kou (10.1016/j.jsb.2025.108238_b0060) 2019; 67
Tahiri (10.1016/j.jsb.2025.108238_b0160) 2025; 50
Lee (10.1016/j.jsb.2025.108238_b0075) 2015; 308
10.1016/j.jsb.2025.108238_b0070
Chen (10.1016/j.jsb.2025.108238_b0015) 2025
Yi (10.1016/j.jsb.2025.108238_b0200) 2019; 597
Iacobucci (10.1016/j.jsb.2025.108238_b0050) 2017; 18
10.1016/j.jsb.2025.108238_b0055
Clarke (10.1016/j.jsb.2025.108238_b0020) 2013; 33
Yu (10.1016/j.jsb.2025.108238_b0205) 2025; 20
Zhou (10.1016/j.jsb.2025.108238_b0230) 2022; 249
Lei (10.1016/j.jsb.2025.108238_b0080) 2023; 71
Madry (10.1016/j.jsb.2025.108238_b0110) 2008; 105
Abbott (10.1016/j.jsb.2025.108238_b0005) 2024
Gomez-Mancilla (10.1016/j.jsb.2025.108238_b0040) 2023; 16
Gibb (10.1016/j.jsb.2025.108238_b0035) 2022; 202
Abramson (10.1016/j.jsb.2025.108238_b0010) 2024; 630
Liu (10.1016/j.jsb.2025.108238_b0095) 2024; 15
Zhang (10.1016/j.jsb.2025.108238_b0215) 2023; 30
Liu (10.1016/j.jsb.2025.108238_b0105) 2025; 16
Tovar (10.1016/j.jsb.2025.108238_b0165) 2013; 33
References_xml – volume: 33
  start-page: 9150
  year: 2013
  end-page: 9160
  ident: b0165
  article-title: Triheteromeric NMDA receptors at hippocampal synapses
  publication-title: J. Neurosci.
– reference: Zhang, J. B. et al. Structural Basis of the Proton Sensitivity of Human GluN1-GluN2A NMDA Receptors. Cell reports 25, 3582-3590 e3584, doi:10.1016/j.celrep.2018.11.071 (2018).
– reference: Wang, H. et al. Gating mechanism and a modulatory niche of human GluN1-GluN2A NMDA receptors. Neuron 109, 2443-2456 e2445, doi:10.1016/j.neuron.2021.05.031 (2021).
– volume: 16
  start-page: 2236
  year: 2023
  end-page: 2252
  ident: b0040
  article-title: MIJ821 (onfasprodil) in healthy volunteers: First-in-human, randomized, placebo-controlled study (single ascending dose and repeated intravenous dose)
  publication-title: Clin. Transl. Sci.
– volume: 50
  start-page: 110
  year: 2025
  ident: b0160
  article-title: Regulation of synaptic NMDA receptor activity by Post-translational modifications
  publication-title: Neurochem. Res.
– volume: 31
  start-page: 37
  year: 2016
  end-page: 43
  ident: b0085
  article-title: Regulation of oncoprotein 18/stathmin signaling by ERK concerns the resistance to taxol in nonsmall cell lung cancer cells
  publication-title: Cancer Biother. Radiopharm.
– reference: Krishna, R.
– volume: 111
  start-page: 2312
  year: 2023
  end-page: 2328
  ident: b0030
  article-title: NMDA receptor functions in health and disease: Old actor, new dimensions
  publication-title: Neuron
– volume: 107
  year: 2022
  ident: b0225
  article-title: Spermine alleviates experimental autoimmune encephalomyelitis via regulating T cell activation and differentiation
  publication-title: Int. Immunopharmacol.
– reference: Steigerwald, R., Chou, T. H., Furukawa, H. & Wunsch, B. GluN2A-Selective NMDA Receptor Antagonists: Mimicking the U-Shaped Bioactive Conformation of TCN-201 by a [2.2]Paracyclophane System.
– volume: 16
  year: 2025
  ident: b0105
  article-title: Bibliometric analysis of NMDA receptors: 2015–2024
  publication-title: Front. Pharmacol.
– volume: 249
  start-page: 93
  year: 2022
  end-page: 97
  ident: b0230
  article-title: Rare presence of autoantibodies targeting to NMDA and GABA(A) receptors in schizophrenia patients
  publication-title: Schizophr. Res.
