Human Systemic Reactions to a Dosed Exposure to Hypoxia: A Multiparameter Study

Human physiological reactions to acute hypoxic hypoxia were studied. Analysis of simultaneously recorded parameters of various physiological systems showed the following: activation of the general antihypoxic defense system is based on the formation of an intricate structure of intra- and intersyste...

Full description

Saved in:
Bibliographic Details
Published inHuman physiology Vol. 31; no. 5; pp. 573 - 591
Main Authors Soroko, S. I., Burykh, E. A., Bekshaev, S. S., Sergeeva, E. G.
Format Journal Article
LanguageEnglish
Published 01.09.2005
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human physiological reactions to acute hypoxic hypoxia were studied. Analysis of simultaneously recorded parameters of various physiological systems showed the following: activation of the general antihypoxic defense system is based on the formation of an intricate structure of intra- and intersystemic relations of specific and nonspecific elements of adaptation that support vital body functions during environmental oxygen deficit. These specific elements become more important in more severe hypoxia, which suppresses metabolism in some organs and tissues because of redistribution of blood flow. These factors allow the body to function at a lower oxygen tension in its tissues owing to an increased efficiency of mitochondria as a result of changes in the kinetics of enzymes of the mitochondrial respiratory chain. In acute hypoxia, the structure of intra- and intersystemic relations is rather intricate; its functional hierarchy is maintained by stronger individual amplitude-related controlling factors and by modulation of their phase- and time-related links. Advanced stages of hypoxia are associated with disintegration of central regulatory mechanisms, which is manifested by disturbances in amplitude-frequency and spatiotemporal parameters of the brain bioelectrical activity, changes in phasic interactions between elements of regulatory mechanisms, and signs of deregulation and decompensation of vital functions. The interpretation of the results is based on the general theory of adaptation, Medvedev's idea of adaptation as a successive involvement of genetically predetermined and newly-formed regulatory programs of the brain, Anokhin's theory of functional systems, and modern concepts of molecular and biochemical mechanisms of hypoxia. It was concluded that artificial normobaric hypoxia is a unique, biologically adequate model that makes it possible to study the rearrangements in systemic and autonomic regulatory mechanisms in response to strictly determined changes in the environmental concentration of oxygen as a principal factor supporting life.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0362-1197
1608-3164
DOI:10.1007/s10747-005-0099-8