– volume: 105
  start-page: 12563
  year: 2008
  end-page: 12568
  ident: b0110
  article-title: Supralinear potentiation of NR1/NR3A excitatory glycine receptors by Zn2+ and NR1 antagonist
  publication-title: PNAS
– volume: 596
  start-page: 590
  year: 2021
  end-page: 596
  ident: b0170
  article-title: Highly accurate protein structure prediction for the human proteome
  publication-title: Nature
– volume: 30
  start-page: 629
  year: 2023
  end-page: 639
  ident: b0215
  article-title: Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits
  publication-title: Nat. Struct. Mol. Biol.
– volume: 308
  year: 2025
  ident: b0130
  article-title: A review of m(6)A modification in plant development and potential quality improvement
  publication-title: Int. J. Biol. Macromol.
– volume: 597
  start-page: 5495
  year: 2019
  end-page: 5514
  ident: b0200
  article-title: Functional and pharmacological properties of triheteromeric GluN1/2B/2D NMDA receptors
  publication-title: J. Physiol.
– reference: , e202200484, doi:10.1002/cmdc.202200484 (2022).
– year: 2025
  ident: b0015
  article-title: Davunetide promotes structural and functional recovery of the injured spinal cord by promoting autophagy
  publication-title: Neural Regen. Res.
– reference: Jalali-Yazdi, F., Chowdhury, S., Yoshioka, C. & Gouaux, E. Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Cell 175, 1520-1532 e1515, doi:10.1016/j.cell.2018.10.043 (2018).
– year: 2024
  ident: b0005
  article-title: Allosteric inhibition of NMDA receptors by low dose ketamine
  publication-title: Mol. Psychiatry
– volume: 596
  start-page: 301
  year: 2021
  end-page: 305
  ident: b0210
  article-title: Structural basis of ketamine action on human NMDA receptors
  publication-title: Nature
– volume: 202
  year: 2022
  ident: b0035
  article-title: Allosteric antagonist action at triheteromeric NMDA receptors
  publication-title: Neuropharmacology
– volume: 100
  start-page: 35
  year: 2024
  end-page: 46
  ident: b0090
  article-title: Necroptosis involved in sevoflurane-induced cognitive dysfunction in aged mice by activating NMDA receptors increasing intracellular calcium
  publication-title: Neurotoxicology
– reference: Saunders, A. et al. Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. Cell 174, 1015-1030 e1016, doi:10.1016/j.cell.2018.07.028 (2018).
– volume: 15
  year: 2024
  ident: b0095
  article-title: Structural prediction of GluN3 NMDA receptors
  publication-title: Front. Physiol.
– volume: 18
  start-page: 236
  year: 2017
  end-page: 249
  ident: b0050
  article-title: NMDA receptors: linking physiological output to biophysical operation
  publication-title: Nat. Rev. Neurosci.
– volume: 2
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0150
  article-title: Triheteromeric NMDA receptors: from structure to synaptic physiology
  publication-title: Curr. Opin. Physiol.
– volume: 67
  start-page: 1344
  year: 2019
  end-page: 1358
  ident: b0060
  article-title: Vascular endothelial growth factor increases the function of calcium-impermeable AMPA receptor GluA2 subunit in astrocytes via activation of protein kinase C signaling pathway
  publication-title: Glia
– reference: Generalized biomolecular modeling and design with RoseTTAFold All-Atom.
– volume: 599
  start-page: 2615
  year: 2021
  end-page: 2638
  ident: b0155
  article-title: Architecture and function of NMDA receptors: an evolutionary perspective
  publication-title: J. Physiol.
– volume: 33
  start-page: 4140
  year: 2013
  end-page: 4150
  ident: b0020
  article-title: Mechanistic and structural determinants of NMDA receptor voltage-dependent gating and slow Mg2+ unblock
  publication-title: J. Neurosci.
– volume: 308
  start-page: C570
  year: 2015
  end-page: C577
  ident: b0075
  article-title: A neuroprotective role of the NMDA receptor subunit GluN3A (NR3A) in ischemic stroke of the adult mouse
  publication-title: Am. J. Physiol. Cell Physiol.
– reference: , eadl2528, doi:10.1126/science.adl2528 (2024).
– volume: 71
  start-page: 1648
  year: 2023
  end-page: 1666
  ident: b0080
  article-title: Vascular endothelial growth factor promotes transdifferentiation of astrocytes into neurons via activation of the MAPK/Erk-Pax6 signal pathway
  publication-title: Glia
– volume: 27
  start-page: 3167
  year: 2025
  end-page: 3180
  ident: b0100
  article-title: Artificial intelligence insight on structural basis and small molecule binding niches of NMDA receptor
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 290
  start-page: 12812
  year: 2015
  end-page: 12820
  ident: b0135
  article-title: Subtype-dependent N-methyl-D-aspartate receptor amino-terminal domain conformations and modulation by spermine
  publication-title: J. Biol. Chem.
– volume: 456
  year: 2024
  ident: b0025
  article-title: The GluN2C/D-specific positive allosteric modulator CIQ rescues delay-induced working memory deficits in mice
  publication-title: Behav. Brain Res.
– volume: 19
  year: 2025
  ident: b0190
  article-title: The GluN3-containing NMDA receptors
  publication-title: Channels
– reference: Skowronska, K., Obara-Michlewska, M., Zielinska, M. & Albrecht, J. NMDA Receptors in Astrocytes: In Search for Roles in Neurotransmission and Astrocytic Homeostasis. Int. J. Mol. Sci. 20, doi:10.3390/ijms20020309 (2019).
– volume: 307
  start-page: 462
  year: 1984
  end-page: 465
  ident: b0115
  article-title: Magnesium gates glutamate-activated channels in mouse central neurones
  publication-title: Nature
– volume: 334
  start-page: 275
  year: 2016
  end-page: 282
  ident: b0185
  article-title: Neurovascular coupling protects neurons against hypoxic injury via inhibition of potassium currents by generation of nitric oxide in direct neuron and endothelium cocultures
  publication-title: Neuroscience
– volume: 20
  start-page: 1981
  year: 2025
  end-page: 1988
  ident: b0205
  article-title: Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease
  publication-title: Neural Regen. Res.
– volume: 150
  start-page: 1081
  year: 2018
  end-page: 1105
  ident: b0045
  article-title: Structure, function, and allosteric modulation of NMDA receptors
  publication-title: J. Gen. Physiol.
– volume: 101
  year: 2025
  ident: b0065
  article-title: Comment on the use of AI-based protein design for autoimmune encephalitis: exciting possibilities and practical considerations
  publication-title: Mult. Scler. Relat. Disord.
– volume: 594
  start-page: 46
  year: 2022
  end-page: 56
  ident: b0175
  article-title: Glutamatergic receptor and neuroplasticity in depression: Implications for ketamine and rapastinel as the rapid-acting antidepressants
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 630
  start-page: 493
  year: 2024
  end-page: 500
  ident: b0010
  article-title: Accurate structure prediction of biomolecular interactions with AlphaFold 3
  publication-title: Nature
– volume: 136
  start-page: 165
  year: 1992
  end-page: 168
  ident: b0120
  article-title: Pretreatment with NMDA antagonists limits release of excitatory amino acids following traumatic brain injury
  publication-title: Neurosci. Lett.
– volume: 554
  start-page: 317
  year: 2018
  end-page: 322
  ident: b0195
  article-title: Ketamine blocks bursting in the lateral habenula to rapidly relieve depression
  publication-title: Nature
– ident: 10.1016/j.jsb.2025.108238_b0145
  doi: 10.1002/cmdc.202200484
– ident: 10.1016/j.jsb.2025.108238_b0180
  doi: 10.1016/j.neuron.2021.05.031
– volume: 33
  start-page: 4140
  year: 2013
  ident: 10.1016/j.jsb.2025.108238_b0020
  article-title: Mechanistic and structural determinants of NMDA receptor voltage-dependent gating and slow Mg2+ unblock
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3712-12.2013
– volume: 100
  start-page: 35
  year: 2024
  ident: 10.1016/j.jsb.2025.108238_b0090
  article-title: Necroptosis involved in sevoflurane-induced cognitive dysfunction in aged mice by activating NMDA receptors increasing intracellular calcium
  publication-title: Neurotoxicology
  doi: 10.1016/j.neuro.2023.12.006
– ident: 10.1016/j.jsb.2025.108238_b0055
  doi: 10.1016/j.cell.2018.10.043
– volume: 105
  start-page: 12563
  year: 2008
  ident: 10.1016/j.jsb.2025.108238_b0110
  article-title: Supralinear potentiation of NR1/NR3A excitatory glycine receptors by Zn2+ and NR1 antagonist
  publication-title: PNAS
  doi: 10.1073/pnas.0805624105
– volume: 597
  start-page: 5495
  year: 2019
  ident: 10.1016/j.jsb.2025.108238_b0200
  article-title: Functional and pharmacological properties of triheteromeric GluN1/2B/2D NMDA receptors
  publication-title: J. Physiol.
  doi: 10.1113/JP278168
– volume: 67
  start-page: 1344
  year: 2019
  ident: 10.1016/j.jsb.2025.108238_b0060
  article-title: Vascular endothelial growth factor increases the function of calcium-impermeable AMPA receptor GluA2 subunit in astrocytes via activation of protein kinase C signaling pathway
  publication-title: Glia
  doi: 10.1002/glia.23609
– volume: 334
  start-page: 275
  year: 2016
  ident: 10.1016/j.jsb.2025.108238_b0185
  article-title: Neurovascular coupling protects neurons against hypoxic injury via inhibition of potassium currents by generation of nitric oxide in direct neuron and endothelium cocultures
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.08.012
– volume: 107
  year: 2022
  ident: 10.1016/j.jsb.2025.108238_b0225
  article-title: Spermine alleviates experimental autoimmune encephalomyelitis via regulating T cell activation and differentiation
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2022.108702
– volume: 16
  year: 2025
  ident: 10.1016/j.jsb.2025.108238_b0105
  article-title: Bibliometric analysis of NMDA receptors: 2015–2024
  publication-title: Front. Pharmacol.
– volume: 20
  start-page: 1981
  year: 2025
  ident: 10.1016/j.jsb.2025.108238_b0205
  article-title: Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease
  publication-title: Neural Regen. Res.
  doi: 10.4103/NRR.NRR-D-24-00398
– year: 2024
  ident: 10.1016/j.jsb.2025.108238_b0005
  article-title: Allosteric inhibition of NMDA receptors by low dose ketamine
  publication-title: Mol. Psychiatry
– volume: 111
  start-page: 2312
  year: 2023
  ident: 10.1016/j.jsb.2025.108238_b0030
  article-title: NMDA receptor functions in health and disease: Old actor, new dimensions
  publication-title: Neuron
  doi: 10.1016/j.neuron.2023.05.002
– volume: 27
  start-page: 3167
  year: 2025
  ident: 10.1016/j.jsb.2025.108238_b0100
  article-title: Artificial intelligence insight on structural basis and small molecule binding niches of NMDA receptor
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2025.07.027
– ident: 10.1016/j.jsb.2025.108238_b0125
  doi: 10.1016/j.cell.2018.07.028
– volume: 249
  start-page: 93
  year: 2022
  ident: 10.1016/j.jsb.2025.108238_b0230
  article-title: Rare presence of autoantibodies targeting to NMDA and GABA(A) receptors in schizophrenia patients
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2021.12.002
– volume: 30
  start-page: 629
  year: 2023
  ident: 10.1016/j.jsb.2025.108238_b0215
  article-title: Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-023-00959-z
– volume: 18
  start-page: 236
  year: 2017
  ident: 10.1016/j.jsb.2025.108238_b0050
  article-title: NMDA receptors: linking physiological output to biophysical operation
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2017.24
– volume: 15
  year: 2024
  ident: 10.1016/j.jsb.2025.108238_b0095
  article-title: Structural prediction of GluN3 NMDA receptors
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2024.1446459
– volume: 307
  start-page: 462
  year: 1984
  ident: 10.1016/j.jsb.2025.108238_b0115
  article-title: Magnesium gates glutamate-activated channels in mouse central neurones
  publication-title: Nature
  doi: 10.1038/307462a0
– volume: 50
  start-page: 110
  year: 2025
  ident: 10.1016/j.jsb.2025.108238_b0160
  article-title: Regulation of synaptic NMDA receptor activity by Post-translational modifications
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-025-04346-6
– volume: 554
  start-page: 317
  year: 2018
  ident: 10.1016/j.jsb.2025.108238_b0195
  article-title: Ketamine blocks bursting in the lateral habenula to rapidly relieve depression
  publication-title: Nature
  doi: 10.1038/nature25509
– volume: 596
  start-page: 590
  year: 2021
  ident: 10.1016/j.jsb.2025.108238_b0170
  article-title: Highly accurate protein structure prediction for the human proteome
  publication-title: Nature
  doi: 10.1038/s41586-021-03828-1
– volume: 19
  year: 2025
  ident: 10.1016/j.jsb.2025.108238_b0190
  article-title: The GluN3-containing NMDA receptors
  publication-title: Channels
  doi: 10.1080/19336950.2025.2490308
– volume: 290
  start-page: 12812
  year: 2015
  ident: 10.1016/j.jsb.2025.108238_b0135
  article-title: Subtype-dependent N-methyl-D-aspartate receptor amino-terminal domain conformations and modulation by spermine
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.649723
– volume: 630
  start-page: 493
  year: 2024
  ident: 10.1016/j.jsb.2025.108238_b0010
  article-title: Accurate structure prediction of biomolecular interactions with AlphaFold 3
  publication-title: Nature
  doi: 10.1038/s41586-024-07487-w
– volume: 136
  start-page: 165
  year: 1992
  ident: 10.1016/j.jsb.2025.108238_b0120
  article-title: Pretreatment with NMDA antagonists limits release of excitatory amino acids following traumatic brain injury
  publication-title: Neurosci. Lett.
  doi: 10.1016/0304-3940(92)90040-E
– volume: 33
  start-page: 9150
  year: 2013
  ident: 10.1016/j.jsb.2025.108238_b0165
  article-title: Triheteromeric NMDA receptors at hippocampal synapses
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0829-13.2013
– volume: 101
  year: 2025
  ident: 10.1016/j.jsb.2025.108238_b0065
  article-title: Comment on the use of AI-based protein design for autoimmune encephalitis: exciting possibilities and practical considerations
  publication-title: Mult. Scler. Relat. Disord.
  doi: 10.1016/j.msard.2025.106593
– volume: 308
  year: 2025
  ident: 10.1016/j.jsb.2025.108238_b0130
  article-title: A review of m(6)A modification in plant development and potential quality improvement
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2025.142597
– volume: 150
  start-page: 1081
  year: 2018
  ident: 10.1016/j.jsb.2025.108238_b0045
  article-title: Structure, function, and allosteric modulation of NMDA receptors
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201812032
– ident: 10.1016/j.jsb.2025.108238_b0070
  doi: 10.1126/science.adl2528
– volume: 594
  start-page: 46
  year: 2022
  ident: 10.1016/j.jsb.2025.108238_b0175
  article-title: Glutamatergic receptor and neuroplasticity in depression: Implications for ketamine and rapastinel as the rapid-acting antidepressants
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2022.01.024
– year: 2025
  ident: 10.1016/j.jsb.2025.108238_b0015
  article-title: Davunetide promotes structural and functional recovery of the injured spinal cord by promoting autophagy
  publication-title: Neural Regen. Res.
  doi: 10.4103/NRR.NRR-D-24-00154
– volume: 308
  start-page: C570
  year: 2015
  ident: 10.1016/j.jsb.2025.108238_b0075
  article-title: A neuroprotective role of the NMDA receptor subunit GluN3A (NR3A) in ischemic stroke of the adult mouse
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00353.2014
– volume: 31
  start-page: 37
  year: 2016
  ident: 10.1016/j.jsb.2025.108238_b0085
  article-title: Regulation of oncoprotein 18/stathmin signaling by ERK concerns the resistance to taxol in nonsmall cell lung cancer cells
  publication-title: Cancer Biother. Radiopharm.
– volume: 2
  start-page: 1
  year: 2018
  ident: 10.1016/j.jsb.2025.108238_b0150
  article-title: Triheteromeric NMDA receptors: from structure to synaptic physiology
  publication-title: Curr. Opin. Physiol.
  doi: 10.1016/j.cophys.2017.12.004
– volume: 599
  start-page: 2615
  year: 2021
  ident: 10.1016/j.jsb.2025.108238_b0155
  article-title: Architecture and function of NMDA receptors: an evolutionary perspective
  publication-title: J. Physiol.
  doi: 10.1113/JP279028
– ident: 10.1016/j.jsb.2025.108238_b0220
  doi: 10.1016/j.celrep.2018.11.071
– volume: 16
  start-page: 2236
  year: 2023
  ident: 10.1016/j.jsb.2025.108238_b0040
  article-title: MIJ821 (onfasprodil) in healthy volunteers: First-in-human, randomized, placebo-controlled study (single ascending dose and repeated intravenous dose)
  publication-title: Clin. Transl. Sci.
  doi: 10.1111/cts.13623
– ident: 10.1016/j.jsb.2025.108238_b0140
  doi: 10.3390/ijms20020309
– volume: 202
  year: 2022
  ident: 10.1016/j.jsb.2025.108238_b0035
  article-title: Allosteric antagonist action at triheteromeric NMDA receptors
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2021.108861
– volume: 71
  start-page: 1648
  year: 2023
  ident: 10.1016/j.jsb.2025.108238_b0080
  article-title: Vascular endothelial growth factor promotes transdifferentiation of astrocytes into neurons via activation of the MAPK/Erk-Pax6 signal pathway
  publication-title: Glia
  doi: 10.1002/glia.24361
– volume: 456
  year: 2024
  ident: 10.1016/j.jsb.2025.108238_b0025
  article-title: The GluN2C/D-specific positive allosteric modulator CIQ rescues delay-induced working memory deficits in mice
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2023.114716
– volume: 596
  start-page: 301
  year: 2021
  ident: 10.1016/j.jsb.2025.108238_b0210
  article-title: Structural basis of ketamine action on human NMDA receptors
  publication-title: Nature
  doi: 10.1038/s41586-021-03769-9
SSID ssj0004121
Score 2.4657495
Snippet NMDA receptors are subject to numerous endogenous and exogenous allosteric regulations, which are essential for their complex pathophysiological functions in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 108238
SubjectTerms Allostery modulation
AlphaFold
Glutamate receptor
Protein prediction
Protein structure
Title Characterization of NMDA receptor Allostery modulation
URI https://dx.doi.org/10.1016/j.jsb.2025.108238
https://www.ncbi.nlm.nih.gov/pubmed/40819686
https://www.proquest.com/docview/3240480739
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF2KIngRv60fJYInIbbJbjbJMVRLtbQHtdjbkt1soKUmpR-HXvztzmSTiqAePIWEhGxelpm3zHuzhNwoLpNEusqmigewQNHMDqlHbcoSV7IUMqCDBuf-gHeH7GnkjWqkXXlhUFZZxn4T04toXV5plmg2Z-Nx86VoLMOAHXpFvQmN5ti9Dub03ceXzIM5xnuFHQnw7qqyWWi8JgsJS0TXQ6WdixaVn3PTb9yzyEGdfbJXkkcrMuM7IDWdHZIds53k-ojw9qb7sjFXWnlqDfr3kQWfqGewurai6RRdHfO19Z4n5c5dx2TYeXhtd-1yXwRbQTZf2kolYay5TmWqWo52GGAVQ8ALXe0CAaTcSTSF3Kx06rhcxn4qvUR7ioY6SEOe0BOyleWZPiNWS4dpoDiDiO0zqVCST5mPPfKB17WUXye3FSJiZtpfiEoXNhEAn0D4hIGvTliFmfj2DwWE578eu67wFTC3sWARZzpfLQQ2C0TLOw3r5NQAvxkFQy7DA37-v5dekF08M2qxS7K1nK_0FdCLpWwU86dBtqPHXneAx97zW-8Te4TPCg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB3ShNJeSvemqws9FUxiS5bjY0gbkma5NIHchCXLkJDaIcshf9-RZacU2h56tRGWn8TMGzTvCeBJMhFFwpU2kayBBYqidkA8YhMauYLGmAEdLXAeDFlnTN8m3qQErUILo9sq89hvYnoWrfMntRzN2mI6rb1nxjIU2aGXnTd5e1DR7lS0DJVmt9cZfskjHSO_0qYEekBxuJm1ec1WAqtE19PNdq5Wqfycnn6jn1kaah_DUc4fraaZ4gmUVHIK--ZGye0ZsNbOgNnoK600toaDl6aFf6kWWGBbzflcCzuWW-sjjfLLu85h3H4dtTp2fjWCLTGhr20poyBUTMUilnVHORThCjHmBa5ykQMS5kSKYHqWKnZcJkI_Fl6kPEkC1YgDFpELKCdpoq7AqqsgbkhGMWj7VEjdlU-or23ykdrVpV-F5wIRvjAOGLxoDZtxhI9r-LiBrwq0wIx_W0aOEfqvYY8Fvhy3tz6zCBOVblZc-wVq1TsJqnBpgN_Ngmo6wxrs-n8ffYCDzmjQ5_3usHcDh_qNaR67hfJ6uVF3yDbW4j7fTZ8qftAY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+NMDA+receptor+Allostery+modulation&rft.jtitle=Journal+of+structural+biology&rft.au=Liu%2C+Yunsheng&rft.au=Song%2C+Wangsheng&rft.au=Zhong%2C+Rongde&rft.au=Zhang%2C+Jinfang&rft.date=2025-09-01&rft.issn=1095-8657&rft.eissn=1095-8657&rft.spage=108238&rft_id=info:doi/10.1016%2Fj.jsb.2025.108238&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-8477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-8477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-8477&client=summon